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Introduction

In this volume of the IJE, Gao and colleagues explore the

causal effect of adiposity on several cancers using two-

sample Mendelian randomization (MR), and find some

evidence that greater adult body mass index (BMI) causally

reduces the risk of breast cancer while increasing ovarian,

lung and colorectal cancer.1 The authors conclude that the
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study provides ‘ . . . additional understanding of the com-

plex relationship between adiposity and cancer risks’.

Beyond the study findings themselves, this paper is

interesting in its use of publicly available genome-wide as-

sociation study (GWAS) summary data in a two-sample

MR approach. Whereas MR has been increasingly used

over the past decade since it was first proposed in the IJE,2

two-sample MR is a relatively recent extension.3 With the

increasing availability of complete summary results from

GWAS consortia that are easily accessible on the internet,

the use of two-sample MR is likely to increase considerably

over the next decade.4 By complete summary data I mean

results for all genetic loci with a trait or disease outcome,

and not just those reaching a pre-specified P-value thresh-

old as shown in journal publications. It is this extensive

availability of results that allows Gao et al. to relate

genetic variants used as instrumental variables for

adiposity traits to the cancer outcomes that they are inter-

ested in; the published GWAS for the cancer out-

comes would not have reported on the adiposity variants

unless they reached a pre-specified GWAS significance

value.

(One-sample) Mendelian randomization

MR is a form of instrumental variable analysis that uses

genetic variants as instrumental variables. It has been

described as nature’s or your god’s randomized controlled

trial (RCT), referring to the random allocation of genetic

variants at conception that mean genetic variants are less

likely to violate some of the assumptions of instrumental

variable analyses than non-genetic instruments.5,6 That

X: LDLc Y: CHD

C

Z: randomize 
to statin X: LDLc Y: CHD

C

Z: randomize 
to statin

Effect on fatty acids 
and other lipids

X: LDLc Y: CHD

C

Z: Genetic 
variants X: LDLc Y: CHD

C

Z: Genetic 
variants

Effect on other lipids

(a) (b)

(c) (d)

Figure 1. DAG of instrumental variable analyses in an RCT and MR study exploring the effect of LDLc on CHD. These are directed acyclic graphs

(DAGs), thus the absence of an arrow between any two variables (nodes) indicates we do not consider it plausible that there is a causal effect between

those two. Figure shows DAGs of instrumental variable (IV) analyses to test the causal effect of low-density lipoprotein cholesterol (LDLc) on CHD. In

Figure 1a and b, the IV is randomization to receiving a statin or not (i.e this is an example of IV analyses in an RCT). In Figure 1c and d, the IV is genetic

variants that are robustly related to LDLc (i.e. this is a Mendelian randomization study). Figure 1a and c both illustrate the three key assumptions of IV

analyses:

i. that the IV ‘Z’ (randomization to statins in Figure 1a and genetic variants related to LDLc in Figure 1c) is (or is plausibly) causally related to the

risk factor (LDLc in all figures);

ii. that confounding factors for the risk factor-outcome ‘X’-’Y’ association (here LDLc on CHD in all figures) are not related to the instrumental

variable;

iii. that the instrumental variable ‘Z’ only affects the outcome ‘Y’ (CHD) through its effect on the risk factor ‘X’ (LDLc).

In the RCT example we know that assumption (i) is true, and if the RCT is well conducted, then assumption (ii) will be true (other than chance associ-

ations). If, however, statins are directly (independently of LDLc) related to other factors which then affect CHD, assumption (iii) will be violated and

the estimated causal effect will be a biased estimate of the true effect of LDLc. There is some evidence that statins do relate to a wide range of lipids

and fatty acids in addition to LDLc,27 though whether these are caused by the statins independent of LDLc and affect CHD is currently unknown. If

they do (as shown in Figure 1b) then the estimate of the LDLc effect on CHD is likely to be biased. In the MR example, selecting variants from large

