o AR S s s i U o R

- L 080-3288-26 \

HOPKINS COMPUTER RESEARCH REPORTS
REPORT # 26
JULY 1973

COMMENTS ON CAPABILITIES, LIMITATIONS
AND “CORRECTNESS” OF PETRI NETS
BY
T1LAK AGERWALA

RESEARCH PROGRAM IN COMPUTER SYSTEMS ARCHITECTURE
CoMPUTER SCIENCE PROGRAM
THE JOHNS HOPKINS UNIVERSITY
BALTIMORE, MARYLAND

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

COMMENTS ON CAPABILITIES, LIMITATIONS

AND "CORRECTNESS" OF PETRL NETS

by Tilék Agerwala-

[———————————NOTICE—n
This report was prepared.as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
would not infringe privately owned rights,

- +

*This work was supported by the U. S. Atomic Energy Cbmmission_under
contract AT(11-1 3288) _ :

~ WASTER

UMENT (S UNLIMITED

DISTRIBUTION OF THIS DOC

@z

Page 3 line 6, replace' a;

ceos ak“ by "{a s ceos ak}
2, Page 3, line 6, replace "x,y" by U<y, y>"

3. Page 19, line 1, replace "P" by Mt

4. Page 25, Figure 2.17, place a "(:D'" in the right most arec
between td and td , ™

5. Page 27, Figure 2.20, place "p2 near the circle.

[1) by, ” S;) 1]

6. Page 33, top right diagram, repldce " E;? ¢
- 2

)

Page 49, Line 2, replace "n-triple" »v "n-tuple”.

II,

III.

1v.

CONTENTS

Introduction

1.1

1.2
1.3

1.4

Why Petri nets?

Definitions concerning Petri nets

Work related to Petri nets

Motivations for current research

CapaBilitieé‘and Limitations of Petri Nets

3.2

2.1 Iatroduction’

2.2 Ihterpretqtion and equivaieﬁte

2.3 Classes of coordination problems and néts '
C 2.4 “Reaults |
2.5 Analogy with swiﬁching circuits and

functiénal compie:enéﬁq
Céftectneas
3.1_ Introduction .
Proof‘techﬁiques
Conclusions
4Referehces

11
1
11
‘13

15

3
35
35
38
55

56

Comments on Capabilities, Limitations

and "Correctness" of Petri Nets

CHAPTER I

Introduction

1.1 Wny Petri nets?

In recent‘years there have been numerous studies relating to
theltheoretical aspects of parallel computations. Various models have'
been proposed in an attempt to study the properties of parallel systems,
VSome of the well known ones are those developed by Estrin and Martin
and others (the U.C.L.A. model), Rodriguez, Luconi, Karp and Miller,
Adams, etc, For a comprehensive tibliography tne reader is‘referred
to [1]. These models differ in generality and scope according to the
properties'one'is interested in studyingr ,Some'are very powerfulz
Adams proves that every computable function can be represented in his
model, The models basically have two parts--the data flow‘Structure
and control, However, since the emphasis is on representation of
computations, the overall coordination scheme 1is obscured The models, .
'for all their power and generality, are thus not suitable if one is
- interested in studying problems involving coordination of events and
representation of such coordination., Petri nets [15], one of the

earliest contributions to the theory of parallel computations, appear

to be a natural way to represent the coordination of asynchronous

-2 -

events', Others have also recognized the suitability of Petri nets in
this respect. For example, the Computation Structures Group at MIT
states [3]: ".,.we have found Petri nets‘to be an elegant formalism

for representation of concurrency in processes and for studying asyn-
‘chronous systems, Petri nets stand out in relation to other schemes
hecause of the preciseness and ease withlwhich they can express parallel
actions, resolution of conflicts, and interaction among processes'.

It should be pointed out that although we are referring to parallel
computations, Petri nets are not restricted to modelling coordinations
in computer Bystems. Any system where there are "loosely connected"
essentially independant processes which proceed in an asynchronous
manner can be modelled using Petri nets, Patil [13] says that they should
be useful in modelling business systems and biological systems as well.

1.2 Definitions concerning??etri nets

In the next section we will present a brief survey of the
work already done on Petri nets. This will give the reader further
insight into the usefulness of Petrilnets per se and will also provide
a justification for the research presented in this paper. Before that,
however, we will have to explain what a Petri net is, define some terms.

and give the simulation rules explicitly. ,

! When we use the term Petri net we refer to the modified Petri
nets used by Holt [8].

-3 -

Definition 1.1. A Petri net N is a directed graph defined as a quadruplet

{1, P, A, B>

Tvm {tl,.......,tm} is a finite set of transitions

P = {p,,.;.....,pn } is a finite set of placeé
:(T, P'form the nodes ot the graph)
A.n ‘al,...,;...ak is a finite set of direéted arcs of ghe form x,y
which either connect a transition to a place or a.p;ace to a transition.
Each place may have one or more markers in it or it may be empty. A
place is full if it has at least oné marker,
B® = {{p,n)‘ PEP and ne N} is the initial marker distribution ‘(initiai'
marking).

The placeé are denotgd byAéircles and represent conditions,

‘the transitions are denoted by bars and represent events or processes.

(:)___4 means: Every occurrence of event eé ends one holding of
c e ‘

condition C.

‘___,(:) means : Eyery occurrence of event e begins one holding

e C condition c.

Definition 1.2, The input places of a transition tes

I#"%"J

are incident on ti.

Definition 1.3. The output places of a transition ti;

°i - {p’j I <ti,pj>§ A} i.e. the set of all placés f)nto which arcs

(pj,ti>§ A} i.e. the set of all places from which ércs

are in¢ident from L.

-l -

Definition Vl.lo. A transition t, is said to be enabled if P €0, ?Pk =1,

i
1.e., if each input place of ti is full, (P1 = No. of ma;kers in pi)

befinition 1.5. Two transitions ti and tj are said to be in conflict

if during the simuiation the net reaches a certain marking where both

ty and»tj are enabled and IiﬂIj Qﬁ, i.e., they share an input place.

Simulation rules: Whenever a transition t, is enabled it may at some

i
later time:(finite, a priori unknown and ﬁnbounded) decide fd fire,
At such a time it reserves one stoné‘in each input placg and begins
firing. No otﬁef transition which shares input plaées.with éj can
" claim such a-stone. In fact, a reserved stdne.is invisible to all
other transitions. At the completion of fir;ng (again the time is
- fini;e, a priori unknown and gﬁbounded) the transition removes the
‘resgrved stones and»placés one.stone in.éach of its ouﬁput places,
(The reasons for this particula; scheme will become obvious vhen we
give the proof techniques). If at any instant, two transitions are

in conflict, the decision as to which one will fire 1s absolutely

arbitrary and nondeterministic.

Definition 1.6. A place pi'in a Petri net is said to be safe with
respect to a marking M if no simulation of the net starting from M
causes more than one stone to be placed in Py A marking M is safe

if all the places in the net are safe with respect to M,

Definition 1.7. A marking of a Petri net is said to be live if for
any marking reachable from the given marking, there is a firing

sequence that will enable any transition of the net.

