
MO-3288-26

HOPKINS COMPUTER RESEARCH REPORTS

REPORT # 26

JULY 1973

1

COMMENTS ON CAPABILITIES, LIMITATIONS
6.

AND "fORRECTNESS" OF PETRI NETS

BY

TILAK AGERWALA

RESEARCH PROGRAM IN COMPUTER SYSTEMS ARCHITECTURE

COMPUTER SCIENCE PROGRAM

THE JOHNS HOPKINS UNIVERSITY

BALTIMORE, MARYLAND

I ='=-=-r - ,1 ; = .

20 28 7 -lin
--

- , 1 1,181, 1 k.

' 2- , 3 :

i I.* 0

'� ».. ' ..

• MASTER

DISTRIBUTION OF TH.IS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

*

t

4

COMMENTS ON CAPABILITIES, LIMITATIONS

AND "CORRECTNESS" OF PETRI NETS *

by Tilak Agerwala

-NOTICE-

the United States nor the United States Atomic Energy

This report was prepared . as an account of work
sponsored by the United States Government. Neither I

Commission, nor any of their
employees, nor any of their contractors, subcontractors, or their employees,makes lny warranty, express or implied, or assumes any

legal liability or responsibility for the accuracy, com-pleteness or usefulness of any information, apparatus,product or process disclosed, or represents that its usewould not infringe privately owned Tights.

-

*This work was supported by the U. S. Atomic Energy Commission under

contract AT(11-1 3288)

MASTER

DISTRIBULON OF THIS DOCUMENT IS UNLIMITED

49

. »

-

ERRATA '

1. Page 3, line 6, replace "al,- .. . p ak" by "{al' 000
, akl

2. Page 3, line 6, replace "£971' by "<xpY>"

3. Page 19, line 1, replace "P" by "p"

4. Page 25, Figure 2.17, place a " " in the right most arc
between td and td

5. Page 27D Figure 2.20, place "p2 near the circle„

6. Page 33, top right diagram, replace " I< t2 by " t2
7. Page 49, Line 2, replace "n-,triple" 1'v "n-tuple" 0

3

CONTENTS

page

I. Introduction 1

1.1 Why Petri nets? 1
I

1.2 Definitions concerning Petri nets 2
.

1.3 Work related to Petri nets 6

1.4 Motivations for current research 9

II. Capabilities and Limitations of Petri Nets 11

2.1 Introduction 11

2.2 Interpretation and equivalence 11

2.3 Classes of coordination problems and nets 13

2.4 Results 15

2.5 Analogy with switching circuits and

functional completeness 31

III. Correctness 35

3.1 Introduction 35

3.2 Proof techniques 38

IV. Conclusions 55

References 56

.

.

Comments on Capabilities. Limitations

and "Correctness" of Petri Nets

- CHAPTER I

Introduction

1.1 Why Petri nets?

In recent years there have been numerous studies relating to

the theoretical aspects of parallel computations. Various models have

been proposed in an attempt to study the properties of parallel systems.

Some of the well known ones are those developed by Estrin and Martin

and others (the U. C.L.A. model), Rodriguez, Luconi, Karp and Miller,

Adams, etc. For a comprehensive bibliography the reader is referred

to [1]. These models differ in generality and scope according to the

properties one is interested in studying. Some are very powerful:

Adams proves that every computable function can be represented in his

model. The models basically have two parts--the data flow structure

and control. However, since the emphasis is on representation of

computations, the overall coordination scheme is obscured. The models,

for all their power and generality, are thus not suitable if one is

interested in studying problems involving coordination of events and

representation of such coordination. Petri nets [15], one of the

earliest contributions to the theory of parallel computations, appear

to be a natural way to represent the coordination of asynchronous

b '.

- 2-

eventsl. Others have also recognized the suitability of Petri nets in

this respect. For example, the Computation Structures Group at MIT

states [3]: "...we have found Petri nets to be an elegant formalism

for representation of concurrency in processes and for studying asyn-

chronous systems. Petri nets stand out in relation to other schemes

because of the preciseness and ease with which they can express parallel

actions, resolution of conflicts, and interaction among processes".

It should be pointed out that although we are referring to parallel

computations, Petri nets are not restricted to modelling coordinations

in computer systems. Any system where there are "loosely connected"

essentially independant processes which proceed in an asynchronous

manner can be modelled using Petri nets. Patil [13] says that they should

be useful in modelling business systems and biological systems as well.

1.2 Definitions concerning Petri nets

In the next section we will present a brief survey of the

work already done on Petri nets. This will give the reader further

insight into the usefulness of Petri nets per se and will also provide

a justification for the research presented in this paper. Before that,

however, we will have to explain what a Petri net is, define some terms

and give the simulation rules explicitly.

1 When we use the term Petri net we refer to the modified Petri
nets used by Holt [8].

- 3-

Definition 1.1. A Petri net N is a directed graph defined as a quadruplet

<T, P, A, Bo

T.= ti'.......,tm
isa finite set of transitions

pa<pl„0"" 'PO

is a finite set of places

(T, P form the nodes ot the graph)

A = at'.......,ak is a finite set of directed arcs of the form x,y

which either connect a transition to a place or a place to a transition.

Each place may have one or more markers in it or it may be empty. A

place is full if it has at least one marker.

Bo - <<p,n pep and nE N is the initial marker distribution (initial

marking).

The places are denoted
by circles and represent conditions,

the transitions are denoted by bars and represent events or processes.

 --, mana: Every occurrence of event e ends one holding of

c e
condition c.

»0 means: Every occurrence of event e begins one holding

e C condition c.

Definition 1.2. The input places of a transition ti'

Ii = Pj <Pjiti)a A i.e. the set of all places from which arcs

are incident on t .
i

Definition 1.3. The output places of a transition ti'4

02 - pj < ti,pj e A i.e. the set of all places onto which arcs

are incident from t .
i

- 4-

Definition 1.4. A transition ti is said to be
enabled if Pke Oi ft Pk - 1,

i.e., if each input place of ti is full. (Pi = No. of markers in Pi)

Definition 1.5. Two transitions ti and t are said to be in conflict

if during the simulation the net reaches a certain marking where both =

ti and t
are

enabled and Iin I , i.e.,
they share an input place.

Simulation rules: Whenever a transition ti is enabled it may at some

later time (finite, a priori unknown and unbounded) decide to fire.

At such a time it reserves one stonelin each input place and begins

firing. No other transition which shares input places with t can
j

claim such a stone. In fact, a reserved stone is invisible to all

other transitions. At the completion of firing (again the time is

finite, a priori unknown and unbounded) the transition removes the

reserved stones and places one stone in each of its output places.

(The reasons for this particular scheme will become obvious when we

give the proof techniques). If at any instant, two transitions are

in conflict, the decision as to which one will fire is absolutely

arbitrary and nondeterministic.

Definition 1.6. A place Pi in a Petri net is said to be safe with

respect to a marking M if no simulation of the net starting from M

causes more than one stone to be placed in Pi. A marking M is safe

if all the places in the net are safe with respect to M.

