
J
H
E
P
0
3
(
2
0
1
7
)
1
1
8

Published for SISSA by Springer

Received: February 1, 2017

Accepted: March 6, 2017

Published: March 22, 2017

Comments on holographic complexity

Dean Carmi,a,b Robert C. Myersa and Pratik Ratha,c,d

aPerimeter Institute for Theoretical Physics,

31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada
bRaymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy,

Tel-Aviv University, Ramat-Aviv 69978, Israel
cCenter for Theoretical Physics, University of California,

Berkeley, CA 94720, U.S.A.
dDepartment of Physics, University of California,

Berkeley, CA 94720, U.S.A.

E-mail: carmidea@post.tau.ac.il, rmyers@perimeterinstitute.ca,

pratik rath@berkeley.edu

Abstract: We study two recent conjectures for holographic complexity: the complex-

ity=action conjecture and the complexity=volume conjecture. In particular, we examine

the structure of the UV divergences appearing in these quantities, and show that the coef-

ficients can be written as local integrals of geometric quantities in the boundary. We also

consider extending these conjectures to evaluate the complexity of the mixed state pro-

duced by reducing the pure global state to a specific subregion of the boundary time slice.

The UV divergences in this subregion complexity have a similar geometric structure, but

there are also new divergences associated with the geometry of the surface enclosing the

boundary region of interest. We discuss possible implications arising from the geometric

nature of these UV divergences.

Keywords: AdS-CFT Correspondence, Classical Theories of Gravity, Gauge-gravity cor-

respondence

ArXiv ePrint: 1612.00433

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2017)118

mailto:carmidea@post.tau.ac.il
mailto:rmyers@perimeterinstitute.ca
mailto:pratik_rath@berkeley.edu
https://arxiv.org/abs/1612.00433
http://dx.doi.org/10.1007/JHEP03(2017)118


J
H
E
P
0
3
(
2
0
1
7
)
1
1
8

Contents

1 Introduction 1

2 Complexity equals volume conjecture 3

3 Complexity equals action conjecture 8

4 Subregion complexity: CV duality 13

5 Subregion complexity: CA duality 17

6 Discussion 23

A Action user’s manual 30

B Example: extremal volume for a spherical boundary 33

C Example: Wheeler-DeWitt action for global AdS 35

D Geometric details for CA duality calculation 38

1 Introduction

Concepts and perspectives from quantum information science are having a rapidly growing

influence in investigations of quantum field theory and quantum gravity. Quantum com-

plexity is one such concept which has recently begun to be discussed. Loosely speaking,

the complexity of a particular state corresponds to the minimum number of simple (uni-

versal) gates needed to build a quantum circuit which prepares this state from a particular

reference state, e.g., see [1–3]. In the context of the AdS/CFT correspondence, discussions

have focused on understanding the growth of the Einstein-Rosen bridge for AdS black holes

in terms of quantum complexity in the dual boundary CFT [4–10].

There are two independent proposals to evaluate the complexity of a holographic

boundary state, which we will refer to as the complexity=volume (CV) conjecture [4–8]

and the complexity=action (CA) conjecture [9, 10]. The first of the proposals states that

the complexity of the boundary state is dual to the volume of the extremal codimension-

one bulk hypersurface which meets the asymptotic boundary on the desired time slice.1

1An alternative proposal related to complexity=volume was recently put forward in [11]. We also note

that similar extremal volumes in the interior of asymptotically flat black holes were studied in [12, 13].
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More precisely, the CV duality states that the complexity of the state on a time slice Σ is

given by:

CV(Σ) = max
Σ=∂B

[V(B)
GN ℓ

]
, (1.1)

where B is the corresponding bulk surface and ℓ is some length scale associated with the

bulk geometry, e.g., the AdS curvature scale or the horizon radius of a black hole. The

ambiguity in choosing the latter scale is an unappealing feature of CV duality and provided

some motivation for developing CA duality [9, 10]. This second conjecture equates the

complexity with the gravitational action evaluated on a particular bulk region, now known

as the Wheeler-DeWitt (WDW) patch:

CA(Σ) =
IWDW

π ~
. (1.2)

The WDW patch can be defined as the domain of dependence of any Cauchy surface in

the bulk which asymptotically approaches the time slice Σ on the boundary.