! From this point on, we use "stone" and "marker" interchangeably.

I
Example 1.A . from [4]. A Petri net: N = T, P, A, B°)
T -{t;, t2, ts, ta, ts, ts}
' P" iPx. P2 P3s Pus Pss Pe]
A ?{(px.'n). B15t2Ys (P3sE)s (Pustu)s
C{P25t3)5 (P2sta)s (Pssts)s (Peste)s
Ct1,P3)s {E25Pu)s {t3,Ps), (t3,Pe),
- {tusPs), <f~.Ps) {ts,p1), <ts.Pz>.}
B f<pinly <Pz-1>} |

o

Fig. 1.1: The graph.

-6 -

Simulgtion: Ah examination of the graph indicatés that ché only transi-
tions initial;y enabled are t; and t,. Also, these two'transitions #re
in conflict. Assume that t; fires, As a result, t; isAenabléd, firing
of t3 enables ts and tg., If tg fires first and then ts, the net returis
to-its‘originai condition, If ts fires'firsf ti and‘tz are enabled.
Assume t,; fires. The net cannot proéeed now until t¢ fires, 1If 1tldoés,
ts is enabled which again enables ts and te¢ and the simulation coﬂéinues.
This Petri net is live and safe with respect to B°, | |

1.3 Work related to Petri nets.

Petri nets are extremely general and thus it is difficult to
study their pfoperties; However, propefties of Bﬁbclasses‘have Been
examined. These subclasses are [3]}: | |

1. Simple nets: Every transitiﬁn has at most one shared
input placé.

2, Free choice nets: Every arc from a place to a transition

is either the only output of the ﬁlace or the only input

to the transition,
3. Marked graphs: Every place has exactly one input transition
and oﬁe output transition,

4, State machines: Every transition has exactly one input place

and one output place.
Genrich [7] and Holt and Commoner {8) have studied properties such
as liveness and safety of marked graphs. 1In [{8] the concept of informa-

tion flow through a system has been introduced and studied in the context

-

-7 -

of stéte machines., Patil [14] has used simple Petri nets to establish

'»the corresbondence between cooperating sequential proceéses [5] and.

Petrli nets., Simple Petri nets represent the flow of control in pro-

'cessés‘where the processes do not use conditional statements and the

only synchronizing primitives are Dijkatrh'ﬁ P and V operators [5]. '
Patil presents a coordination problem thét cannot be solved using
Siméle‘Petti ﬁets. In this context we would also like to mention that.
Kosaraju [9] has shown that thére exist pfoblems,that cannot be sol§éd
using even general Petri nets.

In {13] Patil presents #nother scheme for reﬁresenting coordinations
and claims that it le#ds to reduction in details and simplification of
representation as compared to Petri nets. - Tﬁe nets called coordination
nets are.a ggnefaliz#tion of PetfiAne;s but_do not add more variéty to

the class of coordinations represented by Petri nets. ,He_also presents

~ asynchronous control structures for implementing coordination nets and

- shows how coordination structures can be derived systematically from

the nets. He believes that these modules can be implemented in hardware
systematically.
Dennis [2] has used Petri nets to describe the control mechanisﬁ'

of a computer with multiple functional units. For each of the'six major

‘units in the machine, Petri nets and modular control structures. are

. presented. The control structures are constructed from primitive modules

whose behavior is specified in terms of p-nets which are abbreviated

-8 =

fepreséntaﬁions bf Petri nets. Dennis poin;s out that the ultimate aim
of studies such as this is to understand how to tr#nslate é Petri net
specification into an efficient digital system,

Seitz {16] provides an'analogy between Huffman primitive flow tables
for asynchronous sequential machines and Petri nets. He fhen generalizes
the Huffman flow iable as a special form of Petri net called an m-net. The .
m-het can now be used to design an‘asynchronoua machine exhibiting
- concurrency in much the same way as Huffman tables are used in designing
asynchronous sequential machines. The author emphasizes that the mrnét
. representation is a very practical one which permits orderly design
of machihes.which would be diff1c§1t~to design By other methods.

Noe {12] is concerned with measurement and evaluationnof computer
systéms. HeAintroduces Petri nets with EOR input, EOR output and
Inclusive OR input logics for the description of operating.systems at
different levels of detail. The paper describeé a multiprocessor,
multiprogramming system,the CDC 6400, in terms of Pet:i nets gnd showg
how this type of representation lends itself to planning system measure-
ments, .

Shapiro and Saint [17] use Petri nefs and o—éysteﬁs for the soiu-
~ tion of an optimizatioﬂ problem. The problem they focus attention on
is that of generating efficient programs to run oh a parallel machine
starting with an algorithm specified in a high level language. Many

different sequences of operations may be representations of a given

-9 -

I/0 mapping. If the target machine is capable of parallel operation
(eeges CDC 6600 or IBM 360/91) efficiency of execution may vary gteatly
depending on the particular sequencing chosen. 'Petri nets are used to
express.the algorithm in a form where incidentai'éhquenciqg constraints
“imposed by the algorithmic language are réméved. ' This process is’
cailed decompilation.and the resulting nét presents maximum asynchrony.
The sequencing constraints required by the target hardware are then
introduced into the net. All sequences of which this net is cabable,
are realizable on the target equipment and ﬁerformlthe correct mappiné.

1.4 Motivations for current research

. In the previous sections we have tried to establish that Petri
nets are a neat and convenient way of representing coordinations and

can be used as tools for the specification, design and evaluation of

complex computer qystems. If we are going to use Petri nets to represent o o
coordinations we must, first and foremost, be aware of the capabilities

and limitations of Petri nets; else we may end up trying to represent

a coordination for which there is no Petri net representation. For a ‘
while it was felt that Petri nets were all-powerful 1.e., all coordina-

tions,coulﬂ be represented using Petri nets. We know now that this is

.not true, It would be interesting to see 1f the power of Petri

nets can be increased by suitab;e modifications., This will further

improve our understanding of the capabilities of Petri nets. Thege ideas

will be discussed in Chapter II.

- 10 -

WQ have seen tha; Petri nets can'be uged in the specification of
computer systems. The first question that arisés is: given a humanly
statable computing problem and a Petri net, hou does one show that the
Petri net "correctly" represents the desired coordination? We have not
seen anywhere an attempt to "prove the correctness" of a given Petri
net and we tackle this problem in Chapter III!. Another motivation
for correctness of Petri'nets is that proving correctness of parallel
programs in general and cooperating sequential processes in particular
is extremely difficult and suitable simple techniques do not exist.
Developing proof techniques for Petri nets may simplify matters in two
ways : |

1. If it 1s possible to mechanically translate a program P into

| a Petri net N,one may be able to prove properties of P more

easily in the framework of N.

nets ,it may be possible to suitably modify these techniques -
for application to proving correctness of parallel programs

or at least to provide some insight into the techniques to

2, Having developed techniques for proving properties of Petri
|
} be used.

! We use quotes because terms auch as correctmess and proof can

" have many different meanings; In Chapter III we will make it clear
vhat is meant,

CHAPTER II .