Definition 1.7. A marking of a Petri net is said to be live if for

any marking reachable from the given marking, there is a firing

sequence that will enable any transition of the net.

1 From this point on, we use "stone" and "marker" interchangeably.

I

-5-

Example 1.1. from [4]. A Petri net: N = <T, P, A, Bo >

T - <ti, tz, ts, t*, ts, ts

p " Pl, P2, P), P4, PS, P6

A = <Pl,tl), <Pi,t2>, <P3,t3>, <P#,t4>,

<P2,t3>; <P2,tt>, <PS,ts>, <PG,t6 ,

<tl p3>, <t2,P#>, <t3,PS>, <tj,PG>,

<14'Ps>, 04,P©, <ts,Pl>, <tS,PZ

Bo- <pt,1> , <PI,1>

1.,-

- 3 3Il 1
5

0 1

� 1

.t 7
4

2 4 k--/1 6

. 1.
I 6

J

Fig. 1.1: The graph.

V

- 6-

Simulation: An examination of the graph indicates that the only transi-

tions initially enabled are tl and t2• Also, these two transitions are

k.in conflict. Assume that ti fires. As a result, t 3 is enabled, firing

of t 3 enables ts and t6• If t 6 fires first and then ts, the net returns

to its original condition. If ts fires first ti and tz are enabled.

Assume t 2 fires. The net cannot proceed now until t& fires. If it does,

t 4 is enabled which again enables ts and t6 and the simulation continues.

This Petri net is live and safe with respect to Bo.

1.3 Work related to Petri nets.

Petri nets are extremely general and thus it is difficult to

study their properties. However, properties of subclasses have been

examined. These subclasses are [3]:

1. Simple nets: Every transition has at most one shared

input place.

2. Free choice nets: Every arc from a place to a transition

is either the only output of the place or the only input

to the transition.

3. Marked graphs: Every place has exactly one input transition

and one output transition.

4. State machines: Every transition has exactly one input place

and one output place.

Genrich [7] and Holt and Commoner [8] have studied properties such
,..,

as liveness and safety of marked graphs. In [8] the concept of informa-

tion flow through a system has been introduced and studied in the context

- 7-

of state machines. Patil [14] has used simple Petri nets to establish

the correspondence between cooperating sequential processes [5] and

Petri nets. Simple Petri nets represent the flow of control in pro-

cesses where the processes do not use conditional statements and the
.

Only synchiuttizing primitives are Dijkstra'Q P and V operators [5].

Patil presents a coordination problem that cannot be solved using

Simple Petri nets. In this context we would also like to mention that

Kosaraju [9] has shown that there exist problems that cannot be solved

using even general Petri nets.

In [13] Patil presents another scheme for representing coordinations

and claims that it leads to reduction in details and simplification of

representation as compared to Petri nets. The nets called coordination

nets are a generalization of Petri nets but do not add more variety to

the class of coordinations represented by Petri nets. He also presents

asynchronous control structures for implementing coordination nets and

shows how coordination structures can be derived systematically from

the nets. He believes that these modules can be implemented in hardware

systematically.

Dennis [2] has used Petri nets to describe the control mechanism

of a computer with multiple functional units. For each of the six major

units in the machine, Petri nets and modulat control structures are

presented. The control structures are constructed from primitive modules

whose behavior is specified in terms of p-nets which are abbreviated

- 8-

representations of Petri nets. Dennis points out that the ultimate aim

of studies such as this is to understand how to trails late a Petri net

specification into an efficient digital system.

Seitz [16] provides an analogy between Huffman primitive flow tables
6

for asynchronous sequential machines and Petri nets. He then generalizes

the Huffman flow table as a special form of Petri net called an m-net. The

m-net can now be used to design an asynchronous machine exhibiting

concurrency in much the same way as Huffman tables are used in designing

asynchronous sequential machines. The author emphasizes that the m-net

representation is a very practical one which permits orderly design

of machines which would be difficult to design by other methods.

Noe [12] is concerned with measurement and evaluation of computer

systems. He introduces Petri nets with EOR input, EOR output and

Inclusive OR input logics for the description of operating systems at

different levels of detail. The paper describes a multiprocessor,

multiprogramming system,the CDC 6400, in terms 6f Petri nets and shows

how this type of representation lends itself to planning system measure-

ments.

Shapiro and Saint [17] use Petri nets and 0-systems for the solu-

tion of an optimization problem. The problem they focus attention on

is that Of generating efficient programs to run on a parallel machine

s tarting with an algorithm speci fied in a high level language. Many

different sequences of operations may be representations of a given

- 9-

I/0 mapping. If the target machine is capable of parallel operation

(e.g., CDC 6600 or IBM 360/91) efficiency of execution may vary greatly

depending on the particular sequencing chosen. Petri nets are used to

express the algorithm in a form where incidental sequencing constraints
4

imposed by the algorithmic language are removed. This process is

called decompilation. and the resulting net presents maximum asynchrony.

The sequencing constraints required by the target hardware are then

introduced into the net. All sequences of which this net is capable,

are realizable on the target equipment and perform the correct mapping.

1.4 Motivations for current research

In the previous sections we have tried to establish that Petri

nets are a neat and convenient way of representing coordinations and

can be used as tools for the specification, design and evaluation of

complex computer systems. If we are going to use Petri nets to represent

coordinations we must, first and foremost, be aware of the capabilities

and limitations of Petri nets; else we may end up trying to represent

a coordination for which there is no Petri net representation. For a

while it was felt that Petri nets were all-powerful, i.e., all coordina-

tions could be represented using Petri nets. We know now that this is

not true. It would be interesting to see if the power of Petri

nets can be increased by suitable modifications. This will further

improve our understanding of the capabilities of Petri nets. These ideas
J ·

will be discussed in Chapter II.

1

- 10 -

We have seen that Petri nets can be used in the specification of

computer systems. The first question that arises is: given a humanly

statable computing problem and a Petri net, how does one show that the

Petri net "correctly" represents the desired coordinationT We have not

seen anywhere an attempt to "prove the correctness" of a given Petri

net and we tackle this problem in Chapter IIIl. Another motivation

for correctness of Petri nets is that proving correctness of parallel

programs in general and cooperating sequential processes in particular

is extremely difficult and suitable simple techniques do not exist.

Developing proof techniques for Petri nets may simplify matters in two

ways:

1. If it is possible to mechanically translate a program P into

a Petri net N, one may be able to prove properties of P more

easily in the framework of N.

2. Having developed techniques for proving properties of Petri

nets Dit may be possible to suitably modify these techniques

for application to proving correctness of parallel programs

or at least to provide some insight into the techniques to

be used.

1 We use quotes because terms such as correctness and proof can -have many different meanings; In Chapter III we will make it clearwhat is meant.

l.

