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Comments on
“Data Mining Static Code Attributes
to Learn Defect Predictors”

Hongyu Zhang, Member, IEEE, and Xiuzhen Zhang

Abstract—In this correspondence, we point out a discrepancy in a recent paper,
“Data Mining Static Code Attributes to Learn Defect Predictors,” that was
published in this journal. Because of the small percentage of defective modules,
using Probability of Detection (pd) and Probability of False Alarm (pf) as accuracy
measures may lead to impractical prediction models.

Index Terms—Defect prediction, accuracy measures, static code attributes,
empirical.
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1 INTRODUCTION

IN the January 2007 issue of this journal, a paper titled “Data
Mining Static Code Attributes to Learn Defect Predictors” [1] was
published. In that paper, Probability of Detection (pd) and
Probability of False Alarm (pf) are used to measure the accuracy
of a defect prediction model. Their models generate average results
of pd = 71% and pf = 25%. The authors of [1] consider these results
satisfactory and draw their conclusions based on them. This
correspondence points out the limitation of using pd and pf as
accuracy measures in imbalanced classification. Using the Recall/
Precision measures, we show that the models built in [1] are not
satisfactory for practical use and should be improved.

2 THE EVALUATION OF DEFECT PREDICTION MODELS

Prediction of defective modules can be cast as a classification
problem in machine learning: Given training samples of modules
with labels as defective (Positive) or nondefective (Negative), a
classification model can be learned from the training data. The
model is then used to classify unknown modules. A prediction
model has four results: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), as shown in Table 1. The
total number of actual defective modules is denoted POS and the
total number of actual nondefective modules is denoted NEG.

To evaluate the accuracy of predictions, [1] uses the receiver
operating characteristic (ROC) curves, which consist of pd and pf.
A single measure balance is also used to balance between pd and pf.
These measures are defined as follows:
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For evaluating the performance of a prediction model, another
set of accuracy measures is Recall and Precision, which is widely
used in the used in the Information Retrieval area [2], [3]:
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Recall is actually the same as pd, which defines the ratio of
detected true defective modules in comparison to the total number
of defective modules. Precision defines the ratio of correctly
detected modules. A good prediction model should achieve high
Recall and high Precision. A single measure, the F-measure, is used
to combine Recall and Precision. It is defined as the harmonic
mean of Precision and Recall (a more general form of F-measure is
defined as a weighted harmonic mean of Precision and Recall). The
values of Recall, Precision, and F-measure are between 0 and 1; the
higher, the better.

Based on (1) and (2), we know that
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Using the data given in Fig. 3 and Fig. 12 of [1], we calculate the
Precision values based on (3). The results are shown in Table 2 (the
values in italic are the original data from [1]).

We notice that the Precision and F-measure values are very low
for all data sets (except KC4). For example, for the CM1 data set,
the Precision is 20.64 percent, which means that, if a module is
predicted as defective, the probability of it actually being defective
is only 20.64 percent. For the PC2 data set, if the prediction model
claims that a module is defective, the probability of it actually
being defective is only 2.02 percent. These results are considered
unsatisfactory, although the pd values are high. Therefore, defect
prediction through such models would not be very useful in
practice. Applying such models would defeat the very purpose of
defect prediction, which is about allocation of limited QA
resources more efficiently (so that efforts can be concentrated on
the potentially problematic modules).

The models with high pd and low pf do not necessarily lead to
accurate models with high precision. The reason is that the
distribution of classes (defective or nondefective) is highly
imbalanced. The number of nondefective modules is much greater
than the number of defective modules. As shown in Table 2, the
percentage of defective modules in each data set (except for the
KC4 data set) is very low (ranging from 0.4 percent to 12 percent).
From (3), we can see that the Precision could be low if the NEG/
POS ratio is high. The only exception, the KC4 data set, has the
NEG/POS ratio 1.04; therefore, a high pd/pf ratio leads to a high
Precision. For all other data sets, the number of nondefective
modules are 7-249 times more than the defective modules;
therefore, their Precision is low even though their pd is high and
pf is low.

TABLE 1
The Results of a Prediction Model
Predicted
— Defective Non-defective
£ | Defective TP FN POS (TP+FN)
& | Non-defective | FP N NEG (FP+TN)
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TABLE 2
The Prediction Results
Data | # % NEG | pd | pf | balance | Recall | Precision | F- Expected
Set modules | defective | pos | (%) | (%) (%) | (%) measure | pf (for
Precision
= 600/0)
CM1 506 9 10.11 | 71 | 27 0.72 71 20.64 0.32 4.68
KC3 459 9 10.11 | 69 | 28 0.70 69 19.60 0.31 4.55
KC4 126 49 1.04 79 32 0.73 79 70.34 0.74 50.60
MW1 404 7 1329 | 52 | 15 0.64 52 20.69 0.30 2.61
PCl1 1108 6 1567 | 48 | 17 0.61 48 15.27 0.23 2.04
PC2 5590 0.4 249.0 | 72 | 14 0.78 72 2.02 0.04 0.19
PC3 1564 10 9.00 | 80 | 35 0.71 80 20.25 0.32 5.93
PC4 1458 12 7.33 98 29 0.79 98 31.55 0.48 8.91
Table 2 also gives the expected pf values for each data set if the REFERENCES
Precision reaches 60 percent. We can see that, in order to achieve [1] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code

Precision of 60 percent, the original pf values shown in Fig. 12 of
[1] should be further improved.

To verify our results, we have also repeated the study described
in [1], using the same NASA data sets, the naive Bayes (with log-
transforms) learner, and the WEKA tool. The results confirm that
the prediction models proposed in [1] are impractical for software
defect prediction due to the low precisions.

3 CONCLUSION

In this comment, we have shown that the models built in [1] are
not satisfactory for practical use. We suggest using Recall/
Precision, instead of pd/pf, to measure the accuracy of a software
defect prediction model.
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> For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.
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