Capabilities and Limitations of Petri Nets

2.1‘ Introduction

In his thesis [13] Patil states: "The author has found Petri

nets to be adequate in representing coordination of events, but it

- appears that a claim that Petri nets provide a 3atiefactory formal

counterpart to vague notions about coordination of asynchronous events
cannot be proved just as the claim that Turing machines provide a’
satisfactory formal counterpart to the vague concept of algorithm cannot
be proved. The claim must be accepted or rejected on the basis of

experience and the experience of the author and that of others indi-

cates that Petri nets provide a eatisfactory'formalism for the study

of coordination of as&nchronous events", Patil seems to feel that -

.any coordination problem can be represented as a Petri net. This,

however, is not true. In what follows, we will further discuss this
point. We will try to modify Petri nets by introducing some transitions

and places with different propertiea and see whether the overall power

is increased.

2.2 Interpretation and equivalence

The transitions in a Petri net are labelled, by definition,
tx. €25 ceveeey t « Each transition has a distinct label. However, .

these transitions can be interpreted in any way we choose. For example,'

two transitions with different labels may refer to the same event or

process. This is allowed even if the two transitions can fire at the

~ 19 -
same fime. The same transition cannot, however, refer to two different'
processes. Firing of e trensition corresponde to the occurrence of an
" event or the initiatien and completion ofvsome process. Thus a net is
‘integgreted if‘process names are attached go some transitions. For
an intefpreted net, we are interested only in the manner in which the -

named processes interact. We can now define two kinds of equivalence:

1. Strong Equivalence:

N1 and N2 are equivalent with respect to a set of transitions,

T,iff Té T, and TS T, and the same firing sequences of

transitions in T can be achieved in both N, and N,. N; and

N2 are strongly equivalent if they are equivalent with respect
to Tand T=T; or T = T,.

2. - Weak Equivalence:

Two nets are equivalent with reapect to an interpretation iff

(a) The processes named in one are the same as those'named
1n.the oﬁher, ane,
(d) Ihe sequences of process initiation and completion
achievable in the nets are identical. |
Two nets are weakly equivelent if they are equivalent with
regspect to at least one interpretatioe.
Note: Thus the same Petri net can refer to different coordinationa among

processes depending on the interpretation given to it.

>

>

- 13 -

. 2.3 Classes of coordination problems and nets

‘1. Let the class of regularlPetri'nets'be IN and the coordinations

'representable by this class, PN,

-2, Regular Petri nets have only AND-input logic, i.e., a transition
is enabled iff all the 1nput places are full. Let us consider Petri nets

that have Inclusive OR-input logic as well. For example:

it

Fig. 2.1

(Let P, = No. of stones in p,)

In Fig. 2.1 t, 1is enabled 1ff [(P; > O)A(P, > 0)) Al@s > 0) v, > 0). we

should explain clearly the simulation of such ﬁets. Consider the net

.below:

Fig. 2.2

1 Regular Petri nets refers to the néts described in section 1.2.

- 14 -

It should be clear to the reader that the final state of the net
will depend on the state at the instant t; decides to fire. Let P, = 1
"and P, = 0 at some 1nstaﬁt. Then t, ié enabled and let it decide to
fire. Immgdiately thereafter let a stone appear in p;. Then, when
t2 finishes firing, P, =0and P, = 1. If t, decided_to fire after
the stone appeared in p> the final situation would be‘Pl = 0 and P = O,
Let TNl08 be the class of nets and PNlo8 the class of problens:
where the desired coordination can be represented using theée An'ets.‘

3. In addition to ;he‘regular arc between transitions and places

we allow the following type 6f arc:

t

Fig. 2.3

When t, fires,a marker is placed in p, 1ff P, > 0. ie; TNdut be

the class of nets and PNout’ the class of coordinations representable

by these nets,

- 15 -

-

‘4. We introduce a specihl place {C:E ; (say p1). A transition
will place a stone in p1 1ff Py = 0, Let us‘callfhisclass of net

TN -, and the correéponding class of coordination problems, PNoG

out t*

5.. In addition to the regular arcs between'places and transitioﬁs,

wo allow a spocial ara.

Figt 204 N

t; 18 enabled 1ff Py = 0. Let thisclass of nets be TN and the
class of coordination problems PN. |

2.4 Results |

1. Obviously,

- PN C

PN

PN

PN C

- 16 -

2. PN C PN
'gsggg: Kosaraju, in (9], describes aAcoordination'probiem and préves
that it falls outside PN.. The p;obiem is as follows: There are two
producérs,P; and P,, two consumets,bl‘and C2, and two_buffers,Bl'and
Bé.- If Pi islactivated, it produces an iteﬁ, deposits it on top of
Bi and deactivgtes itself., If Ci is activated, it consumeé the bottom
item from B1 and deactivates itself, Another constfaint is gddéd. C)
and C; cannot be active simultaneousiy; Ci has priéfity over Cz,'i.e..
if both C; and C; are inactive and buffer B; is nét empty, then C;
cannot consume from B, (since C; can be activatéd) at th#t instant. To

prove that PN C PN we will show that the coordination desired in the

above example can be represented using a neﬁ'N e TN.

° - .
B,

Place T .
m B, \

take P

Fowm B, °
B.
Place Pz
(Y‘! Bz
} (:q,hc_ Pz'
Fig. 2.5 tom Ba

- 17 -

To give a better understanding of why regular‘?etri nets are not
all powerful we will consider another example. Kosaréju's proof will
go through for this case also, but‘here we are more interested in an

"1ntuitive discussion. Consider the following simple net:

Fig. 2.6

This net has an interesting interpretation. In fact, it 1s.very similar
to the control structure that implements "cycle stealing' in a multi-
programmed computer.,. t; can be interpreted as fhe main process PROC 1
to which the CPU is allocated. tz is an input process PROC 2; a;ting
asynchronously and reads (say cﬁrd images) into Q buffer. tj is the
process PROC 3 that reads from the buffer into main memory. If the

buffer is not empty, the main process PROC 1 is halted until PROC 3

- 18 -

reads all_tﬁe 1ﬁformationlinto core. Only at this instant, when the
buffe: becomes empty again, isAPﬁOC 1 allowed to continue. We said
“véty similaflin_the beginning because usually the buffer 1s-bounded ‘
and consumption takes place instan;aneously. |

We will now give an intuitive argument to';how that the desired
coordination cannot be achieved using a'regular Petri net.

Ini;ially, tl'is capable of firing an unlimited number of times
until t; chooses to fire. Since places gannot initially hold an un-—
bounded number of stones, a part of the net'has to Be‘equivaient to Fig; 2.7

with respect to ¢t .

_/
Fig. 2.7

Let Ti-f No. of times ti has fired till any given instant.
If T, > T3, t; has to be disabled, and obviously, this can only be done
byAremovihg the stone from p,. Also, when T;=T3, t, fires independant

of the rest of the net. Theérefore a part of the net must be equivalent‘

to:

9~
('—:.
)P

C

L.