The complexity evaluated with either the CV or CA duality satisfies a number of

expected properties, e.g., they continue to grow (linearly with time) after the boundary

theory reaches thermal equilibrium. However, the second conjecture has certain advantages.

In particular, as noted above, CV duality requires choosing an additional length scale, while

there are no free parameters in eq. (1.2) for the CA duality. However, the latter faced the

obstacle that when the conjecture was originally proposed, there was no rigorous method

for evaluating the gravitational action on spacetime regions with null boundaries. This

problem was recently overcome with a careful analysis of the boundary terms which must

be added to the gravitational action for null boundary surfaces and for joints where such

null boundaries intersect with other boundary surfaces [14].

On the gravity side, either of these dualities deals with a geometric entity which extends

to the asymptotic AdS boundary and as a result, the holographic complexity is divergent.

To understand these divergences, it is natural to draw upon lessons from holographic

entanglement entropy [15, 16]. In particular, for both the CV duality and holographic

entanglement entropy, the bulk calculations evaluate the volume of an extremal surface

extending to the asymptotic boundary. Now UV divergences are found in calculating

holographic entanglement entropy, e.g., [17, 18], and these divergences are related to

the existence of correlations down to arbitrarily short scales in the boundary CFT. The

leading divergence gives rise to the famous ‘area law’ term [19, 20] and the subleading

divergent terms involve integrals of curvature invariants, both extrinsic and intrinsic, over

the entangling surface in the boundary. In this paper, we will examine the divergent

contributions appearing in holographic complexity and show that the structure of these UV

divergent terms in the holographic complexity have a similar geometric interpretation in the

boundary CFT, i.e., the coefficients in these divergent terms are given by local geometric

integrals over the time slice of interest. One might have anticipated that the UV divergences

would appear in the complexity from the necessity of establishing correlations down to the

cut-off scale in the boundary CFT. As we comment in the discussion section, the geometric

structure of these divergences leads to some unusual behaviour for the complexity.
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We also consider the structure of divergences for the holographic complexity of subre-

gions, i.e., evaluating the complexity of the mixed state produced by reducing the global

boundary state to specific subregion on the time slice. The latter idea was discussed pre-

viously for time-independent geometries in, e.g., [21, 22]. We will begin by proposing a

covariant extension of eqs. (1.1) and (1.2) which aims to evaluate subregion complexity.

Our proposals are motivated by the suggestion that the mixed state on the boundary is en-

coded in the corresponding entanglement wedge in the bulk [23, 24]. We then find a similar

geometric structure for the UV divergences in this subregion complexity, but there are also

new divergences associated with the entangling surface which encloses the boundary region.

The remainder of the paper is organized as follows: section 2 considers the CV conjec-

ture and we investigate the structure of UV divergences appearing in CV(Σ). The coeffi-

cients of the divergences are given in terms of extrinsic and intrinsic curvatures integrated

over the boundary time slice. In section 3, we study the analogous divergences arising in

the CA conjecture. In particular, CA(Σ) contains an additional class of divergences involv-

ing the logarithm of the cutoff scale, which are produced where the null boundaries reach

the asymptotic AdS boundary. Next we extend our studies to consider the complexity of

subregions on the boundary. In section 4, we propose an extension of CV duality with a

covariant definition of extremal surface whose volume defines the subregion complexity, and

we study the divergence structure of this quantity. In section 5, we propose an extension

of CA duality to evaluate subregion complexity and we examine the corresponding UV di-

vergences. In section 6, we conclude with a brief discussion of our results, and we consider

some directions for future research. In appendix A, we review the prescription introduced

by [14] for computing the gravitational action in the presence of null boundary surfaces. In

appendix B, we apply the CV duality to a simple example and compare the results to the

general geometric expressions found in section 2. In appendix C, we apply the CA duality

to the simple example of global AdS and compare the results to the general geometric

expressions found in section 3. We also show the coefficients of the logarithmic divergences

agree for two different schemes to regulate the bulk divergences. In appendix D, we provide

some geometric details which are needed for our CA duality calculations in section 3.