CHAPTER II

Capabilities and Limitations of Petri Nets

2.1 Introduction

- In his thesis [13] Patil states: "The author has found Petri

nets to be adequate in representing coordination of events, but it

appears that a claim that Petri nets provide a satisfactory formal

counterpart to vague notions about coordination of asynchronous

events Icannot be proved just as the claim that Turing machines provide a

satisfactory formal counterpart to the vague concept of algorithm cannot

be proved. The claim must be accepted or rejected on the basis of

experience and the experience of the author and that of others indi-

cates that Petri nets provide a satisfactory formalism Bor the study

of coordination of asynchronous events". Patil seems to feel that

any coordination problem can be represented as a Petri net. This,

however, is not true. In what follows, we will further discuss this

point. We will try to modify Petri nets by introducing some transitions

and places with different properties and see whether the overall power

is increased.

2.2 Interpretation and equivalence

The transitions in a Petri net are labelled, by definition,

tl, t2, ••••••, t . Each transition has a distinct label. However,n

9 these transitions can be interpreted in any way we choose. For example,

two transitions with different labels may refer to the same event or

process. This is allowed even if the two transitions can fire at the

- 12 -

same time. The same transition cannot, however, refer to two different

processes. Firing of a transition corresponds to the occurrence of an

event or the initiation and completion of some process. Thus a net is

interpreted if process names are attached to some transitions. For
-

an interpreted net, we are interested only in the manner in which the

named processes interact. We can now define two kinds of equivalence:

1. Strong Equivalence:

N i and N2 are equivalent with respect to a set of transitions 3

T,iff T 9 Tl and T 9 T2 and the same firing sequences of

transitions in T can be achieved in both Nt and N2• Ni and

N2 are strongly equivalent if they are equivalent with respect

to T and T = Ti or T = T •

2. Weak Equivalence:

Two nets are equivalent with respect to an interpretation iff

(a) The processes named in one are the same as those named

in the other, and,

(b) The sequences of process initiation and completion

achievable in the nets are identical.

Two nets are weakly equivalent if they are equivalent with

respect to at least one interpretation.

Note: Thus the same Petri net can refer to different coordinations among

processes depending on the interpretation given to it.
O

- 13 -

2.3 Classes of coordination problems and nets

1. Let the class of regularl Petri nets be TN and the coordinations

representable by this class, PN.

2. Regular Petri nets have only AND-input logic, i.e., a transition

is enabled iff all the input places are full. Let us consider Petri nets

that have Inclusive OR-input logic as well. For example:

P, 22- *3

0000

Tit-

T+ t,

Fig. 2.1

(Let Fi = No. of stones in pi)

In Fig. 2.1 ti is enabled iff Pi > O)t (PI > 0) A Pa > 0 V<P4 , 0 . We

should explain clearly the simulation of such nets. Consider the net

below:

00
/+ + r- 6

1

Fig. 2.2

1 Regular Petri nets refers to the nets described in section 1.2.

<

- 14 -

It should be clear to the reader that the final state of the net

will depend on the state at the instant ti decides to fire. Let Pi - 1

and P2 - 0 at some instant. Then tl is enabled and let it decide to

fire. Immediately thereafter let a stone appear in pz. Then, when
-

t2 finishes firing, Pi = 0 and P2 = 1. If ti decided to fire after

the stone appeared in pz the final situation would be Pl - 0 and P 2 - 0.

Let TN be the class of nets and PN the class of problemslog log

where the desired coordination can be represented using these nets.

3. In addition to the regular arc between transitions and places

we allow the following type of arc:

E,

I
*

0,1

Fig. 2.3

When tl fires,a marker is placed in Pl iff Pl > 0. Let TN be
Out a

the class of nets and PN , the class of coordinations representableOut

by these nets.

- 15 -

-.

4. We introduce a special place (C); , (say pl). A transition

will place a stone in pl iff Pl - 0. Let us call this class of net

TN - and the corresponding class of coordination problems, PN - .Out
Out

5. In addition to the regular arcs between places and transitions,

we allow a opooial ara.

0 K

....

/
E,

Fig. 2.4

tl is enabled iff Pi = 0. Let this class of nets be TN and the

class of coordination problems PN.

2.4 Results

1. Obviously,

PN C PN
- log (a)

PN CZ PN (b)

a Out

PN C PN - (c)Out

PN C. PN (d)

- 16 -

2. PN C PN

Proof: Kosaraju, in [9], describes a coordination problem and proves

that it falls outside PN. The problem is as follows: There are two

producers,Pl and. P 2, two consumers,Cl and (2, and two buffers,Bl and

82. If Pi is activated, it produces an item, deposits it on top of

Bi and deactivates itself. If Ci is activated, it consumes the bottom

item from Bi and deactivates itself. Another constraint is added. Cl

and C2 cannot be active simultaneously; Ci has priority over C2, i.e.,

if both Cl and (2 are inactive and buffer Bl is not empty, then £2

cannot consume from B2 (since Cl can be activated) at that instant. To

prove that PN C PN we will show that the coordination desired in the

above example can be represented using a net N 6 TN.

1 06 'CJ
8,

F fl4,e 7 w

1-4 8

 1 tak. 7
-/ »„- al

Bl

CT»
F Place 72

LA Bl

Eg ke Fl

frD- B 1Fig. 2.5

- 17 -

To give a better understanding of why regular Petri nets are not

all powerful we will consider another example. Kosaraju's proof will

go through for this case also, but here we are more interested in an

intuitive discussion. Consider the following simple net:

0
 flz-

¥

47/v
t_«f

Fig. 2.6

This net has an interesting interpretation. In fact, it is very similar

to the control structure that implements "cycle stealing" in a multi-

programmed computer. tl can be interpreted as the main process PROC 1

to which the CPU is allocated. t2 is an input process PROC 2, acting

asynchronously and reads (say card images) into a buffer. t 3 is the

process PROC 3 that reads from the buffer into main memory. If the

buffer is not empty, the main process PROC 1 is halted until PROC 3

- 18 -

reads all the information into core. Only at this instant, when the

buffer becomes empty again, is PROC 1 allowed to continue. We said

A 4

very similar in the beginning because usually the buffer is bounded

and consumption takes place instantaneously.

We will now give an intuitive argument to show that the desired

coordination cannot be achieved using a regular Petri net.

Initially, ti is capable of firing an unlimited number of times

until t 2 chooses to fire. Since places cannot initially hold an un-

bounded number of stones, a part of the net has to be equivalent to Fig. 2.7

with respect to t l. //// ,

9 E,

k»-/

Fig. 2.7

Let Ti = No. of times ti has fired till any given instant.

If T2 > T 3, tl has to be disabled, and obviously, this can only be done

by removing the stone from Pl• Also, when T2-T3, t2 fires independant

of the rest of the net. Therefore a part of the net must be equivalent
.

to:

-

- 19 -

/

iL

0 6

I ,
3

Fig. 2.8

Placing a stone in P must cause the stone in Pl to be removed. There-

fore, pl must be an input place of t 2 or some other transition that causes

a stone to be placed in P. Thus, the coupling may be as follows:

11

t, tL

0
F 64

0,

Fig. 2.9

- 20 -

Assume that in the original net t2 fires twice and t 3 does not fire.