3

Fig. 2.8

Placing a stone in P must cause the stone in p; to be rempved. There- -

fore, p; must be an input place of t2 or some other transition that causes

a stone to be placed in P. Thus, the coupiing may be as follows:

Fig. 2.9

- 20 -

Assume that in fhe 6riginal net t2 fires twice and>t3 does not fire.
Then, t; is disabled as soon as the first stone 1s placed in p and’
will remain so until t; fires twice, which it is capable of doing since
‘p contains twb stones. The éénstructed net works correctly'to a boint.
‘Wh;h t, fires‘;he first time a stone appears in p‘éhd'il 1s disabled
(Assume dummy transition td-fires'1nstantaneous1y). -However, when t; -
fires a Sécond time, no stone appears in p since td is not enabled.
Therefore, t; has té be enabled in order to cause the second stone to
be placed in p. But the coordination desired requiresAﬁhét t ﬁot be
enabled until ty has fired twice. Even if this problem éan be taken.

- care of, there is no way of constructiné the net so that t)1 is reenabled
only when t; has fired the same numﬁer 6f times as t;. We thus argue
that there is.no regular Petri ﬁe;.étrongly quivalént to.the net in
Fig. 2.6. "

The closest we caﬁ get to the desired coordination using rggular_

~ Petri nets is the net in fig 2.10:

Fig. 2.10

- 21 -

" Here the oﬁly sequences allowed are”
tlti oo.-.ot1t2t3t2t3.o....ooo't2t3tltl;;';.'00
In the original problem we also allowed sequences like

tl‘..ll..tl tztz:..tz tats.:..c.ts tlti-n--t-
g—\f/-) - etc.

UK no n B

ti1seeet)] t2....t2 t3....t3 t2eeset2 tz....t3 | & WA X1
a b e . d

where a + ¢ = b + d.

-3, PN CPNlogC PN.'

(a) PN1°8 C PN,

Proof: The net in Fig 2.11 can be simulated using a net N' ¢ TN.

P ' b, .'

Fig. 2.11

- 22 -

The simulation is:

Fig. 2.12

Where t d and p 4 are dummy transitions and places respectively. There-

fore, for any N = {T, P, A, B°>eTN16 3 anet N' ¢ ‘?N_ > N' is

g
quuivalent to N with respect to T, i.e., N' and N are strongly equi-
valent. - . -

(b) . Kosaraju's problem 1 and proof can be used to show that

PNlog C PN. Informaliy, Fig. 2'.6' can be used to show the same thing.

The conditions under which t;, t» and. t3 are enabled are:

ta always ' (1.)
t1 : Aff T, = T, » - (24)
ts : 4ff T, > T, @3y

The conditions (Z)and (3)are single conditions. We cannot really .

take advantage of the fact that OR-input logic is allowed. We may

- 23 -

replace T2 = Ty by (T2 = Ta/\ X) v (T, = T, A'i)‘ where X is somé condi- .
tion but thia:will not help because iwaélcan-test X we cannot teét‘i
and vice versa. |

RN ' (¢) élso,'informally, we can coﬁéludg tﬁat PN C PNloé' Cénsider

the net'bélow:'

x '(Fﬁoé v)‘

Fig. 2.13
t1 represents some process PROC 1. PROC 1 is activated only if

Pi>0 v P;>0. Since in the original net PROC 1 will be enabled if

P} >0 a part of the net N ¢ TN must be equivalent to:

Fig. 2.14

- 24 -

- Similarly, a part of N must be equivalent to

P P'
E\l - tz‘ - l:.';
(PRoc) (Proc 1) (PRoc 1)
Fig. 2.15

In the original net, if stones appéar in p; and p, at the same time,
PROC 1 will be activated only once. In Fig. 2.15 PROC 1 can be acti-
vated twice if t:' and t3' fire instead of t.'.

4., PN C PNz (PN

(a) PN C BN

Proof: The net in Fig. 2.16 can be simulated using a net N' ¢ 1IN.

Fig. 2.16

The ‘simulation is:

— A _l /)

N

g

Fig. 2.17

Wﬁere't‘d, Py a_te,dluunny' transitions gnd_pléces.' lTherefo'ré', for any-A
N -l<T, P, A, B°>5TN°G£ JN' ¢ TN 5'N and N'l are equivalent with
respect to .T, i.e., N ahd N' are é;rongly equivalent.

(b) Kosaraju's prqbléﬁ: 1 and proof can be used to prove that
PN = C PN.

(c) Wg will demonstrate, with an examéie that PN - PNoﬁt' Consider

the simple net in Fig. 2.18

Fig. 2.18

- 26 -

Consider the following interpretation. t; isda prodccer, PRbD, which'
produces items one at a time and deposits them in a buffer. t; is a
consumer CONS which vwhen enabled, consumes everything in the buffer.
Let us assume that t; is firing at a fixed rate and t; fires whenever
it isvenabled. Therefore, according to the figure, the number‘of
cimes CONS is activated depends on the time it takes forfcoﬁsumpcion.
It should be intuitiveiy obvious to the reader that the coordinetioh.~
specified cacnot ce achieved using regular Petri nets. 4 |

(d) We will discuss an example here, that establishes- the need

for two notions of equivalence. Congider the net N' of Fig. 2;19.

' Fig. 2.19

We will show that there 1s no et N ¢ TN I N' and N are eQuivalent with

respect to {cx, t2, ts3, tu} . We will then give the net in Fig. 2.19 an

- 27 =

' interesting in;erp?e;ation and show that there is a ﬁet N.G,TN which
is equivalgnt'to N' with resﬁect to this intetbrefation.
In attempting to construct a regular Petri net équivalént to Nf
with‘:espect to {ty, ﬁz, ts, tu}. we go thrdugh the followingvstaéeé.
t> must be @apable of being fired an unbounded number of times
independantly until t3 is fired. Therefofe{ a ﬁgrt of the net has

to be equivalent to:

ta.

Fig. 2.20

in the original net we had a transition t) firiﬁg continuously,
which kept t2 enabled, even 1if t; caused it to be disabled temporarily.
If we are using regular Petri nets this wiil not be possible since a
large number of stones may accumﬁlafe 1n'p2. If this happens, then‘tzr
cannot be disabled by one firing of t3. Thus we will have to use a

‘mechanism whereby ty itself causes t, to be enabled:

Fig. 2.21

The prbblem now is tha; if t, has breviously fired, td’shduld be
prevented from firing and there is no way to do this.
Note: -The net in Fig. 2.22 would not be valid because5in'the original

net ty can fire in the beginning

Fig. 2.22

- 29 -

Consider'now the following interpretation of the net in Figure 2;19m
tz‘reétesents some process PROC 1 which 18 enaﬁled and can proceed inde-
B 1§endant1y. t; is some 'interrupt process." t, is an 'unmask process."
If the "unmask process” is notQactivated, and the "intérrupt process' is
‘;acfivafed; PRdC'l is temporarily disabléd. Temﬁdrarily, becaﬁse tﬁere:'
exists a way of enablihg it immediately. If, howeVer,‘thé'ﬁﬁnmaak pro-
cess" 18 activated, subsequent, activation of the'"interrup§ proéess“
causes PROC.l to be permanently disabled. |
The 1nterbretedAngt of Fig. 2.23 is a regular Petri net and correctly

represents the coordination specified in -the above interpteﬁation.