2 Complexity equals volume conjecture

In this section, we examine the structure of UV divergences appearing in holographic

complexity for the complexity=volume (CV) conjecture [4–8]. Recall that the CV duality

is captured by eq. (1.1) and the corresponding construction is illustrated in figure 1. Of

course, the asymptotic AdS metric diverges at the boundary and so this prescription would

yield a divergent volume for the extremal bulk surface, and hence a divergent complexity.

As usual, we regulate the calculation by introducing a cut-off surface at some large radius,

which will be related to a short-distance cut-off in the boundary theory — see, e.g., [25–27].

Given this framework, we want to study the structure of the UV divergences appearing in

the complexity.

In the following, we are borrowing results from [17, 18] — see also [26–28]. According

to the Fefferman-Graham (FG) construction [29, 30], any asymptotically AdS geometry

– 3 –
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Figure 1. Showing the extremal volume construction for the CV conjecture for AdS3. We regulate

the volume by introducing a cutoff surface at z = δ, where δ is the short-distance cutoff in the

boundary theory.

can be described with the following metric:

ds2 =
L2

z2
(
dz2 + gij(x, z) dx

idxj
)
. (2.1)

where L is the AdS radius, xi denote the boundary directions,2 and z is the radial coordinate

in the bulk. For d boundary dimensions, gij(x, z) admits a Taylor series expansion in z2

near the asymptotic boundary, i.e., as z → 0,

gij(x, ρ) =
(0)
gij(x

i) + z2
(1)
gij
(
xi
)
+ z4

(2)
gij
(
xi
)
+ · · ·

+ zd
(d/2)
gij

(
xi
)
+ zd log(z/L) fij(x

i) + · · · (2.2)

where
(0)
gij is the boundary metric. We note that the logarithmic term arises only for even

d. We see that this Taylor series breaks down at O(zd) where the logarithmic terms above

start appearing for even d (fij(x
i) is determined by

(0)
gij(x

i)), or where odd powers, e.g., zd,

start appearing for odd d. All of the expansion coefficients
(n)
gij for n < d/2 are determined

in terms of the boundary metric
(0)
gij via the Einstein equations, e.g., see [17, 26, 27]. For

example,

(1)
gij
(
xi
)
= − 1

d− 2


Rij [

(0)
g ]−

(0)
gij

2(d− 1)
R[

(0)
g ]


 (2.3)

2Our notation in the following will be: Greek indices µ denote tensors in the bulk spacetime and run

from 0 to d; Latin indices i from the middle of the alphabet denote tensors in the boundary spacetime,

running from 0 to d − 1; and Latin indices a from the beginning of the alphabet denote tensors in the

boundary time slice, running from 1 to d− 1. We note that often the metric (2.1) is expressed in terms of

the dimensionless radial coordinate ρ = z2/L2 — see [26, 27].

– 4 –
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where Rij [
(0)
g ] and R[

(0)
g ] are the Ricci tensor and Ricci scalar, respectively, calculated using

the boundary metric
(0)
gij . At order O(zd), an independent solution (starting from

(d/2)
gij

(
xi
)
)

appears which cannot be fixed by the boundary metric alone and it contains information

about the expectation value of the boundary stress tensor, e.g., [26, 27].

As described earlier, we pick a time slice Σ on the boundary and then look for the

extremal codimension-one bulk surface B which approaches this slice at the boundary. We

describe this submanifold embedded in the d+1 dimensional bulk using coordinates Xµ =

Xµ (τ, σa), where Xµ =
{
z, xi

}
and {τ, σa} are coordinates intrinsic to the submanifold B.

The induced metric on the bulk surface is:

hαβ = ∂αX
µ∂βX

ν Gµν [X] (2.4)

For simplicity, we make the gauge choice

τ = z , haτ = 0 . (2.5)

Then from eq. (1.1), the complexity is:

CV =
1

GNL

∫

B
dd−1σ dτ

√
h (2.6)

where for simplicity, we have chosen ℓ = L, the AdS scale.