Then, tl is disabled as soon as the first stone is placed in p and

will remain so until t 3 fires twice, which it is capable of doing since

p contains two stones. The constructed net works correctly to a point.

When t2 fires the first time a stone appears in p and tl is disabled

(Assume dummy transition td fires instantaneously) . However, when t2

fires a second time, no stone appears in p since td is not enabled.

Therefore, ti has to be enabled in order to cause the second stone to

be placed in p. But the coordination desired requires that tl not be

enabled until t 3 has fired twice. Even if this problem can be taken

care of, there is no way of constructing the net so that ti is reenabled

only when ts has fired the same number 6f times as t2• We thus argue

that there is no regular Petri net strongly equivalent to the net in

Fig. 2.6.

The closest we can get to the desired coordination using regular

Petri nets is the net in fig 2.10:

t

T i 1

.

t3

Fig. 2.10

- 21 -

Here the only sequences allowed are

t 1 t 1 • • • • • • t 1 t 2 t 3 t 2 t 3 • • • • t2t3tltl••••••••

In the original problem we also allowed sequences like

tltl t 2 t 2 • • • t 2 t 3 t 3 • • • • • • t 3 tlti......

etc.
nUR n

tl....tl t2••• .t 2 t 3.... t 3 t 2.... t 2 t 3• ...t3 tl••••tl
-C- -)< -'

V V

a b c d

where a+c=b+d.

3. PN C PN C FR
log

(a) PN C Fii.
log -

Proof: The net in Fig 2.11 can be simulated using a net N' e TN.

P' 0 O F.

'* Vt 6,

04
.

1
Fig. 2.11

k.

- 22 -

The simulation is:

91 Pz-

q -
Ld

\ F
e 4 E 4

f4

-1- E.

04
Fig. 2.12

Where td and Pd are dummy transitions and places respectively. There-

fore, for any N = <T, P, A, B0 GTN 3 a net N' e TN 9 N' is
log -

equivalent to N with respect to T, i.e., N' and N are strongly equi-

valent.

(b) Kosaraju's problem 1 and proof can be used to show that

PN C PN. Informally, Fig. 2.6 can be used to show the same thing.log

The conditions under which ti, t2 and t 3 are enabled are:

t2 always (10

tl : iff T2 - T3 (2.)

ta

iff T2 > T3 (3.)

The conditions (2) and (3) are single conditions. We cannot really

take advantage of the fact that OR-input logic is allowed. We may

- 23 -

replace T2 = T3 by (T2 = T 3 A X) V (T2 = T) A X) where X is some condi-

tion but this will not help because if we can test X we cannot test X

and vice versa.

(c) Also, in formally, we can conclude that PN C PN . Consider
log

the net below:

vt· n (-3 r.\--/ 4--1

rt +T
6, C PROC i)

0 P,
Fig. 2.13

t l represents some process PROC 1. PROC 1 is activated only i f

Pi >o v P2 >0. Since in the original net PROC lwill be enabled if

P l >O a part of the net N e TN must be equivalent to :

t,

(PROC 1 5

Fig. 2.14

- 24 -

Similarly, a part of N must be equivalent to

(f R oc ,) C PROC- 1 1 (pnoc i)

Fig. 2.15

In the original net, if stones appear in pl and p2 at the same time,

PROC 1 will be activated only once. In Fig. 2.15 PROC 1 can be acti-

vated twice if ti' and t 3' fire instead of t2'•

4. PN CPN - C- FiiOut

(a) PN - C. PN
out -

Proof: The net in Fig. 2.16 can be simulated using a net N' € TN.

..Ii L
:C j., 1 1

)-.

EZ -

Fig. 2.16

- 25 -

The simulation is:

7 Ed

h /'

l4

-jt i L

Fig. 2.17

Where td' Pd are dummy transitions and places. Therefore, for any

N = <T, P, A, B'>e TN - 3 N' 6 TN e N and N' are equivalent withOut

respect to T, i.e., N and N' are strongly equivalent.

(b) Kosaraju's problem 1 and proof can be used to prove that

PN - Cl PN.
Out

(c) We will demonstrate, with an example that PN Cl PN - . Consider
Out

the simple net in Fig. 2.18

t,

, /-\.. ..1
' C J :

,-'' 1---

EL

Fig. 2.18

- 26 -

Consider the following interpretation. t l i s a producer , PROD, which

produces items one at a time and deposits them in a buffer. t2 is a

consumer CONS which, when enabled, consumes everything in the buffer.

Let us assume that ti is firing at a fixed rate and t2 fires whenever

it is enabled. Therefore, according to the figure, the number of

times CONS is activated depends on the time it takes for consumption.

It should be intuitively obvious to the reader that the coordination

specified cannot be achieved using regular Petri nets.

(d) We will discuss an example here, that establishes the need

for two notions of equivalence. Consider the net N' of Fig. 2.19.

ti

*

-
64 (.i,-

< --7£3

Fig. 2.19

We will show that there is no net N e TN 3 N' and N are equivalent with

respect to ti, t2, ta, t 4 . We will then give the net in Fig. 2.19 an

- 27 -

interesting interpretation and show that there is a net N €,TN which

is equivalent to N' with respect to this interpretation.

In attempting to construct a regular Petri net equivalent to N'

with respect to ti, t2, t 3, t4 ' we go through the following stages..

t, must be capable of being fired an unbounded number of times

independantly until t 3 is fired. Therefore, a part of the net has

to be equivalent to:

1
tl

Fig. 2.20

In the original net we had a transition t 1 firing continuously,

which kept tz enabled, even if t 3 caused it to be disabled temporarily.

If we are using regular Petri nets this will not be possible since a

large number of stones may accumulate in P 2 • If this happens, then t 2

cannot be disabled by one firing of t 3• Thus we will have to use a

mechanism whereby t 3 itself causes t2 to be enabled:

- 28 -

6.3

Kl

t 1

/f .1 1 94

64

Fig. 2.21

The problem now is that if t4 has previously fired, td should be

prevented from firing and there is no way to do this.

Note: The net in Fig. 2.22 would not be valid because,in the original

net,tx can fire in the beginning

KI

64 t,

Fig. 2.22

- 29 -

Consider now the following interpretation of the net in Figure 2.19.

t2 represents some process PROC 1 which is enabled and can proceed inde-

pendantly. t 3 is some "interrupt process." t4 is an "unmask process. "

If the "unmask process" is not, activated, and the "interrupt process" is

activated, PROC 1 is temporarily disabled. Temporarily, because there

exists a way of enabling it immediately. If, however, the "unmask pro-

cess" is activated, subsequent, activation of the "interrupt process"

causes PROC 1 to be permanently disabled.

The interpreted net of Fig. 2.23 is a regular Petri net and correctly

represents the coordination specified in the above interpretation.