GWAS consortia where there is replication means that assumption (i) is likely to be correct. For assumption (ii) there is evidence that this is likely to

be true.26 As with the RCT example, in MR we are often most worried about assumption (iii) being violated through directional (horizontal) plei-

otropy—i.e. the LDLc genetic variants influencing other factors independently of LDLc which in turn (independently of LDLc) affect CHD (Figure 1d). If

the IV assumptions are correct (as illustrated in Figure 1a and c) it can be seen that the magnitude of effect of LDLc on CHD can be easily calculated

by the following: effect of LDLc on odds of CHD¼ log odds CHD on Z � b LDLc on Z, where Z¼ randomization to statins (in the RCT example) or gen-

etic variants for LDLc (in the MR example). For example, if in a well-conducted RCT randomization to a standard dose of statins reduces LDLc by

4 mmol/l and CHD by a relative reduction of 20% (odds ratio 0.80), then the causal effect of LCLc on CHD is a relative reduction of 5% (OR 0.95) per

1 mmol/l. It can also be seen that if assumption (iii) (the exclusion restriction criteria) is violated (as illustrated in Figure 1b), then this estimate is

biased as it is the combined effect of LDLc and any other lipids or fatty acids that are independently affected by statins and influence CHD.
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analogy with RCTs is also useful when teaching MR to

epidemiologists who feel anxious about genetics, as illus-

trated in Figure 1 which provides a revision of instrumental

variable analyses and the key assumptions of this approach

using an example of determining the causal effect of low-

density lipoprotein cholesterol (LDLc) on coronary heart

disease (CHD) via an RCT (Figure 1a and b) and via MR

(Figure 1c and d). In both approaches the assumption that

is most likely to be violated is the ‘exclusion restriction

criteria’,7–9 which states that the instrumental variable is

only related to the outcome via its effect on the risk factor.

Figure 1 also shows that, if the instrumental variable as-

sumptions are correct, the estimate of the causal effect of

the risk factor on outcome can be obtained from a simple

ratio of the effect of the instrumental variable on outcome

divided by the effect of the instrumental variable on risk

factor. In the paper by Gao and colleagues, causal effect ¼
log odds of cancer per allele of combined adiposity genetic

variants � regression coefficient of adiposity measure per

allele of combined adiposity genetic variants.

Two-sample Mendelian randomization

Two-sample MR exploits the fact that it is not necessary to

obtain the effect of the instrumental variable-risk factor as-

sociation (ratio denominator) and instrumental variable-

outcome association (ratio numerator) from the same sam-

ple of participants. Indeed, there are some advantages to ob-

taining them from two different sets of participants. In

particular ‘winners’ curse’, which can underestimate true

causal effects in one-sample MR,10 is unlikely to happen in

two-sample MR, and unlike the impact of weak instrument

bias in one-sample MR (which biases effects towards the

confounded multivariable regression result), in two-sample

MR weak instrument bias is towards the null.3 The main

advantage of using summary data from GWAS consortia in

two-sample MR is the increased statistical power, particu-

larly in relation to testing effects on binary disease out-

comes.4 The paper by Gao and colleagues illustrates this

with the large numbers of cancer cases that they analyse:

15 748, 5100, 12 160, 4369 and 14 160, respectively, for

breast, colorectal, lung, ovarian and prostate cancer.1 The

assumptions of two-sample MR are similar to those of one-

sample MR, as are many of its strengths and limitations. It

also has additional strengths and limitations in comparison

with one-sample MR, which are summarized in Table 1.

Overlapping samples and the use of
summary or individual participant data

MR could be undertaken in one ‘sample’ of participants

with genetic instrument and outcome data on all

participants, and data on the risk factor in a (random) sub-

sample. For example, UK Biobank will soon release GWAS

data on all 500 000 participants and has already amassed

large numbers of incident cases of cardiovascular disease

and common cancers such as breast cancer.11 Collection of

unique imaging data on a subsample of 100 000 of those

participants has begun, and thus MR to determine the

causal effect of novel imaging biomarkers on common

chronic disease outcomes, in which the genetic instrument-

disease outcome association in 500 000 participants is div-

ided by the genetic instrument-imaging biomarker associ-

ation in the 100 000 subgroup, will soon be possible.

However, this is a one-sample MR, as the subgroup ‘be-

long’ to the same study population. A one-sample MR

study based on such a large sample would not have the ad-

vantages of two-sample MR, but it would have strong stat-

istical power (including for testing causal effects on binary

disease outcomes). In addition, it would have advantages

from having individual participant data rather than sum-

mary data, though the very select nature of some large bio-

banks (the response rate for UK Biobank was less than

5%) might introduce additional biases.