Extremizing the volume above gives the following equation of motion:

1√
h
∂α

(√
hhαβ∂βX

µ
)
+ hαβΓµ

νσ∂αX
ν∂βX

σ = 0 . (2.7)

where Γµ
νσ are the Christoffel symbols associated with the bulk metric Gµν . This equation

can be solved order by order near the boundary with a series solution for Xi(τ, σa) [30]:

Xi(τ, σa) =
(0)

Xi(σa) + z2
(1)

Xi(σa) + z4
(2)

Xi(σa) + · · · . (2.8)

For n < d+1
2 the term

(n)

Xi is determined by
(0)

Xi. For example, solving for
(1)

Xi yields:

(1)

Xi =
L2

2(d− 1)

(
∇a∂

a
(0)

Xi + ∂a
(0)

Xj∂a

(0)

XkΓi
jk

)
=

L2

2(d− 1)
K ni , (2.9)

where ni is the (future pointing) timelike unit normal to the time slice Σ (in the boundary),

and K is the trace of the corresponding extrinsic curvature.

Using eqs. (2.3) and (2.9), one can begin to write the induced metric (2.4) in a near

boundary series expansion as well, e.g.,

hzz =
L2

z2

(
1 + z2

(1)

hzz + · · ·
)
, hab =

L2

z2

( (0)

hab + z2
(1)

hab + · · ·
)

(2.10)
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where
(0)

hab represents the induced metric on the boundary time slice and
(1)

hαβ are the first

order corrections. In particular, we find

(1)

hzz =
4
(1)

Xi
(1)

Xj (0)gij
L2

= − 1

(d− 1)2
K2 , (2.11)

(1)

hab =

(
∂a

(1)

Xi∂b

(0)

Xj + ∂a

(0)

Xi∂b

(1)

Xj

)
(0)
gij + ∂a

(0)

Xi∂b

(0)

Xj (1)gij

= − 1

d− 1

(
d− 1

d− 2
Rab −

R
2(d− 2)

(0)

hab −KKab

)
,

where Rab is the projection of the boundary Ricci tensor into the time slice Σ, i.e., Rab =

eia e
j
b Rij with e

i
a = ∂Xi

∂σa . Further note that in both of these expressions, we have implicitly

used ninj (0)gij = −1.

Given the bulk metric (2.1), we introduce a regulator surface at ρ = δ2/L2, where δ

then plays the role of a short distance cut-off in the boundary CFT. From eq. (2.6), we

can now extract the leading divergences in the complexity

CV =
1

GNL

∫
dd−1σ

∫

z=δ
dz
Ld

zd

√
(0)

h

(
1 +

z2

2

(
(1)

hzz +
(0)

hab
(1)

hab

)
+ · · ·

)

=
Ld−1

GN

∫
dd−1σ

√
(0)

h

(
1

(d− 1)δd−1
+

1

2(d− 3)δd−3

(
(1)

hττ +
(0)

hab
(1)

hab

)
+ · · ·

)
. (2.12)

Substituting eq. (2.11), we find

CV =
Ld−1

(d− 1)GN

∫
dd−1σ

√
h

[
1

δd−1

− (d− 1)

2(d− 2)(d− 3)δd−3

(
Ra

a −
1

2
R− (d− 2)2

(d− 1)2
K2

)
+ · · ·

]
(2.13)

where to simplify the notation, we denote the induced metric on the boundary time slice

as simply: hab =
(0)

h ab. In the above, we also use Ra
a = habRab. The power law divergent

terms here are regulator dependent, but we see that their coefficients have a geometric

interpretation, e.g., the leading divergence scales as the volume of Σ while the sub-leading

terms involve integrals of curvature invariants over this time slice. Of course, this is very

similar in nature to the divergence structure found in holographic entanglement entropy.

If we consider the special case of d = 3 dimensions, the first sub-leading divergence in

eq. (2.13) is replaced by a logarithmic term

C(universal)
V = log

(
δ

L

)
L2

8GN

∫
d2σ

√
h
(
4Ra

a − 2R−K2
)
. (2.14)

Similar logarithmic divergences will generally appear whenever the boundary dimen-

sion is odd, i.e., when the extremal surface is even dimensional. Of course, they are related

– 6 –
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to the submanifold conformal anomalies studied in [30]. The dimensionless coefficient(s)

of these logarithmic divergences will be regulator-independent parameters characterizing

the underlying boundary theory,As expected in eq. (2.14), this parameter is proportional

to L2/GN ∼ L2/ℓ2Planck. This ratio is well known to characterize the number of degrees

of freedom in the boundary CFT dual to (four-dimensional) Einstein gravity. However,

L2/GN is the only dimensionless parameter intrinsic to the bulk theory and so the same

ratio appears in any physical quantity involving some count of degrees of freedom, e.g., the

entropy density of a thermal bath. One approach to distinguish the various parameters

appearing in different physical quantities in holographic boundary theories is to consider

higher curvature theories for the bulk gravity, e.g., see [17, 31–33]. The challenge in the

present case would be developing the extension of the CV duality (1.1) for higher curvature

bulk theories.

