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A commentary on

The landscape of transcription errors in eukaryotic cells
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doi: 10.1126/sciadv.1701484

The flow of genetic information within biological systems, as described by the central dogma of
molecular biology (Crick, 1970), lies at the heart of life. Dedicatedmolecular machinery has evolved
to carry out the process of replicating and converting genetic information with great accuracy.
However, due to the inherently noisy nature of biological systems it is inevitable that errors can
arise at any stage of life during this process (Drummond andWilke, 2009; Tawfik, 2010). Such errors
may exert significant effects on the functioning of cells—with detrimental outcomes. Propagation
of errors in genetic information transfer has been surmised as one of the main molecular causes
of cellular aging (Szilard, 1959; Orgel, 1963, 1970). Yet, little is known about the origins and
consequences of erroneous gene expression in cells.

Transcriptional infidelity, i.e., the inaccurate conversion of DNA to RNA, constitutes one class
of information transmission errors. By expressing an error-prone version of RNA polymerase
II (RNAPII), increased rates of transcriptional promiscuity have been demonstrated to induce
proteotoxicity and reduce cellular longevity in yeast (Vermulst et al., 2015). The error rate of
transcription increases with age, which contributes to the decline in proteostasis seen in aging cells
(Figure 1A).

The introduction of optimized RNA sequencing assays allows for accurate measurements of
erroneous transcription rates in cells (Reid-Bayliss and Loeb, 2017). In a recent study published
in Science Advances, Gout et al. introduce an optimized “circle-sequencing (CircSeq) assay” and
provide the first comprehensive analysis of transcription errors in eukaryotic cells (Gout et al.,
2017). They demonstrate that transcription errors occur across the entire genome of the budding
yeast Saccharomyces cerevisiae and that these errors can affect cellular function. This potentially has
widespread implications for our understanding of cell physiology, aging, and disease.

The sequencing approach was adapted from the field of virology, where it is used to sequence
RNA virus populations (Acevedo and Andino, 2014; Acevedo et al., 2014). Gout et al. show
that the yeast transcriptome contains on average 4.0 errors per million base pairs, which implies
that RNA mutation rate is over a 100-fold higher than DNA mutation rate (Lynch et al., 2016).
Importantly, the adopted strategy enables them to absolutely know which errors come about where
and when. The error spectrum of transcription reveals that errors are not distributed equally
over the transcriptome, with different types of polymerases, transcribing different types of RNA,
generating different amounts of errors (Figure 1A). Additionally, the measurements demonstrate
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FIGURE 1 | Erroneous gene transcription can bring about abnormal proteins with cytotoxic properties. These molecules impact cellular function, and may be

implicated in aging and disease. Dirty transcripts yield toxic proteins. (A) Transcriptional misreading, i.e., the inaccurate conversion of DNA to RNA by RNA

polymerase (RNAP), results in mutant transcripts that can be translated into abnormal proteins. These mutant proteins induce proteotoxic stress in cells and impact

cellular physiology. Cells use several mechanisms for quality control of gene expression, to prevent abnormal molecules from being generated and to accumulate. In

addition to the proofreading abilities of polymerase enzymes, specific mechanisms exist to control fidelity beyond synthesis. For example, mRNA surveillance

pathways ensure mRNA quality (Doma and Parker, 2007), and abnormal proteins can be degraded by an assembly of chaperons, the ubiquitin-proteasome system

and autophagy (Goldberg, 2003). It has been suggested that mutations in synthesis machinery could result in a positive feedback loop, corresponding to an error

catastrophe (Martin and Bressler, 2000). Impaired quality control mechanisms, perhaps the result of errors during synthesis of their constituents, could also contribute

to such a phenomenon. (B) Molecular misreading has been found to introduce sequence differences into nascent transcripts and generates frame-shifted proteins

with cytotoxic properties. Ubiquitin-B+1 (UBB+1) is an example of such a protein and accumulates in the neuropathological hallmarks of Alzheimer’s disease. It has

been shown that when the levels of proteotoxic stress induced by UBB+1 surpass cellular redundancy, this will lead to pathogenicity. The insert shows a section from

an Alzheimer’s disease patient brain, containing several UBB+1-positive structures. Bar = 100µm.

that there is a limit to the capacity of non-sense mediated RNA
decay to recognize erroneous transcripts.