The disadvantages of using summary data in two-

sample MR are similar to those of meta-analysing sum-

mary data of RCTs or multivariable regression observa-

tional results—the quality of the pooled results is

dependent on that of the individual studies. Thus, as the

paper by Gao et al. illustrates (see below), one has to use

the summary results presented, even when these are not

idea, for example because they have been adjusted for co-

variables that you would rather they had not been adjusted

for or the sample used is not idea for your question.

When using summary GWAS data in what might be con-

sidered to be true two-sample MR, it is possible that the

two samples overlap because of some cohort studies contri-

buting to both GWAS (for example many adult cohort stud-

ies have contributed both to GWAS of adiposity

measurements and also of disease outcomes such as CHD

and type 2 diabetes). If this overlap is large, then some of

the advantages of two-sample over one-sample MR are po-

tentially lost, but the disadvantages of using summary data

are maintained. Although it seems unlikely that this is an

issue in the study undertaken by Gao and colleagues, meth-

ods to explore this ought to be included and their results dis-

cussed in any two-sample MR paper using summary data.

Can we really use MR to test effects of
adiposity on (breast) cancer at different life
stages?

Gao and colleagues set out to explore ‘the potential causal

relationship between obesity across different life stages and
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Table 1. Comparison of one-sample and two-sample MR

Assumption or other issue One-sample MR Two-sample MR

Instrumental variable is related

to risk factor

� Can check this within the population with expos-

ure and outcome (as both in same population)

� Use F-statistic and R2 of genetic instrument-risk

factor association as measure of strength

� Weak instrument biases towards the confounded

regression analysis result

� Can check this within the population with expos-

ure but need to be careful that the population

used for testing genetic instrument-outcome as-

sociation is the same as that testing instrument-

risk factor (e.g. with respect to gender, sex, age,

ethnicity etc.)

� Use F-statistic and R2 of genetic instrument-risk

factor association as measure of strength

� Weak instrument biases towards the null

Confounders of the risk factor-

outcome association are not

related to the genetic

instrument

� Can (and should) check this for measured

confounders

� If individual participant data are available for

the two-samples can (and should) check this for

measured confounders

� When using summary data from publicly avail-

able GWAS results, will often not be possible to

check this

Genetic instrument only related

to the outcome through its

effect on the risk factor

� Directional (horizontal) pleiotropy can be

explored through use of different genetic instru-

ments, multivariable instrumental variable ana-

lyses and MR-Egger8,9

� Directional (horizontal) pleiotropy can be

explored through use of different genetic instru-

ments and MR-Egger9

� In general. with summary data from large

GWAS consortia, likely to have more power for

these analyses which tend to be statistically

inefficient

Subgroup analyses and effect

moderation

� Possible if large sample sizes and data on the

relevant stratifying risk factors (and genetic in-

struments for these) available

� Possible if individual participant data on the two

samples and large sample sizes and data on the

relevant stratifying risk factors (and genetic in-

struments for these) available

� In general, with summary data from large

GWAS consortia, it is unlikely to be able to test

these

Bias from adjustments made in

GWAS

� Not relevant as can decide within the one sample

with genetic instrument, risk factor and out-

come, what to adjust for.

� Not relevant if individual level data on both sam-

ples, as can then decide what to adjust for

� If using summary data from published GWAS

have to accept the adjustments that have been

made in those GWAS, but should comment on

the likely impact of this

Non-linear effects � Methods available for testing this, though have

additional assumptions and require large sample

sizes24,25

� Might be possible to apply the methods that

have been developed for this,24,25 if individual

participant data available for the two samples

� With summary data from large GWAS consortia,

not clear how these methods could be applied

currently.