Let us provide a few geometric comments on the above result: using the Gauss-Codazzi

relations, we could replace Ra
a in eqs. (2.13) or (2.14) in favour of the intrinsic Ricci scalar

on the time slice Σ, as well as a term proportional to KabKab. Note that in the case of

entanglement entropy, the first subleading contribution, e.g., the universal contribution

for d = 4 contains a term with the Weyl curvature Cijkl of the boundary metric [34],

however, we see that this tensor does not appear in eq. (2.13). The key difference is that

for holographic entanglement, one is considering a codimension-two surface and hence there

are two normal vectors which can be contracted with Cijkl. On the other hand, in evaluating

holographic complexity, one considers a codimension-one surface in the boundary and hence

there is one normal vector. Then given the symmetries and traceless property of the Weyl

curvature, there are not enough geometric structures to construct a scalar which is linear

in Cijkl. However, the Weyl tensor might appear in higher order contributions to the

complexity with a scalar such as CijklC
ijkl. In appendix B, we study the divergence

structure in a specific example of a CFT living on a sphere.

General divergence structure. While the calculations above are somewhat prelimi-

nary, our experience with analogous calculations for holographic entanglement entropy e.g.,

[17, 18, 35], suggests the following framework: with d boundary dimensions, the general

structure of divergences appearing in the CV duality is:

CV(Σ) =
1

δd−1

∫

Σ
dd−1σ

√
h v(R,K) where v(R,K) =

⌊ d−1
2

⌋∑

n=0

∑

i

ci,n(d) δ
2n [R,K]2ni .

(2.15)

That is, there can be a number of power law divergences beginning with 1/δd−1 where the

coefficient is proportional to the volume of the time slice Σ. The power of the subsequent

divergences is reduced by two at each step and the coefficients of these terms are fixed

purely in terms of a local integral over Σ of various curvature invariants on the boundary.

The schematic expression [R,K]2ni indicates invariant combinations of boundary curvatures

(represented by R) and the extrinsic curvature of the time slice (represented by K), with a

mass dimension of 2n, so that the combination δ2n [R,K]2ni is dimensionless. Of course, for

odd (even) d, there are only even (odd) power divergences. Further, in odd dimensions with

– 7 –
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the special case that 2n = d − 1, logarithmic divergences appear which provide universal

parameters characterizing the underlying CFT, as discussed below eq. (2.14).

Again in eq. (2.15) and in the preceding example (2.13), we observe that there are only

even (odd) power divergences for a boundary CFT in odd (even) d. At first sight, one may

have thought the first subleading divergence would be proportional to
∫
Σ d

d−1σ
√
hK/δd−2,

which would have disrupted this pattern. However, the simple reason that this term can

not appear is that it depends on the orientation of time, i.e., the orientation of ni, while

the bulk volume in eq. (1.1) does not. We should add that in the boundary theory, the

natural notions of complexity are intrinsic to a given state, and are independent of the time

evolution of the state under some Hamiltonian. That is, the invariance of CV(Σ) under

reversing the time orientation can be counted as a success of the definition in eq. (1.1).

3 Complexity equals action conjecture

In this section, we examine the divergence structure emerging in the CA duality [9, 10]. The

procedure to evaluate the gravitational action for the Wheeler-DeWitt patch was carefully

examined in [14]. In particular, the WDW patch has null boundary surfaces and ref. [14]

constructed the boundary terms which must be added to the gravitational action for these

null boundaries and for the joints where such null boundaries intersect with other boundary

surfaces. We review these results in appendix A.