I*\’;‘le.)t

™ +cvr;,g,f>t

Fig. 2.23

- 30 -

5. PNout = PN

Proof: We will show that the net of Fig. 2.24 can be simulated using a
regular Petri net. ——
: .]

//

O

Fig. 2.24

‘The simulation is:

- 31 -

Therefore, for every net N' = {T, P, A, B°>>c ™ ¢] a net N < TN,

:] N' and N are equivalent with respect to T. This proves that PNout <

PN and from result 1lb we coneclude that PNout = PN, -

2.5 Anal_gzlwith switching circuits and functional completeness

In switching theory, the notion of functional completeness is a well
defined one, 1. e., the AND and NOT functions, for example, form a "basis"
and are capable of tealizing all logical functions of 2 (-and hence n)

variables. We have seen, in this chapter, that PN C PN. In TN we only

" allowed transitions with AND-input logic; inlfﬁ, we allow NOT-input

‘logic as well. In some sense at least, TN seems to be functionally

complete with.respect to the class of coordination problems. However,

the last statement should be made carefully because though a "logical

function” is a very well defined concept, a "coordination problem" is .

not.

Fig. 2.26

- 32 -

The output of the.AND gate is high when all the inputs are high. The
Petri net N fires when all input places are full a stone is then put 1in

the output place.

Y

NOT gate . ‘ Petri net N'
Fig.‘2.27

The analogyAbetween the NOT gate and N' is also strong. fhe question
that immediately arises isi How far can we push this analogy? Can we
argue that switching circuits are completely analogous to Petri nets and
conclude from here independantly that there are coordination problems
outside PN (since TN, by analogy, 18 not a basis)? We tend to think that
this is not the case. Consider safe Petri nets. Since each place can
contain at most one stone, this appears to be 'more analogous" to switching
nets where inputs are either Hi or Lo. If this is the case,.we‘would tend

to. conclude that

- ™

safe‘

safe

where X

safe is the class of problems where the‘desited coordination can
be represented uaing safe nets belonging to X. However,_this'is false as

the simulations below indicate.

- 3 -

At this stage, we would only like to state that one should be careful
in drawing the analogy between switching circuits and fetri nets. Also, .
the notion of functional completeness seems to apply to Petri nets as

well. In a later report we will discuss this in gieater depth.

CHAPTER IIIX

Correctness

3.1 Introduction

Let us now come to the question of correctness of Petri nets.

When we say ''Petri net N is correct'

y intuitively what is meant 1s that

the Petri net does what the designer intended it to do. -Given a parti-

cﬁlar prbblem, a Petri net is constructed which represents the desired

.coordination. First and foremosﬁ,‘we are not at all interested in

vhether the constructed Petri net is the best one for the given problem.

In fact we will not even try to prbve that the Petri net effectively

represenfa fhe desired coordination. We shall, however, try to prove

‘a very rest:iétive kind of statement about the net which we will ask

the designer to provide. The kinds

to prove for a given Petri net are:

1._ At any given time, only one of

tl,l.u.o.tk my be firing.

2, Statements ébdut termination:

of statements we will attémp;

the trénsitions ffom'the'set4 ‘

Termination may occur in two ways:

(a) Natural termination: The

its actions according to the design

net terminates because it has completed

specifications.

- 36 -

. (b) Abnormal termination: The net terminateé as a resuit ofA
conditions not specified in the design;ihis kind of termiﬂ#tiép
1s usually called deadlock. Proving that a particﬁlar net 1is
free from deadlock may be the most difficult aspect. The problem
arises because it is difficult to recognize in general all the
possible conditions under which deadlock may occur. For example,
if we show that at every stage some transition in the'ﬂet is live
we cannot conclude from this that the net is deadlock f;ee. 'The
transition which is live at every stage may beAthe same one and..
useless aﬁ fa;_as the actual operation of the net is concerned.
ng we prove'chat at every stage tﬁe marking is live then

will show that the net 1s deadlock free but this condition is too

strong and may be difficult to prove. A certain part of the net

~ may become 'dead' after the initial stages but the rest of fhe net
may be deadlock free and operating correcily; In this case after
the 1nitia1 stages every marking will not bé live. Thus it will be
diffihult to formulate conditions which caﬁ be proved to hold for
any Petri net and which will eﬂsure deadipck'free operation. For
a given net, given a description_of the wvay 1t is suppése& to bghave,
it may Bécome apparent under what conditions the net can become
deadlocked; For example, by showing thatAeVery transition in a
particular cycle is live at every stage, oﬁe may be able to conclude
that the net cannot terminate abnormglly. The aboﬁe discussion seems

to indicate that we should not try to prove the statement "Net N is

- 37 -

deedlock free" in generel but should ask the designer to g}ve us
simpler'araoements to prove from which he cah reasonaoly conclude
that the net will never become deadlocked.
Two given transitions will never conflict,
" A given place is safe wirh respect to‘e'particular'oarking or
"a given marking is safe.
A given tronsition is live.
A given marking is reachable from another.
A given transition will fire N times or less than N times.

Thus, our aim is not to prove that a Petri net is correct but to

prove that it is correct with respect to an assertion that is made up
of statements of the ebove type. In the above, we have used the'term
prove" frequently. In [11] Mills states in connection with proofs=='
of correctness for sequential programs: "There is no sucﬁ thing ae
an absolute proof of logical correctness. There are only degrees of
rigor,..." and "Ir is clear that a whole spectrum of rigor will be .

useful in correctness proofs. We‘agree with him that formality~and

brevity do not cooperate and have often sacrificed the former for the
sake of the latter.
We would also like.to comment briefly on‘the effects of a transition
- | ‘. - firi.ng.' 4'1‘here are two poesible effects. |
(a)* A change in marker oietribution.
‘(b) A change in the value of some variable not part of the net as
a result of the occurrence of the event which the transition represents.

The Petri net may be the representation of a‘complicated parallel

- 38 -

computation. We will never make statements about the values of variables
| | .

which the transifion firings may effect. In a sense, we are interested

only in the control structure and not the actual mathematical computation.

3.2 Proof techniques

1. Computational Induction: In this method we will develop‘cét;ain

rélations which remain invariant during the‘simulatfpn of the net. By

using these relations suitably, ve éill be able to pfo?e certain pro;

perties about the nef. When we say a relation isAin§ariant we méﬁn it

- holds whenever a change in marker distribution takgs place or a transi-

tion fires. The relations follow triviaily from the simulatton‘fﬁles.
The places are labelled p;, pz,f..;..pm

The éransitions are_labelled ti, tz’;‘f°“tn

. Mi : Nd, of stones in pi initially

Pil: ‘No._of étbnes'in Py |

T, : No. of.times t

i .
Relation 1

4 has fired.

{j:if : set of transitions with Pi'as
‘ ' output place. '

{()i} : set of transitions with Pi as an
. input. place .

Fig. 3.1

b , | i/ ‘.