‘Winner’s curse’ � If the same sample is used for GWAS discovery

of the instrumental variables (i.e. effects on risk

factor), with a P-value threshold to select vari-

ants (instruments), as the sample used for the

testing of the instrument on outcome, the instru-

ment-risk factor effect will be exaggerated and

the instrument-outcome potentially underesti-

mated. As a result the one-sample MR effect esti-

mate will be an underestimate of the true causal

effect10

� Using two non-overlapping samples avoids this

International Journal of Epidemiology, 2016, Vol. 45, No. 3 911

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/45/3/908/2572949 by U

.S. D
epartm

ent of Justice user on 16 August 2022



risk of multiple cancers’. Gao and colleagues examine the

effects of childhood BMI and adult BMI, but they are not

really able to determine effects at different life stages be-

cause of the correlation between BMI assessed at different

ages and because of the nature of MR. Whereas one of the

noted advantages of MR is that it generally assesses the cu-

mulative effects of a risk factor over a long period of the

life course (potentially from conception) without requiring

repeat risk factor assessment and with little chance of re-

gression dilution bias or reverse causation (confounding by

prevalent disease),7 this also brings a disadvantage in that

MR is limited in the extent to which it can explore differ-

ent life course models, such as whether exposure effects

differ at different points in the life course.12,13 From the

original GWAS, 12 of the 15 child BMI overlapped with

known adult BMI variants,14 which illustrates the diffi-

culty of distinguishing these two. Furthermore the MR-

Egger test,9 which the authors used to test violation of the

exclusion restriction criteria, cannot be used to differenti-

ate effects of adult from child BMI, as Gao and colleagues

acknowledge. This is because MR-Egger is only valid if the

effect of the genetic instrument on the risk factor of interest

is independent of its effect on any other phenotypes that

might violate that assumption.9 In the case of childhood

and adult BMI, we know that is unlikely to be the case.

The authors note that whereas their MR results suggest

a protective effect of greater adult BMI on breast cancer,

many observational studies have reported a protective ef-

fect of greater BMI on premenopausal breast cancer but a

detrimental effect on postmenopausal breast cancer. They

are unable with the summary data available to test differ-

ences in effect between pre- and postmenopausal breast

cancer, as GWAS separated by these sub-phenotypes are

not presented by the breast cancer consortia. However,

one hypothesis regarding the positive association of BMI

with postmenopausal breast cancer is that women who are

fatter after the menopause are likely to have had a greater

lifetime exposure to estrogen; but Gao and colleagues are

able to examine effects with estrogen receptor-positive can-

cers and they find the same inverse association with these

as seen for all breast cancer cases combined.1 Furthermore,

they note that their results are consistent with a recent one-

sample MR study that found inverse associations of BMI

with breast cancer in pre- and postmenopausal women,

though at the time of writing this commentary that paper

appears to be unpublished. The authors speculate that the

protective effect of adult BMI on breast cancer (including

postmenopausal) might represent a complex interplay be-

tween early life BMI and later weight gain. To test this

using MR requires establishing different (independent)

genetic variants related to early-life BMI and subsequent

change in weight. Computationally that is difficult, but a

recent GWAS of BMI trajectories from age 1 to 17 years

shows some potential for future studies to be able to ex-

plore such possibilities.15

The provenance of adult BMI effects with
cancers and other possible sources of bias in
the conclusions for this study

Contrary to IJE author recommendations and recent guid-

ance from the American Statistics Society,16 Gao et al.

largely base their conclusions on findings with a P-value

equivalent to < 0.05 after multiple testing. Greater adult

BMI, but not waist-hip ratio (WHR), is concluded to de-

crease breast cancer and increase ovarian, lung and colo-

rectal cancer risk. However, some of the point estimates

for BMI and WHR are not that dissimilar. Thus, it is con-

cluded BMI reduces breast cancer risk {odds ratio[OR]

0.66 [95% confidence interval (CI): 0.57, 0.77)]}, but the

same is not concluded for WHR [0.73 (0.53, 1.00)].

Similarly, an odds ratio of 1.27 (1.09, 1.49) for the effect

of adult BMI on all lung cancers is declared as a positive re-

sult but the same conclusion is not made for an odds ratio

of 1.33 (95%CI: 0.75, 2.36) for the MR effect of WHR on

squamous lung cancer.

A related issue is whether the WHR findings could have

been biased towards the null more than BMI findings. One

disadvantage of using summary data is that you have to

take the results as analysed in the original study. The

WHR variants used by Gao and colleagues were adjusted

for BMI, which the authors do not seem to acknowledge.

This adjustment is likely to have biased the effect of

genome-wide variants associated with unadjusted WHR

(away from the null).17 Thus, the MR estimate of the effect

of unadjusted WHR on cancer would be to bias it towards

the null because the denominator of the ratio (the genetic

instrument-WHR association) will be exaggerated due to

adjustment for BMI.