The researchers also explore the physiological effects of
transcriptional infidelity using multiple approaches. In line with
previous findings, increased transcriptional error rates induce
proteotoxic stress and reduce cell growth and longevity. Other
biological changes include perturbation of metabolic processes,
which might resemble the metabolic changes seen in senescent
and diseased cells.

The widespread existence of RNA mutations may have far-
reaching implications. Identification of transcription errors and
thorough analysis of their phenotypic effects could lead to
novel insights into aging- and disease-related loss of cellular
homeostasis. Mutator phenotype in cancer is a prominent
example of how an increase in error frequency contributes to
cellular dysfunction (Loeb, 2016). Previous work has revealed

a specific type of mistranscription to take place in human
cells. Through a mechanism dubbed “molecular misreading,”
which introduces dinucleotide deletions (e.g., 1GA, 1GU)
into repeated dinucleotide runs of sequences (e.g., GAGAG)
of RNA, aberrant proteins can be produced (van Leeuwen
et al., 1998a,b; Bridges, 1999; Figure 1B). Although the exact
causes of these errors are poorly understood, one potential
mechanism for the generation of mutant transcripts is the
slippage, or “stuttering,” of RNA polymerases on certain repeat
motifs in DNA. Molecular misreading-derived mutant proteins
have been found to accumulate in the pathological hallmarks of a
number of human diseases, including Alzheimer’s disease (van
Leeuwen et al., 1998b). Expression of these abnormal proteins
in both in vitro and in vivo experimental model systems has
shown that they are potent cytotoxic agents. For example, one
of the anomalous proteins, a frame-shift mutant of ubiquitin-B
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(UBB+1), induces toxicity through interfering with protein
quality control systems and mitochondrial function (Krutauz
et al., 2014; Braun et al., 2015; Figure 1B).

It is important to point out that transcription errors may not
exclusively result in “dirty RNAs” with deleterious effects, but
could also give rise to products with beneficial properties under
certain conditions (Drummond and Wilke, 2009; Tawfik, 2010).
The generation of alternative transcripts that increase cellular
fitness might actually explain why biological systems would
have some degree of error-dependent transcriptional plasticity
or act on a on a “principle of limited sloppiness.” Cells are
equipped with factors for the programmed generation of RNA-
DNA differences via RNA editing; transcriptional mutations
might contribute to normal cellular function. Furthermore,
these mutations have been hypothesized to contribute to the
evolution of viruses and bacteria, and development of drug
resistance (Vignuzzi et al., 2006; Morreall et al., 2013). Notably,
transcription errors, although transient in nature, may result in
heritable changes in cellular phenotypes, as has been indicated
in studies utilizing the lac operon in bacteria (Gordon et al.,
2009, 2013; Gamba and Zenkin, 2017). Additionally, it should be
stressed that RNAs are not just templates for protein synthesis,

but can interact with proteins, DNA and other RNAs, and can
have catalyzing properties themselves. The notion that RNAs

could switch to other functional states by the introduction of
error-induced sequence differences should be explored further.

The hereinbefore-mentioned study by Gout et al.
on transcriptional infidelity in yeast contributes to our
understanding of the diversity of the transcriptional landscape.
We anticipate that more non-genetic mutations that occur
during transcription will be identified in future studies. This
could contribute to a better understanding of aging and disease
and may also result in novel therapeutic targets. The approach
devised by Gout et al. provides an excellent experimental
framework for investigating transcription error rates in other
cell types (e.g., neurons, myocytes) and to examine the effects
of aging, disease, DNA damage, and specific genes, RNAs and
proteins on transcriptional fidelity.
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