Ch J '
1

u.·n·,na.6 k

14 +e·rrup E .
1 .-4 I.

1-n +e
-grt 1

0 1 ,�·, 1

Fig. 2.23

- 30 -

5. PN - PN
Out

Proof: We will show that the net of Fig. 2.24 can be simulated using a

regular Petri net.

/
/

0 E'

-V t 1

Fig. 2.24

The simulation is:

6I

$,t
4 0,4

6 64

 4 E
d

« 1 :1 -1

iz-

Fig. 2.25

- 31 -

Therefore, for
every net N' - <T, P, A, Bo e

TN 9 anet N TN,out -'

3 N' and N are equivalent with respect to T. This proves that PN C
Out -

PN and from result lb we conclude that PN = PN.
Out

2.5 Analogy with switching circuits and functional completeness

In switching theory, the notion of functional completeness is a well

defined one, i.e., the AND and NOT functions, for examp le, form a "basis"

and are capable of realizing all logical functions of 2 (-and hence n)

variables. We have seen, in this chapter, that PN C PN. In TN we only

allowed transitions with AND-input logic; in TN, we allow NOT-input

logic as well. In some sense at least, TN seems to be functionally

complete with respect to the class of coordination problems. However,

the las t statement should be made carefully because though a "logical

function" is a very well defined concept, a "coordination
problem" is

not.

00

AND T .

5

0
Fig. 2.26

- 32 - 1

The output of the AND gate is high when all the inputs are high. The

Petri net N fires when all input places are full, a stone is then put in

the output place.

0 t
.

V

NOT gate Petri net N'

Fig. 2.27

The analogy between the NOT gate and N' is also strong. The question

that immediately arises is : How far can we push this analogy? Can we

argue that switching circuits are completely analogous to Petri nets and

conclude from here independantly that there are coordination problems

outside PN (since TN, by analogy, is not a basis)? We tend to think that

this is not the case. Consider safe Petri nets. Since each place can

contain at mos t one s tone, this appears to be "more analogous" to switching

nets where inputs are either Hi or Lo. If this is the case, we would tend

to conclude that

TN safe C- m safe

where X I is the class of problems where the desired coordination can
l

safe

be represented using safe nets belonging to X. However, this is false as
the simulations below indicate.

- 33 -

1.)

1 \

6 0. d

8, 6.z- -' 6, 1 t,-

0 f,

1 EZ

-1- E
2.

0,1 0- --1

04
I-.

_., 6, E, id

6 EL- W11

1

VK
t L

t

k .1 t

t'

P. 0 " 1 E.

t

 ''
Fig. 2.28

: T N 1 T-Al
1

5a.fe
,

550-4/

- 34 -

At this stage, we would only like to state that one should be careful

in drawing the analogy between switching circuits and Petri nets. Also,

the notion of functional completeness seems to apply to Petri nets as

well. In a later report we will discuss this in greater depth.

CHAPTER III

Correctness

3.1 Introduction

Let us now come to the question of correctness of Petri nets.

When we say "Petri net N is correct', intuitively what is meant is that

the Petri net does what the designer intended it to do. Given a parti-

cular problem, a Petri net is constructed which represents the desired

coordination. First and foremost, we are not at all interested in

whether the constructed Petri net is the best one for the given problem.

In fact we will not even try to prove that the Petri net effectively

represents the desired coordination. We shall, however, try to prove

a very restrictive kind of statement about the net which we will ask

the designer to provide. The kinds of statements we will attempt

to prove for a given Petri net are:

1. At any given time, only one of the transitions from the set

tl'......tl. may be firing.

2. Statements about termination:

Termination may occur in two ways:

- (a) Natural termination: The net terminates because it has completed

its actions according to the design specifications.

- 36 -

(b) Abnormal termination: The net terminates as a result of

conditions not specified in the design. This kind of termination

is usually called deadlock. Proving that a particular net is

free from deadlock may be the most difficult aspect. The problem

arises because it is difficult to recognize in general all the

possible conditions under which deadlock may occur. For example,

if we show that at every stage some transition in the net is live

we cannot conclude from this that the net is dead16ck free. The

transition which is live at every stage may be the same one and

useless as far as the actual operation of the net is concerned.

If we prove that at every stage the marking is live then

will show that the net is deadlock free but this condition is too

strong and may be difficult to prove. A certain part of the net

may become 'dead' after the initial stages but the rest of the net

may be deadlock free and operating correctly. In this case after

the initial stages every marking will not be live. Thus it will be

difficult to formulate conditions which can be proved to hold for

any Petri net and which will ensure deadlock free operation. For

a given net, given a description of the way it is supposed to behave,

it may become apparent under what conditions the net can become

deadlocked. For example, by showing that every transition in a

particular cycle is live at every stage, one may be able to conclude

that the net cannot terminate abnormally. The above discussion seems

to indicate that we should not try to prove the statement "Net N is

- 37 -

deadlock free" in general but should ask the designer to give us

simpler statements to prove from which he can reasonably conclude

that the net will never become deadlocked.

3. Two given transitions will never conflict.

4. A given place is safe with respect to a particular marking or

a given marking is safe.

5. A given transition is live.

6. A given marking is reachable from another.

7. A given transition will fire N times or less than N times.

Thus, our aim is not to prove that a Petri net is correct but to

prove that it is correct with respect to an assertion that is made up

of statements of the above type. In the above, we have used the term

"prove" frequently. In [11] Mills states in connection with proofs =

of correctness for sequential programs: "There is no such thing as

an absolute proof of logical correctness. There are only degrees of

rigor,..." and "It is clear that a whole spectrum of rigor will be

useful in correctness proofs." We agree with him that formality and

brevity do not cooperate and have often sacrificed the former for the

sake of the latter.

We would also like to comment briefly on the effects of a transition

_ firing. There are two possible effects.

<a) A change in marker distribution.

(b) A change in the value of some variable not part of the net as

a result of the occurrence of the event which the transition represents.

The Petri net may be the representation of a complicated parallel

L

- 38 -

computation. We will never make statements about the values of variables

which the transition firings may effect. In a sense, we are interested

only in the control structure and not the actual mathematical computation.

3.2 Proof techniques

1. Computational Induction: In this method we will develop certain

relations which remain invariant during the simulation of the net. By

using these relations suitably, we will be able to prove certain pro-

perties about the net. When we say a relation is invariant we mean it

holds whenever a change in marker distribution takes place or a transi-

tion fires. The relations follow trivially from the simulatkon rules.

The places are labelled pi, pz,......Pm

The transitions are labelled ti, t2,•t
n

Mi : No. of stones in Pi initially

pi : No. of stones in Pi

T : No. of times t has fired.
i i

Relation 1

 I i : set
of transitions with Pi as

output place

h'

l f) ·2: set of transitions with Pi as anlvlj
input place

Fig. 3.1

- 39 -

Pi - yTk - FT + M :> O
Lj i

tke I, 5 e.02

Example 3.1

t, 8

/.1 1.----
\ 1

./

M, = 7.
131

\... '3

Fig. 3.2

For the net in Fig. 3.2, the relation below holds

Ts + T4 6Tl + Tz + m

Relation 2

Starting from transition t let us trace down the net along any
aI

path to transition tak. Let the path be

tai Pbl ta2 Pbz
........