A further potential explanation for why most of the

emphasized (based on statistical testing) MR results are

seen for adult BMI, rather than any of the other adiposity

risk factors, is that the genetic instrument for adult BMI is

stronger than for the other traits. Weak instrument bias in

one-sample MR results in bias towards the confounded

multivariable regression result, but in two-sample MR the

bias is towards the null (Table 1).3 Gao and colleagues do

not provide any information on the strength of the differ-

ent instrumental variables, such as the F-statistic or R2 for

the genetic instrument-adiposity trait associations. From

the original papers it can be seen that the instrument for

adult BMI is stronger than for the other traits (the respect-

ive R2 for adult BMI, birthweight, child BMI and WHR,

are: 0.027, 0.008, 0.020 and 0.013; the R2 for child BMI is
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only for the three novel SNPs but, as the authors of the ori-

ginal paper point out, it was calculated on a relatively

small sample and needs to be treated with some cau-

tion).14,18–20 Interestingly, although Gao et al. use the

most up-to-date BMI GWAS data,20 they do not do the

same for WHR, despite the most recent GWAS for WHR

adjusted for BMI identifying 33 additional variants (as

well as confirming the 14 used here from the earlier

GWAS) and being published around the same time as the

most up-to-date BMI GWAS.21

For two-sample MR to be valid, the two samples have

to be from the same underlying population, but for the

sex-specific cancers in the paper by Gao et al., this does

not seem to be the case. According to data presented by

Gao in their Supplementary Table 1, it seems that the as-

sociation of the genetic instrumental variable with each

adiposity trait has been taken from samples that combine

females and males, whereas for the association of the gen-

etic instrument with breast and ovarian cancer, females

only are included and with prostate cancer males only are

included.1 This assumes that the genetic variants do not

differ between women and men in their relationship to

the adiposity risk factors. This issue is not discussed by

Gao et al.

I looked at the four original GWAS papers to explore

whether there was any difference in the GWAS of the adi-

posity traits by sex.14,18–20 For birthweight and child

BMI, there seemed to have been no attempt to explore sex

differences, which likely reflects the low power in those

studies to do that. Thus, it is impossible to know whether

the assumption of no sex differences holds for these two

risk factors. For adult BMI, sex differences were reported

and marked differences were found for two of the 77 vari-

ants (stronger associations in women compared with

men). Differences in just two of the 77 variants might not

have been sufficient to bias the results for adult BMI with

the sex-specific outcomes, but it is disappointing that the

authors did not use the sex-specific beta values for each

variant with the sex-specific outcome nor clarified in the

paper that the denominators combined data from both

sexes.

What is more surprising is that they seem to have also

used sex-combined results for determining effects of WHR

adjusted for BMI, despite the fact that it is clear from the

title of the original GWAS paper that sex differences were

examined and found19 (Table 2). Seven of the 14 WHR ad-

justed for BMI variants used by Gao and colleagues were

stronger in females compared with males (Table 2), with

19 of the 44 variants in the more up-to-date GWAS being

stronger in females (and one stronger in males).21 In both

GWAS, the results of the per allele effect of the genetic in-

strument on WHR adjusted for BMI is notably stronger in

females than males. As this is the denominator of the MR

ratio estimate, it means that the estimated effect of WHR

adjusted for BMI for female cancers (breast and ovarian)

may be exaggerated and those for prostate cancers

underestimated.

The extent to which bias towards the null as a possible

result of weak instrument bias and adjustment of WHR for

BMI (discussed above) is balanced by possible exagger-

ation of the true effect as a result of not using sex-specific

data for the genetic instrument-WHR association in the fe-

male cancers, is impossible to tell. But this study does illus-

trate some of the pitfalls of using summary GWAS data

and methods that might be used to limit these. Thus, I

would suggest the following recommendations for using

summary data in two-sample MR.

i. Ensure that the two samples are from the same popula-

tions. If this is not the case (as in this paper for the sex-

specific cancers), check the original paper publications

Table 2. Per allele effect magnitude of GWAS significant

SNPs with waist-hip ratio (adjusted for body mass index) by

sex from the original GWAS and used in two-sample MR of

cancer effects by Gao and colleagues

SNP rs

number

GWAS

effect

in women

GWAS

effect

in men

GWAS effect

in women and

men combined

Effect

magnitude used

in Gao et al.