For the net in Fig. 3.2, the relation below holds

Ty + Ty Ty + T2 +m
Relation 2 _
| Starting from transition tar let us trage‘dqwn the ne£-a1ong any
- path to tr&nsition tak" Let the,gaﬁh be
tq; Py, ta2 Py, """"?bk—;A;ak
1f a1 ¥ az ¥ ..oeuneen ¥ a and_Ibi - {tai}Aée qall such'a pgth.

a simple path.

Example 3.2 :
t,
. h
N
BT VA < - _
_ : tipitzp2ts 1s .a simple path, -
|)\ b,
] £3

Fig. 3.4

tipi1t2 is not a simple path because of the arc marked x coming
into p;;

Tﬁk 5;T51 + :E;MBI .fgr any simple patho:-tal pbxf"'tak

Relation 3 '
Given & simple path S; from t, to tj‘and also a simple path S; from

tj to t ,then 8,S, forms a simple cycle.

If in addition, evety place in a simple cycle has only one 1nput
and one output arc we have a pure cycle.
Let S be a pure cycle
§P Z =N (say)
1!{'\5 PL\Y)S !
In this context we can also state another simple property. If there

exists a simple cycle in the net and all places in it are initially
empty, then no transition on that cycle can ever fire.
Let us see how we can use these simple relations to prove

properties about Petrirnets.

s

Example 3.3

Consider the producer-consumer problem with bounded buffer. We have

one producer and one consumer. The producer places items in the buffer

(length N) and the consumer consumes the items. The problem is to

coordinate these two esgsentially independant processes so that the consumer

_ does not try to take an item from the buffer when it 1is empty and the

producer does not place an item when the buffer is fulll., The solution, .

using Dijkstra's P and V operations, is as folloﬁs:_

Producer: Prodﬁge 4 : Consumer: P(x)
PGy) o I 1))
P(s) | - take
: depoaif | o | o - V(s)
V(s) . o S V(Y)A
V(x) | ' consume
‘80 to producer ' - .g0 to consumer

A direct mechanical translation gives the follo&ing Petri net:

.1) ' . :
This is a famous problem solved by Dijkstra [5] and is quite
different from the problems sﬁggested by Kosaraju.

Fig. 35

‘The.numbers inside the places represent the initial number of markers.

We are interested in proving the following broperties'for this

net.

(1) ty and te cannot be firing at the same time, i.e., producer P and

consumer C do not try to access the buffer at the same time.

'tZ) 0 z Ty - To £ N, i.e., no buffer overflow or underflow.

(3) . No deadlock.

Proof 1.

Is

[

{tlo, ts}
Os = {to, t3
Msﬁ 1 '
Tﬁerefore To + Ty £1 + Tyo + Ts
Py = T3 -~ Ty + 0
Ts £ T,
Py £Ty - Ts
Similarly P12 < Ts -~ Tyo

Therefore P, + P;s £1

(1)

)

U

(%)
(5)
(6)

by R,

(2) & (3)

(4), (5) and (1) -

From 6 we can conclude that either Py contains a stone or Py, or neither,

From our simulation rules we can conclude directly that T4, and T9 cannot

be firing at'the_same time.

Proof 2: -

te P13 tio P1uw t11 P7 t2 Py t3 Py ty is a simple Path-

Therefore, Ty, £ Ty + N Rj

Therefore, Ty -~ Tg &£ N

i.e., No. of deposits minus no. of removals

Therefore, No overflow of buffer

£ N

- 44 -

~ Similarly:
tuw ps ts ps tg Ps t7 P11 ts P12 te forms a simble PéFh-
Therefore, Tglé.Tu
Therefore.,"l.‘u. ~-Te 2 0
» Therefore,-No. of déposits minus nb.‘of removals 2(5

Therefofe, No buffer underflow.

- Proof 3:

For this particular problem it is easy to éee that deadlock can
~occur only if Py = P; = O'and there is no way to change this situagion,
(Pure cyéles can be represented by the subscripts of the placés only.
The transitions can be left out becauée there 1s no ambiguity){
Sy é‘l, 2,3, 4,5, 6, 7, 1 is a pure cycle. ' |

S2 = 10, 11, 12, 13, 14, 15, 10 is a puie cycle.

S3=3,4,5,6,9, 11, 12, 13, 14, 7, 3. is a pure cycle.

Ng = 1 ‘ (1)
N1 @
N83= N) . (3)
a=Py+P,+Ps+Pg sl | | from (1)
b=.P11+'P12+P‘13.+ Piw 21 . - from (2)

Therefore, a + b < 2

But 1if N >2 and P = Pg = O then a+ b = N ;fZ ' from (3)
Thefefore Contradiction.’ | | |
Therefore, at no stage can bothlP7 and Pg be zero,

for N > 2.

- 45 -

" For N =1, 1f P7 = Py = O then

| (a) one §f.p3,,pu,'p55:p5 contains a stone or (exclusive).

;(b) one of<p11, P12, P13, p,; contains a stone.

Cage abA te will eventﬁally fire causing a sfdne to be:placed in
Py. Therefore, Pz +'P9 # 0. |

Sim;lérly fbrlN = 2 it-éan be sﬁown thatJP7 + P9 ='0 éannof,éiistfﬁ
forever. | |

Therefore no deédlock is possible.

Example 3.4.

"Cbnsider the problem of two cars passing thfough a gate [13]. There
is a button; Pressing the button causes the gaté'to open 1if it is.)
close& and closed if it is open. The problem is to coordinate the
aétivitylso that both cars may pass through the gate irrespec:ive.

of their times of arrival at the gate. The desired coordination is

- represented by the follbwing net:

"'3 o ' Y . £'
o Fig. 3.6

t1 : car A comes to gate

ty : car A presses button

ts : car A passes through gate

‘ts : car B comes to gate |
ts : car B presses button 1 o : _ L

tio: car B passes through gate.
Gate is initially closed.

We want té prove the following:
(1) ty fires == ts does not

ts fires — tuAdoes not.
i.e., 1f car A presses the button then car B dogs not and vice versa.
(2) ts3 and t1q will both eventually fire irrespective ofvﬁhetﬁer t)
fires first or tg or both together. Thaf 19; both,cafs will evehtually
get through the gate irreépective of the order in whiéh they'arfive.

(3) Ultimately, T3 £1, Tio &1

Proof:

(1) Ty + Ts < 1 o fromRp L. Q1)

Therefore T, = 1 =5T5 =0 | |
Ts - 1 =Ty =0

Therefore only one ca‘r. presses the buttoh.

(2) From R2 _ ' | ‘ -
Ps = T, - Tq

Py, = Tg - T3

: ﬂlerefo:e 0 £ Ps + P, Ty + Ts ~ (Tg + Tj)
£ 1 = (T + Ty) from (1) .