Pbk-1 tak

If al 0 a2 0 0 ak and Ibi = tai we call such a path

a simple path.

Example 3.2

t,

k

\
LL£ 2 2

tipit2P2ta is a simple path.

G *1
ill 1

3
Fig. 3.3

- 40 -

\ /L
1

P,

r , t

Fig. 3.4

tipit2 is not a simple path because of the arc marked x coming

into pi·
K-1

Tak LT.1 + 5 Mbi for any simple path� t p.t.
al 01 aK

i-,

Relation 3

Given a simple path Sl from ti to t and also a simple path S2 from

t to t then Si S2 forms a simple cycle.
j i'

If in addition, every place in a simple cycle has only one input

and one output arc we have a pure cycle.

Let S be a pure cycle

M i - Mi= Ns (say)
t,As pt,A S

In this context we can also state another simple property. If there

exists a simple cycle in the net and all places in it are initially

empty, then no transition on that cycle can ever fire.

Let us see how we can use these simple relations to prove

properties about Petri,·nets.

- 41 -

Example 3.3

Consider the producer-consumer problem with bounded buffer. We have

- one producer and one consumer. The producer places items in the buffer

(length N) and the consumer consumes the items. The problem is to

coordinate these two essentially independant processes so that the consumer

does not try to take an item from the buffer when it is empty and the

producer does not place an item when the buffer is fulll. The solution,

using Dijkstra's P and V operations, is as follows:

Producer: Produce Consumer: P(x)

P(Y) P(S)

P(S) take

deposit V(S)

V(S) V(Y)

V(X) consume

go to producer go to consumer

A direct mechanical translation gives the following Petri net:

1

This is a famous problem solved by Dijks tra [5] and is quite
different from the problems suggested by Kosaraju.

- 42 -

h t'

6, f' o J u U P(*) i,
3

N
P7

4 k,

6* f(Y) pCS) 6 8

h ki

63 PCS) 6 6.ke _. (9
Irs -

0 4,3
ty .

defO3It VCs) • £,0

4 0 U#

-

tb- v VCS) 1 V(3)-2- t„

4
h

L_,/' 1=, r

l 6 v (1) (crn SL™ .6 11

Fig. 3.5

- 43 -

The numbers inside the places represent the initial number of markers.

We are interested in proving the following properties for this

net.

(1) t4 and tg cannot be firing at the same time, i.e., producer P and

consumer C do not try to access the 6uffer at the same time.

(2) 0 6 T4 - ·T9 6 N, i.e., no buffer overflow or underflow.

(3) No deadlock.

Proof 1.

Is = (tio, tsi
08 = te, ta j

618= 1

Therefore Ta + T 61 + Tio + T5 (1) by Rl

P* = T3 - T# + 0 (2) by Rl

Ts 6 T4 (3) by R2

P* 6 Ts - Ts (4) (2) 6 (3)

Similarly P12 '- TB - T1O (5)

Therefore P# + P 12 61 (6) (4), (5) and (1)

From 6 we can conclude that either P# contains a stone or P 12 or neither.

From our simulation rules we can conclude directly that T* and Tg cannot

be firing at the same time.

Proof 2:

tg p13 t10 P14 tll P7 t2 P3 ta P# t4 is a simple path.

_ Therefore, T4 6 Tg + N R 3

Therefore, T4 - Tg 6 N

i.e., No. of deposits minus no. of removals 6 N

Therefore, No overflow of buffer

- 44 -

Similarly:

t t, Ps t5 P6 t6 ps t7 ptl te P 12 ts forms a simple path.

Therefore, Tg 6 T4

Therefore., T4 - T9 & 0

Therefore, No. of deposits minus no. of removals 3 0

Therefore, No buffer underflow.

Proof 3:

For this particular problem it is easy to see that deadlock can

occur only if P 7 = Pg = 0 'and there is no way to change this situation.

(Pure cycles can be represented by the subscripts of the places only.

The transitions can be left out because there is no ambiguity).

St = 1, 2, 3, 4, 5, 6, 7, 1 is a pure cycle.

S 2 = 10, 11, 12, 13, 14, 15, 10 is a pure cycle.

S 3 = 3, 4, .5, 6, 9, 11, 12, 13, 14, 7, 3 is a pure cycle.

N = 1 (1)
S 1

N = 1 (2)
S 2

N = N (3)
S 3

a = P3 + P4 + PS + P6 6 1
from (1)

b = Pll + P12 + P13 ·+ P14 61 from (2)

There fore, a + b 6 2

But if N >2 and P7 = Ps - O thena+b= N 2 2 from (3)

Therefore Contradiction.

Therefore, at no stage can both P7 and Pg be zero,

for N > 2.

- 45 -

For N = 1, if P 7 = Ps = 0 then

(a) one of p3,.P4, P53 P6 contains a stone or (exclusive).

(b) one of pll, P 12, P 13, P 14 contains a stone.

Case a: ts will eventually fire causing a stone to be placed in

P7. Therefore, P 7 + P9 0 0.

Similarly for N=2 i t can be shown that P 7 +P g=0 cannot exist

forever.

Therefore no deadlock is possible.

Example 3.4.

Consider the problem of two cars passing through a gate [13]. There

is a button. Pressing the button causes the gate to open if it is

closed and closed if it is open. The problem is to coordinate the

activity so that both cars may pass through the gate irrespective

of their times of arrival at the gate. The desired coordination is ··

represented by the following net:

P, A /-h i- CY '

E,

f is

1'4 0 ' 1% r
f,o

6.L �

i4
E 5- _L dl

F6 PB

t
 "

--

 3 6, Li
,I,

la 6,0
Fig. 3.6

- 46 -

tl : car A comes to gate

t 4 4 car A presses button

t) i car A passes through gate

ta i car B comes to gate

ts i car B presses button .

tio: car B passes through gate.

Gate is initially closed.

We want to prove the following:

(1) t 4 fires ==> ts does not

ts fires
-,6 t 4 does not.

i.e., if car A presses the button then car B does not and vice versa.

(2) t3 and tio will both eventually fire irrespective of whether ti

fires first or ta or both together. That is, both cars will eventually

get through the gate irrespective of the order in which they arrive.

(3) Ultimately, T 3 6 1, Tto 6 1

Proof:

(1) T4 + Ts 6 1 from Rl(1)

Therefore Tt, = 1 =* T5 = 0

Ts = 1 *TK = 0

Therefore only one car presses the button.