Rs9491696 0.050* 0.031 0.042 0.042

Rs6905288 0.052* 0.020 0.036 0.036

Rs984222 0.034 0.035 0.034 0.034

Rs1055144 0.044 0.035 0.040 0.040

Rs10195252 0.054* 0.010 0.033 0.033

Rs4846567 0.059* 0.005 0.034 0.034

Rs1011731 0.029 0.028 0.028 0.028

Rs718314 0.042* 0.017 0.030 0.030

Rs1294421 0.031 0.025 0.028 0.028

Rs1443512 0.040* 0.018 0.031 0.031

Rs6795335 0.038* 0.011 0.025 0.025

Rs4823006 0.030 0.015 0.023 0.023

Rs6784615 0.047 0.039 0.043 0.043

Rs681681 0.024 0.019 0.022 0.022

All values are the per allele difference in waist-hip ratio (WHR) adjusted

for body mass index (BMI). In the GWAS there was strong statistical evidence

that each association had a low probability of being due to chance, particu-

larly in women (Pwomen only 1.55� 10�6 to 3.84� 10�34; Pmen only 0.043 to

9.41� 10�13; Pcombined 1.9� 10�9 to 1.8� 10�40). Gao et al. appear to have

generated an allele score of the effects from the sex combined results in all of

their analyses, including those with sex-specific outcomes (breast, ovarian and

prostate cancer). All variants combined explained 1.34% and 0.46% of the

variation in WHR adjusted for BMI in women and men, respectively. The

combined per-allele effect in women was stronger than in men, specifically;

for those marked with an asterisk (*), there was strong statistical evidence of

a sex difference (Psex difference 1.9� 10�3 to 1.2�10�13)
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and/or contact the original authors to see if it is pos-

sible to obtain results from the same population (here

sex-specific results). If that is not possible, consider

possible biases, undertake sensitivity analyses and/or

consider whether it is appropriate to undertake the

analyses.

ii. Report on the extent of any overlap between the two

samples. This will require searching of the original

publications and/or the consortia website. If overlap is

large, then the study should be considered to be more

like a one-sample MR and the discussion of strengths

and limitations should be directed towards those of

one-sample MR.

iii. Determine whether any covariables have been adjusted

for in the original GWAS and report on this. If there

have been adjustments, ensure that presentation and

interpretation of results take this into account.

iv. Report how risk factors and outcomes were assessed,

including whether disease cases were prevalent, incident

or a mixture. Consider whether measurement error and/

or survivor bias (where predominantly prevalent cases

are used) might have influenced findings.

v. Describe any key additional analyses that would have

been important to conduct, such as of sub-phenotypes

or interactions, that were not possible because of the

summary data.

Beyond Mendelian randomization—what
can we learn from genetic epidemiology?

What strikes me in watching (and participating in) the de-

velopment of GWAS and MR over the past decade is how

slow those of us largely working in epidemiology, includ-

ing in intervention research, have been to do what we all

know is good science. Our genetic colleagues have led the

way in ensuring replication in large collaborations where

‘team science’ is appreciated and for the large part appro-

priately rewarded. Those developing MR as a method have

from the start been very open about its limitations and

have worked at developing methods to test and limit sour-

ces of bias.2,3,9 It is notable, for example, that Gao et al.

comment on the ‘strong’ assumptions of MR, but rarely do

we see such statements about the equally strong, and un-

testable, assumptions of conventional multivariable regres-

sion analyses. Now genetic epidemiologists have shown us

how to provide complete open-access summary data, and

it is likely that over the coming decade important and

impactful use will be made of these data.4

A decade before the first paper proposing the use of

MR,2 Lau and colleagues demonstrated that, had a

cumulative meta-analysis been regularly updated, the bene-

ficial effect of streptokinase in patients who had experi-

enced an acute myocardial infarction would have been

established by 1973, with the further randomization of

over 35 000 patients after that date simply confirming the

original results and delaying widespread implementation

of a life-saving treatment.22 In 1997, Egger and Davey

Smith showed the same with respect to beta-blockers and

mortality after acute myocardial infarction.23 Those retro-

spective findings could have been identified prospectively

with easy open access to complete summary data of every-

thing tested in all RCTs. However, we still lack such

access.
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