: Thefefore Ty + T,

i
i

- 47 -

' Therefore either T, fires or Tg fires.
ty ana.ta are live for fhe initial mafkingf -If ﬁbth fire, then ?z =
Pio = 1. At this stage tu-ﬁnd ts are enabléd. Ts = 1 =3 Ty = 0,
‘ta can fire, fg cannot fire. ts3 is live. 4Ts 81 =t is livg.‘
| Similarl& Ty = 1 =ﬁ>'T5:- 0 A ti 1s live A tio is'}ive. |
Therefore, for any simulation, before ts and tio fire,‘zihéf are live

with respect to'every intermediate mﬁrking; |
| (3) Follows.directly from Rz.

The net has a slight problem in that t3 and'tio may be firing at

ﬁhe same time.~i.e..‘both‘cars may try tdlpass through the gate at the .

same time,

2, Method of Inductive Assertions

| fhis method was introducéd by Floyd [6] to prové the correctness of
. sequential_progfams; We will apply this method to pfove théf a éetri,A'
net is'éorrect with respect to a particular, given assertion A.. The
basic ideas are taken from [101 whcfé the techniqueﬁié app;;ed for
. proving parallel programs correct. The procedure is asvfollows: With
"~ each transition:in the Pecfi net we associate an assertion. Our aim |
is to prove that every time a'transitioﬁ in a Pet:i net is enabled, the.
corresponding assertion is true irrespective of the pafticulat pimulatibn
. which caused this transition to be enabled and irreépéctive of the state
of the rest of the net. Once this has been estab11ahed, we will try ;0'

deduce that the Petri net is correct with respect to A. As we ﬁave

- 48 -

’already scétéd previously, A will pe a statement about the flow of
con;rol in the net and not about the actual computatién achieved. Thus
the assertions at the transitions will in all probability be statements
about the number of stones in ; particular piace or ;hg.number of times
a particular transition has fired.

Definition 3.1. Let N =<T, P, A, B°> be a Petri net. An assertion ~

i

" asserted with a transition ti ¢ T 1s a predicate on thg Qalues of Pk’
Tk where P € P and tkeaT; The Petfi net N is correct with respect §o
the assertion “1 if and only if for each simulation of the net thgi
enables ti,<&i is true when ti is enabled. The net N is correct with

respect to a set of assertions if and only if it is correct with respect

. to each assertion in the set.

Induction Theorem:

To prove fhat a Petri net ﬁ - <T,:P, A, B°) 1is éortecﬁ with respect
to a set of assertions{o(i \ t, e'i }-it‘isvsufficient to prove the
following. | |
(1) 41 is true for all t, that aré'enabled in B°.

(2) For each L, e T .

Let P, = {pl p e I,A (p,o>€ B°}

i.e., the het.of all initially unmarked iﬁput places of‘ti.
‘Let Pi = iql’ dz,.....cqn.}'

Let'Tj., {tk \qje ok } l1=j=nq

' i.e., the set of all transitions of which qj‘is an output place.

- 49 -

Let Bi = %bx? D2yescesnes bn> \ tbj € TJ }

- Each n—~triple in Bi; gives the subscripts of the transitions which
when fired will cause stones to be placed in the initially unmarked input

places of ty-
Let Fire (b,,...,;.ba)'denote the fact tbat‘the‘transitiong tsl,f..;.;'tbn
fire. -
Then for each ﬁi e¢T
; of
ibl/\{bz *eo e 0 e °(bn /\ Fite (bl,.ooo., bn) % i . (1)

for all Cbiyerannns b) € B,

‘The proof is similar to that presented by tawer in [10] and will be
omitted here.
Each eﬁuation of the form (1) is cailed a verification condition:
‘it.should be obvious to the reader that what we are trying to prove
in the second:part of the induction theo;em is really a very strong
condition. If is sufficient but not necessary. The converse of the
Inductioﬁ theorem 1is not true in general. In a later paper we would
iike to get weaker verification cpnditions and our results here are
just a first attempt. In géneral, thé strongér che verification condi-
;1ons, the less 1s the "infofmation content' of the ésse:tions.A That
is,.if we have very strong conditions to verify,the assertions will
tend to be of a trivial nature and we may not be able to ;oﬁclude the
_main assertion A about the net. |

Thus the method is

(1) Formulate the assertions for each transition.

(2) Prove that all assertions essoeiated with transitionalthat are
initially enabled areitrue;

(3) Prove all the pertinent verification conditions hold.
.(4) Deduce that the net operates correctly with respect to the main,
overall assertion.

(1) Floyd, when proposing this method for sequential programs ehowed
that it was not necessary to have an assertion at every point. One
assertion in each loop and one assertion at each termination point are .
suffieient. In the above formulation’for Petri nets we nave applied an
-assertion at every transition. Analogous to the procedure for'seqnential
',programs we do not think it is necessary to have an assertion at every
transition. However, we hane not as yet been able to find tne-concept‘
in a Petri net that is equivalent to a loop in a sequential program
and which fits into the framework of our induction theorem. |

| We will again give the eimple producer-consumer nroblem and show
that 1t is correct with respect to an assertion using the inductive
: assertion method. } ﬂowever, to do‘tnis we have to introduce'the concept
_of an augmented Petri net. A simulation S of a net N can be renre-
sented as followe: v | _ |
S = g_o {To’} M, {T',}Mz {Té} Mi {Ti}
B® is the initial marking.
M is some subsequent marking of N and ii represents the set of

.tranaitions that finish firing at the same time starting from marking M

i
and ending with marking M f4, Let N = (P, T, A, B°) be a Petri net.

T The proof’presented’here is taken from 110] and modified to be
“applicable in the context of Petri nets.

A E+F =

E>/°’ ANF2o A X =0
ANEYF - g Y=

O

E>9 AF>0 A X=0

W Yzi THeN
ELSE

THEN N-
ELSE N4

- 51 -

Example: 3.5 (Producer - Consumer problem)

Y.= o0 N E>’o A

‘AE+|-;-' = |'F X =

Y =y A E'>/°4‘A‘F>’° A
E+ ¥ ~_-l VW X=1t THEN N -2
' ELSE N -1

F > o

THEN N -

ELse N

- 52 -

Then, N' = (P', f', A', B®°') is an augﬁentation of N if and only if
'PCP', TCT', ACA', B°CB°' and for each possible simulation S of N
there exists a simulgtion S' of N' and vice versa such~£hat
e ey ,

In a later report we will develop "local' conditions under which
placéa, arcs and transitions can be added toAa net N to form an augmenta-
tion N'. For the present we will only state the followiné?

Theorem 1. If t seeseeot is any simple path through a

a; Pb, taz Py,
net N and 1f a place P is added so that it is an output place of tal
and an inpqt:place of tak then the reéulting ﬁet is an augmentation of
the original het.

Proof: Obvious

Theorem 2. If N' is an augmentation of N then N' is correct with respect

~to X 1if and only if N is correct with respect to *i.

i
. Proof: Obvious
In Fig., 3.1

‘the soliq lines represent the original Petri net for theAéroblem and

X and Y are places addéd to give the net N'. Theorem one guarantees
that ﬂ':is an augmentation.of N. .The assertions at each transition

are givgn, E, F,Ax, Y reptesént the number of stones in thé'respective
places. |

To prove N is correct with respect to

E+F=N-2 AOSFEN .o.ovvvnnnnnnn A

If N' is correct with respect to {*1..7.....‘*3 } and we can deducé A

from {41 sesesees®y } _then N' is correct with respect to A and Theorem 2

~ 53 -

guarantees that N 13 correct with respect to A,

To prove that N' is correct with reapect to idxl,......tf*a} A
(1) The only transitions which are initially enabled are t) ‘and. ts.

oy and <5 are both true trivially.