Again, the holographic complexity CA diverges because the WDW patch extends to the

asymptotic AdS boundary and the focus here is to examine the structure of the resulting

UV divergences. As in the previous section, we adopt the usual approach to regulating

our calculations of introducing a cut-off surface at some large radius, e.g., see [25–27].

However, given this framework, we can propose two different approaches to regulating the

WDW action, as illustrated in figure 2. In particular, in figure 2a, we discard the portion

of the WDW patch extending beyond the regulator surface, i.e., we only integrate the

bulk action out to this maximum radius. In this case, the regulated WDW region has a

new timelike boundary segment and two null joints where the regulator surface intersects

with the null sheets defining the past and future boundaries of the WDW patch, both of

which contribute to IWDW. In figure 2b, we instead regulate the action by simply shifting

the edge of the WDW patch inwards to the regulator surface and hence we only have a

single null joint at this time slice. In appendix C, we will show that the structure of the

UV divergences in the corresponding complexity CA is the same for both regularization

procedures with a simple example. For simplicity, in the following general discussion, we

adopt the second regulator which is shown in figure 2b.

We begin again with the bulk metric in FG gauge, as in eq. (2.1). For simplicity, we

restrict the boundary metric to take the following form

(0)
gij(x

i) dxi dxj = −dt2 + hab(t, σ) dσ
adσb . (3.1)

In particular, the (ta)-components of the boundary metric are fixed to be zero and the

(tt)-component is simply –1. However, we should note that this form is not preserved in

– 8 –
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Figure 2. Wheeler-DeWitt patch with two different regularizations. In both cases, the WDW

patch terminates at the regulator surface: (a) the edge of the WDW patch is the time slice on the

asymptotic boundary. The action contains a GHY surface term and two joint terms from the new

boundary at z = δ. (b) the edge of the WDW patch is the time slice in the regulator surface. The

action contains null joint term from the edge at z = δ.

the full tensor gij(x, z) in eq. (2.1). For example, the first correction (2.3) appearing in the

Taylor expansion around z = 0, i.e., at order z2, will generally introduce a nonvanishing

gta and nontrivial dependence on xi = (t, σa) in gtt. We made this choice for the boundary

metric (3.1) as it greatly simplifies the analysis of the WDW action below, but it is still

general enough that most of curvature invariants appearing in the power law divergences

are still nontrivial. In the following, we will compute the leading divergences of the WDW

action, working to second order in the near boundary expansion.

We begin by determining the equations defining the null boundaries of the WDW

patch near the asymptotic boundary, i.e., z = 0.3 We will also set the time slice Σ to

be t = 0 and hence in our calculations, we will expand both for small z and for small t.

For simplicity, we focus on the future null boundary for most of the discussion. Given the

boundary metric (3.1), this null surface can be described as t = z− δ+ · · · to leading order

and the corresponding normal would be k1 = α1(dt−dz+ · · · ), where α1 is some (positive)

normalization constant.4 Now we wish to extend the former equation to5

S+ : t = t+(z, σ
a) = f+(z, σ

a)− f+(δ, σ
a) (3.2)

for t ≥ 0. In the vicinity of the boundary, f+(z, σ
a) has an expansion in powers of z, which

we write as

f+(z, σ
a) = z +

z2

2
f (2)(σa) +

z3

6
f (3)(σa) + · · · , (3.3)

where the leading term was fixed in the above discussion. The form of the second expression

in eq. (3.2) was chosen to ensure that t = 0 at z = δ (for all σa) order by order in this z

3We would like to thank Run-Qiu Yang for pointing out an error in an earlier version of this discussion.
4We have adopted the convention that k1 points outward from the region of interest — see appendix A.
5In general, we could have a different functional dependence on (z, δ, σa), but this works to the required

order since we simply integrate using eq. (3.13).
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expansion. Now, in fact, to the order that we will be interested in here, the coefficients in

eq. (3.3) can be fixed by demanding that the normal to S+ is null. That is, we determine

f (2)(σa) and f (3)(σa) by imposing that k1·k1 = 0 with the one-form k1 given by the exterior

derivative of the function determining the boundary surface (up to an overall normalization

factor), i.e., k1 = α1 d[t−t+(z, σa)]. The result of this calculation is that f (2)(σa) = 0 while

f (3)(σa) = ninj
(1)
gij(σ

a, t = 0) = − 1

d− 2

(
Ra

a −
2d− 3

2(d− 1)
R
)∣∣∣∣

t=0

(3.4)

where ni = δti is the unit normal to the boundary surface t = 0. The second expression

written in terms of the boundary curvature follows from eq. (2.3), as well as making the

replacement that ninjRij = Ra
a −R. Hence to order z3, we can write the null boundaries

of the WDW patch as

S+ : t = t+(z, σ
a) = (z − δ) + f (3)(σa)