(2) From R2

Ps = T4 - T9

P# = Ts - T2

Therefore 0 6 Ps + P4 = T4 + TS - (Tg + T2)

L. 1 - (Tg + T2) from (1)

Therefore T + T2 6 1

- 47 -

Therefore either T2 fires or Tg fires.

tl and ta are live for the initial marking. If both fire, then P2 =

Pio = 1. At this stage t4 and ts are enabled. TS = 1 =2> T* = 0,

tz can fire, tg cannot fire. ts is live. TS = 1 =* tio is live.

Similarly T* = 1 =E>Ts = 0 A t 3 is live A t i o is live.

Therefore, for any simulation, before t 3 and tlo fire, they are live

with respect to every intermediate marking.

(3) Follows directly from R .

The net has a slight problem in that ts and tio may be firing at

the same time, i.e., both cars may try to pass through the gate at the

same time.

2. Method of Inductive Assertions

This method was introduced by Floyd [61 to prove the correctness of

sequential programs. We will apply this method t6 prove that a Petri

net is correct with respect to a particular, given assertion A. The

basic ideas are taken from [10] whire the technique is applied for

proving parallel programs correct. The procedure is as follows: With

each transition in the Petri net we associate an assertion. Our aim

is to prove that every time a transition in a Petri net is enabled, the

corresponding assertion is true irrespective of the particular simulation

- which caused this transition to be enabled and irrespective of the state

of the rest of the net. Once this has been established, we will try to

deduce that the Petri net is correct with respect to A. As we have

·

- 48 -

already stated previously, A will be a statement about the flow of

control in the net and not about the actual computation achieved. Thus

the assertions at the transitions will in all probability be statements

about the number of stones in a particular place or the number of times

a particular transition has fired.

Definition 3.1. Let N =<T, P, A, B'> be a Petri net. An assertion «'i

asserted with a transition ti e T is a predicate on the values of Pk'

Tk where Pk E P and tk e T.
The Petri net N is correct with respect to

the assertion ° if and only if for each simulation of the net that

enables ti, Ki is true when ti
is enabled. The net N is correct with

respect to a set of assertions if and only if it is correct with respect

to each assertion in the set.

Induction Theorem:

To prove that a Petri net N - <T, P, A, Bo> is correct with respect

to a set of
assertions 0<i ti E T it

is sufficient to prove the

following.

(1) Ri is true for all ti that are enabled in Bo.

(2) For each ti E T

Let pi - P p e IiA <p,0>€ Bo

i.e., the set of all initially unmarked input places of ti.

Let Pi = qi, qz,......qn -

Let 5 - i t, 1 4, ' % f 1 -
1 =n

i.e., the set of all transitions of which q is an output place.

- 49 -

Let Bi - b 1, b z, ' bn tbj f Tj .

Each n-triple in Bi, gives the subscripts of the transitions which

when fired will cause stones to be placed in the initially unmarked input

places of ti

L e t F i r e (bi,·
bQ) denote the fact that the transitions tbi'* ' tbn

fire.

Then for each ti € T

<b 144 b2 " " 0 0 Cbn A Fire (bl,�, bn) + Ai (1)

for all <b l' , bn 6 Bi·

The proof is similar to that presented by Lawer in [10] and will be

omitted here.

Each equation of the form (1) is called a verification condition:

It should be obvious to the reader that what we are trying to prove

in the second part of the induction theorem is really a very strong

condition. It is sufficient but not necessary. The converse of the

Induction theorem is not true in general. In a later paper we would

like to get weaker verification conditions and our results here are

just a first attempt. In general, the stronger the verification condi-

tions, the less is the "information content" of the assertions. That

is, if we have very strong conditions to verify,the assertions will

tend to be of a trivial nature and we may not be able to conclude the

main assertion A about the net.

Thus the method is

(1) Formulate the assertions for each transition.

- 50 -

(2) Prove that all assertions associated with transitions that are

initially enabled are true.

(3) Prove all the pertinent verification conditions hold.

(4) Deduce that the net operates correctly with respect to the main,

overall assertion.

Note:

(1) Floyd, when proposing this method for sequential programs showed

that it was not necessary to have an assertion at every point. One

assertion in each loop and one assertion at each termination point are

sufficient. In the above formulation for Petri nets we have applied an

assertion at every transition. Analogous to the procedure for sequential

programs we do not think it is necessary to have an assertion at every

transition. However, we have not as yet been able to find the concept

in a Petri net that is equivalent to a loop in a sequential program

and which fits into the framework of our induction theorem.

We will again give the simple producer-consumer problem and show

that it is correct with respect to an assertion using the inductive

assertion method. 1 However, to do this we have to introduce the concept

of an augmented Petri net. A simulation S of a net N can be repre-

sented as follows :

S - Bo <T j M, tT, M, i-T, ···'" ''Mi <Ti]·······
Bo is the initial marking.

Mi is some subsequent marking of N and Ti represents the set of

transitions that finish firing at the same time starting from marking Mi

and ending with marking M . Let N = (P, T, A, Bo) be a Petri net.i+1
1 The proof presented here is taken from [10] and modified to be

applicable in the context of Petri nets.

- 51 -

Example: 3.5 (Producer - Consumer problem)

- 0

2»N A F30 A *-0 , Sea,re 5 Er· e r
y=O A e> ,O A P >, O

A E-, F z :I F. A = i T H E N N -1

E 66€ N

.E -----0 "

E>,e AFao AX=O
P(E)

A E'+F= IF Y=t THEN N-1
A E +F = 'F * s i T H E N AA-1

P(F)
Y.O A F>,0 A F>,O

ELSE N
1 / ELSE N

0, 1(1
/-\

1 -
1

3 -I +

5
)X 1 ..I

,-. '1
E->>0 AF>,0 A *=0 r .-.

f, b. U L. y 5, A E 7,0 A F >, o A
1 Cm*�r - 1A €+F. IF Y=I THEN N-1

E L S E N- I
E+ F IF A-t THEN N-2.

E L S E N- ,

* 1

- P to
F

E 3/0 A - �
b V (F)1-3/0 A *=1 V (0 P /

A E+F = IF Y z 1 THEN N- 2
E-+F . IF * -1 THEN N - 1

Y -I E 4 0 A F >, 0 4

ELS€ N-1

ELSE 4-1

Fig. 3.7

1

- 52 -

Then, N' - (P', T', A', B") is an augmentation of N if and only if

P C P' , T CT', A C A' , B' C B" and for each possible simulation S of N

there exists a simulation S' of N' and vice versa such that

Mi C Mi' . i Ti } C iTi 'j .

In a later report we will develop "local" conditions under which

places, arcs and transitions can be added to a net N to form an augmenta-

tion N'. For the present we will only state the following:

Theorem 1. If t p t p t. 15 any simple path through aal bi az bz
'

aK

net N and if a place P is added so that it is an output place of t
al

and an input place of tak then the resulting net is an augmentation of

the original net.