(2) We will only prove the verification eonditiens'for‘trensition 2.
The test 1s left for the reader. |

(a) Xy A t; fires 3%

E=N AF=0 AX=0 A g fires-=>. |

E20 AF*0 AX=0 AE+F=4f Y=1 then N - 1 else N.
E=N= E=20

F=0= F20

X=0= X=0
-To prove that h + F=if Y = 1 then N-1 else N

X = 0 and examination of the net indicates that
Ynlatt7andta. X=0 A&, %E+F=N-1

- | X=0 A%y SE+F4N-1
. Similarly Y = O at tg and tg and
| | X=0 A°<s:>‘z¥r=ﬁ
x-=0‘M><‘3 =E+ F= N
- Therefore, X = 0 =31if Y = 1 then N —'1.else N.
‘ | Q.E.D.

(b) X4 Aty flres =, o

i,e.A

- 54 -

"ER0 AF*0 AX=1 AE+F= 4fY =1 ihen N -2elseN-1
»/\t..lflir}e's = | |
E=0 ANF>0 AX=0 NE+4+F= ifY=1 AthetiN-l,élseN.
ufﬁu & X=<X-1 A~ F=—F+1
Therefore, X = 1 A ¢ty firea = X=0
E + F= if Y=1 then N - 2 else N - i Aty fires"'
© = E ; F= if Y= 1 then N - 1 else N
Q.E.D.
Therefore, N' 18 correct with respect toX 5.
Similarly, N' is correct with fespect to{%i, 42,...;;.;,“3;}
_‘Thereforg by Theorem 2 N 1s correct with résﬁeét'to 1,.;..3‘ 8.

From the assertions we can conclude

E+F=N-2 I o | 1)

.'E+F4'N e

E~0 . | - | (35

" Therefore, F?u_-' I (4) ffom' (2) and (3)
Fao o - s

Therefofe, N is correct with respect to‘A.
Also, from (1) conclude: no ‘deadlock for N >2
From (4)'c6nc1ude: no buffer overflow.

From (5) concludeﬁ no buffer uﬁderfiow.-

CHAPTER 1V .

Conclﬁsions

In this report we éresented a general discussiop of PetriAnetsfr
We demonstrated that Petri negs wefe beinglused in the sfgcification,
_design and evaiuation of complex computer éystems, thus establishing
the need for a study éf the capabilities of Petri nets and proofs of
<their corréctness.' In Chapter II we showed how Petri nets could be
modified so as to obtain différent classes of represenfable coordi-
nations. In Chapier III we first discussed what was meant by the
statement "Petri net N is correct"” and then established the feasibi-
" 1lity of usiﬂg the methodé of Computational Iﬁduction and Inductive'
Assertibns to prové thgt'"Petri net N is ¢orfect with respect fo
assertion A", | “

In a subéequent report we will furgher examine some of tﬁe4£deas

.inttoduced here.

ACKNOWLEDGEMENTS

I am grateful to my advisor Professor M.J. Flynn for his continued
A-gﬁidance, encouragemént and support. I would also like to thank my

‘Eolleague, Joe Davison, for his helpful comments._,

REFERENCES

BAER, J.L. A Survey of Multiprocessing. Technical Report

No. 72-05-01. Computer Science Group, University of Washington,
Seattle, Washington. 98195, May 1972.

DENNIS, J.B. Modular, Asynchronous Control Structures for a High

Performance Processor. Record of the Project MAC Conferenoe on

,éoncurrent Systems and Parallel Computation. ACM, New York, 1970,

pp. 55-80.

DENNIS, J.B. Computation Structures. Project MAC Progress Report VIII

: July 1970—Ju1y 1971. MIT, July 1971.

DENNIS, J.B, Concnrrency in Softwear Systems. Advanced Course in

Softwear Engineering, Lecture Notes in Economics and Mathematical
Systems. Ed. M. Beckmann et. al. June 1972, pp. 111-127.

DIJKSTRA, E.W. Cooperating Sequential Processes. Programming

'Languages. Ed. F. Genuys. Academic Press, New York 1968, PP. 43—112

FLOYD, R.W. Assigning Meanings to Programs. Proceedi_g§¥9f a

Symposium in Applied Mathemntics Vol. 19, Mathematical Aspects of

Computer Science, American Mathematical Society. 1967, pp. 19-32.

GENRICH, H. Einfache Nicht-sequentielle Prozesse. Doctoral Disserta-

tion. Gesellschaft fiir Mathematik und Datenverarbeitung, 5201 Birling-

hoven.

HOLT, A.W. and COMMONER, F. "Events and Conditions". Record of the

Project MAC Conference on Concurrent Systems and Parallel Computation.

Association for Computing Machinery, Ney York, 1970, pp. 3-52.

- 57 -

KOSARAJU, S. RAO. Limitations of Dijkstra's Semaphore Primitives

and Petri Nets. Hopkins Computer Researéh Reports No. 25, Research

Program in Computer Systems Architecture. The Johns Hopkins Uni-

'Qersity, May 1973.

‘.rLAWER,_H.C. Correctness in Operatiqg,Systeﬁs.- Ph.D. Thesis;
Carnegle-Mellon University, September 1972.! AFOSR-TR-72-2361
- Contract F44620-70-C-0107.

MILLS, H.D. Mathematical Foundations for Structured Programming.

FSC 62—6612.' Federal Systems Division, 1BM Corp., Gaithetébutg,'
Maryland, 1972. |

 NOE, J.D. A Petri Net Model of the CDC 6400.. Proceedings of the

ACM/SIGOPS“Workshop-on Systems Performan¢e Evaluation. April 1971,

pp. 362-378.

PATIL, S.S. 'Coordination of Asynchronous Events." - Ph.D. Thesis,
E.E. Dept., Project MAC, MIT. MAC TR-72, June 1970, AD-711-763.

PATIL, S.S. '"Limitations and Capabilities of Dijkstra's Semaphore

Primitives for Coordination among Processes'.. Project MAC, Computa-

tional Structures Group Memo, 57. February 1971, pp. 1-18.

PETRI, C.A. Communication with Automata. Supplement 1 to Technical

Report'RADC-TR-65-377, Vol. 1, Griffiss Air Force Base, New York,'
1966.

SEITZ, C.L. Asynchronous Machines Exhibiting Concurrency. Record

of the Project MAC Conference on Concurrent Systems and Parallel

Computation. ACM, New Xork; 1970, pp. 93-106.

- 58 -

17. SHAPIRO, R.M. and SAINT, H. A New Approach to Optimization of

' Sequencing'Decieions. Annual Review in Automatic Prograﬁnnin ’

Vol. 6, Part 5, 1970.