6 (z3 − δ3) + · · · for t ≥ 0 , (3.5)

S− : t = t−(z, σ
a) = −(z − δ)− f (3)(σa)

6 (z3 − δ3) + · · · for t ≤ 0 .

In the second line above, the result for the past null boundary S− is found with the same

analysis as that given for S+ above.

At this point, we are ready to evaluate the WDW action with eq. (A.1), and we

begin with the bulk integral of the Einstein-Hilbert term and the cosmological constant.

Using the Einstein equations for the bulk, we may substitute R = −d(d+ 1)/L2, and this

contribution simplifies to evaluating the spacetime volume of the WDW patch

Ibulk = − d

8πGNL2
V(W) . (3.6)

Now recall gat ∼ O(z2) and thus we find to leading order

√
−g(x, z) =

√
−gtt(x, z)

√
det[gab(x, z)] +O(z4) (3.7)

in the measure of the above bulk integral, i.e., the cross terms with gat only appear at order

O(z4). Hence it is useful to write a double expansion for
√
γ ≡

√
det[gab(x, z)]:

√
γ =

√
h(σ)

(
[1+ q

(2)
0 (σa)z2+ · · · ]+ [q

(0)
1 (σa)+ q

(2)
1 (σa)z2+ · · · ]t+[q

(0)
2 (σa)+ · · · ]t2+ · · ·

)

(3.8)

where
√
h(σ) ≡

√
det[hab(σa, t = 0)] using the boundary metric in eq. (3.1). Hence us-

ing these expressions, as well as eq. (3.4) to substitute for
(1)
gtt, we identify the leading

contributions near the asymptotic boundary in eq. (3.6) as

Ibulk = − d

8πGNL2

∫
dd−1σ

∫

δ
dz

∫ t+(z,σa)

t−(z,σa)
dt

Ld+1

zd+1

√
−g(x, z)

= −dL
d−1

8πGN

∫
dd−1σ

√
h(σ)

∫

δ

dz

zd+1

∫ t+(z,σa)

t−(z,σa)
dt

[
1− 1

2
f (3)(σa)z2 + q

(2)
0 (σa)z2

+ q
(0)
1 (σa)t+ q

(0)
2 (σa)t2 + · · ·

]
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= −dL
d−1

8πGN

∫
dd−1σ

√
h(σ)

∫

δ

dz

zd+1

[(
1− 1

2
f (3)(σa)z2 + q

(2)
0 (σa)z2

)

×
[
t+(z, σ

a)− t−(z, σ
a)
]
+
q
(0)
1 (σa)

2

[
t2+(z, σ

a)− t2−(z, σ
a)
]

+
q
(0)
2 (σa)

3

[
t3+(z, σ

a)− t3−(z, σ
a)
]
+ · · ·

]
. (3.9)

Now substituting t+(z, σ
a)− t−(z, σa) = 2(z− δ)+ · · · into eq.(3.5), the leading divergence

in the above expression becomes

−dL
d−1

4πGN

∫
dd−1σ

√
h

∫

δ

dz

zd+1
(z − δ) = − Ld−1

4πGN (d− 1)

1

δd−1

∫
dd−1σ

√
h . (3.10)

That is, the leading divergence in the bulk integral is proportional to V(Σ)/δd−1. We note,

however, that this leading term is negative — see further comments below.