Proof: Obvious

Theorem 2. If N' is an augmentation of N then N' is correct with respect

to xi if and only if N is correct with respect to i ·

Proof: Obvious

In Fig. 3.1
'the solid lines represent the original Petri net for the problem and

X and Y are places added to give the net N'. Theorem one guarantees

that N' is an augmentation of N. The assertions at each transition

are given, E, F, X, Y represent the number of stones in the respective

places.

To prove N is correct with respect to

E+F-N-2 AO F= NA

If N' is correct with respect to 141........ 4 8 and we can deduce A

from <41 , � � � � � � � �a e then N'
is correct with respect to A and Theorem 2

4

- 53 -

guarantees that N is correct with respect to A.

To prove that N' is correct with respect to <41 ,........48 :

(1) The only transitions which are initially enabled are tl and ts �

41 and 45 are both true trivially.

(2) We will only prove the verification conditions for transition 2.

The rest is left for the reader.

(a) a< t. A t l fires =*12

E=N A F=O A X=O A tl fires =>

E A O A F O A X=O A E+F=i f Y=l t h e n N-lelse N.

Proof.

E= N e EAO

F= O $ FAO

X=O+X=O

To prove that E+F=i f Y=1 then N-1 else N

X - 0 and examination of the net indicates that

Y = 1 at t 7 and te• X- 0 A 47 »E+ F= N - 1

X-O AKB== >E+F+N-1
Similarly Y=O a t t s and t6 and

X = O A As ah E + F =N

X = 0 A 0< 6 =32 E + F = N

Therefore, X = 0 4 if Y = l then N-1 else N.

Q.E.D.

(b) 4 4 At 4 fires * °< 2

i.e.

- -

- 54 -

E A O A F 1 0 A X=1 A E+F= if Y=1 Then N-2 else N-1

A t4 fires =22

E=O A F 6 0 A X=O A E+F= ifY=lthen N-1, else N.

Proof:

t 4 fires 6> X+X-1 A F- -F + 1

Therefore, X = 1 A t4 fires €> X = 0

E+F= ifY=lthen N-2 e l s e N-l A t 4 fires

=> E+F= if Y =lthen N-lelse N

Q.E.D.

Therefore, N' is correct with respect to-< 2.

Similarly, N' is correct with respect to <ki, 4 2, � � �
.08 3

Therefore by Theorem 2 N is correct with respect to 1,••••• 8.

From the assertions we can conclude

E+F R N-2 (1)

E+F G N (2)

E 4 0 (3)

Therefore, F U N (4) from (2) and (3)

F A O (5)

Therefore, N is correct with respect to A.

Also, from (1) conclude: no deadlock for N >2

From (4) conclude: no buffer overflow. "

From (5) conclude: no buffer underflow.

r

CHAPTER IV

Conclusions

- In this report we presented a general discussion of Petri nets.

We demonstrated that Petri nets were being used in the specification,

design and evaluation of complex computer systems, thus establishing

the need for a study of the capabilities of Petri nets and proofs of

their correctness. In Chapter II we showed how Petri nets could be

modified so as to obtain different classes of representable coordi-

nations. In Chapter III we first discussed what was meant by the

statement 'Petri net N is correct" and then established the feasibi-

lity of using the methods of Computational Induction and Inductive

Assertions to prove that 'Petri net N is correct with respect to

assertion A".

In a subsequent report we will further examine some of the ideas

introduced here.

ACKNOWLEDGEMENTS

I am grateful to my advisor Professor M.J. Flynn for his continued

guidance, encouragement and support. I would also like to thank my

- colleague, Joe Davison, for his helpful comments.

L - 1

- -

REFERENCES

1. BAER, J.L. A Survey of Multiprocessing. Technical Report

No. 72-05-01. Computer Science Group, University of Washington,

Seattle, Washington 98195, May 1972.

2. DENNIS, J.B. Modular, Asynchronous Control Structures for a High

Performance Processor. Record of the Project MAC Conference on

Concurrent Systems and Parallel Computation. ACM, New York, 1970,

pp. 55-80.

3. DENNIS, J.B. Computation Structures. Project MAC Progress Report VIII

July 1970-July 1971. MIT, July 1971.

4. DENNIS, J.B. Concurrency in Softwear Systems. Advanced Course in

Softwear Engineering, Lecture Notes in Economics and Mathematical

Systems. Ed. M. Beckmann et. al. June 1972, pp. 111-127.

5. DIJKSTRA, E.W. Cooperating Sequential Processes. Programming

Languages. Ed. F. Genuys. Academic Press, New York, 1968, pp. 43-112.

6. FLOYD, R.W. Assigning Meanings to Programs. Proceedings of a

Symposium in Applied Mathematics Vol. 19, Mathematical Aspects of

Computer Science, American Mathematical Society. 1967, pp. 19-32.

7. GENRICH, H. Einfache Nicht-seauentielle Prozeaae- Doctoral Disserta-

tion. Gesellschaft fur Mathematik und Datenverarbeitung, 5201 Birling-

hoven.

8. HOLT, A.W. and COMMONER, F. "Events and Conditions". Record of the
.

Project MAC Conference on Concurrent Systems and Parallel Computation.

Association for Computing Machinery, Ney York, 1970, pp. 3-52.

- 57 -

9. KOSARAJU,S. RAO. Limitations of Dilkstra' s Semaphore Primitives

and Petri Nets. Hopkins Computer Research Reports No. 25, Research

Program in Computer Systems Architecture. The Johns Hopkins Uni-

versity, May 1973.

10. LAWER, H.C. Correctness in Operating Systems. Ph.D. Thesis,

Carnegie-Mellon University, September 1972.' AFOSR-TR-72-2361

Contract F44620-70-C-0107.

11. MILLS, H.D. Mathematical Foundations for Structured Programming.

FSC 62-6012. Federal Systems Division, IBM Corp. , Gaithersburg,

Maryland, 1972.

12. NOE, J.D. A Petri Net Model of the CDC 6400. Proceedings of the
.

ACM/SIGOPS Workshop on Systems Performance Evaluation. April 1971, „

pp. 362-378.

13. PATIL, S.S. "Coordination of Asynchronous Events." Ph.D. Thesis,

E.E. Dept., Project MAC, MIT. MAC TR-72, June 1970, AD-711-763. 'i

14. PATIL, S.S. "Limitations and Capabilities of Dijkstra' s Semaphore

Primitives for Coordination among Processes". Project MAC, Computa-

tional Structures Group Memo, 57. February 1971, pp. 1-18.

15. PETRI, C.A. Communication with Automata. Supplement 1 to Technical

Report RADC-TR-65-377, Vol. 1, Griffiss Air Force Base, New York,

1966.

16. SEITZ, C.L. Asynchronous Machines Exhibiting Concurrency. Record

of the Project MAC Conference on Concurrent Systems and Parallel

Computation. ACM, New York, 1970, pp. 93-106.

™

- 58 -

17. SliAPIRO, R.M. and SAINT, 11. A Nev Approach to Optimization of

Sequencing Decisions. Annual Review in Automatic Programming,

Vol. 6, Part 5, 1970.

i