Next, t2+(z, σ
a)− t2−(z, σ

a) vanishes to the order that we are calculating and hence the

first subleading divergence in the above expression becomes

− dLd−1

8πGN

∫
dd−1σ

√
h

∫

δ

dz

zd+1

[
(z − δ)z2

(
2q

(2)
0 (σa)− f (3)(σa)

)

+
f (3)(σa)(z3 − δ3)

3
+

2q
(0)
2 (σa)(z − δ)3

3

]

= −dL
d−1

4πGN

1

δd−3

∫
dd−1σ

√
h

[
− f (3)(σa)

d(d− 2)(d− 3)
+

q
(2)
0 (σa)

(d− 2)(d− 3)

+
2q

(0)
2 (σa)

d(d− 1)(d− 2)(d− 3)

]

= − Ld−1

16πGN

1

δd−3

∫
dd−1σ

√
h

(d− 1)(d− 2)(d− 3)

[
4K2 + 4KabK

ab + (d− 7)R− 2(d− 3)Ra
a

]

(3.11)

We used a number of identities to produce the geometric expression in the last line above.

In particular, we substitute the result in eq. (3.3) and further, in appendix D, we derive:

q
(2)
0 (σa) = − 1

2(d− 2)

(
Ra

a −
1

2
R
)∣∣∣∣

t=0

, (3.12)

q
(0)
2 (σa) =

1

2

(
K2 +KabK

ab +Ra
a − R

)∣∣∣
t=0

.

In addition to the bulk term above, we must include the contribution from the joint

where the past and future null sheets (3.5) intersect, i.e., (z, t) = (δ, 0) — see figure 2b.

Given eq. (3.5), we may write the null normals to order O(z2) as

S+ : k1 = α1

(
dt− dt+(z, σ

a)
)
≃ α1

(
dt− dz − z2

2
f (3) dz + · · ·

)
, (3.13)

S− : k2 = α2

(
− dt+ dt−(z, σ

a)
)
≃ α2

(
−dt− dz − z2

2
f (3) dz + · · ·

)
.
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Hence their inner product yields

k1 · k2 ≃ α1α2
z2

L2

(
−gtt +

(
1 +

z2

2
f (3)

)2

+O(z4)

)
= 2α1α2

z2

L2

(
1 + z2 f (3)

)
+O(z4) ,

(3.14)

where we have used gtt = −1− (1)
gttz

2 +O(z4), as well as substituting eq. (3.4) for
(1)
gtt. Now

using the prescription in appendix A, as well as eq. (3.8), the leading contributions from

the joint term are

Ijnt = − Ld−1

8πGNδd−1

∫
dd−1σ

√
γ log

(k1 · k2

2

)∣∣∣∣
(z,t)=(δ,0)

≃ − Ld−1

4πGNδd−1
log

(√
α1α2 δ

L

)∫
dd−1σ

√
γ − Ld−1

8πGNδd−3

∫
dd−1σ

√
γ f (3)(σa)

≃ Ld−1

4πGN
log

(
L√
α1α2 δ

)∫
dd−1σ

√
h

[
1

δd−1
− 2Ra

a −R
4(d− 2) δd−3

]
(3.15)

+
Ld−1

8πGNδd−3

∫
dd−1σ

√
h

1

d− 2

[
Ra

a −
2d− 3

2(d− 1)
R
]
.

The leading term here is proportional to log (L/δ)V(Σ)/δd−1 and hence this contribution

from the asymptotic joint S+∩S− becomes the leading divergence in the WDW action. This

joint divergence is always positive in contrast to the leading divergence in the bulk action

(3.10), which guarantees the positivity of the corresponding complexity in the boundary

theory.

Combining the contributions in eqs. (3.10), (3.11) and (3.15), we find the leading

divergences in the holographic complexity (1.2),

CA(Σ) =
1

π
(Ibulk + Ijnt) ≃ − Ld−1

4π2GN

∫
dd−1σ

√
h

[
1

d− 1

1

δd−1
(3.16)

+
1

δd−3

1

2(d− 1)(d− 2)(d− 3)

(
2K2+ 2KabK

ab+ (d2− 4d+ 1)R− d(d− 3)Ra
a

)]

+
Ld−1

4π2GN
log

(
L√
α1α2 δ

)∫
dd−1σ

√
h
[ 1

δd−1
− 1

4(d− 2)δd−3
(2Ra

a −R)
]
.

In appendix C, we compare these results with an explicit example in global AdS, and

we find that the leading divergences match, as expected. We also examine the alternate

regularization in figure 2a applied to this example.

General divergence structure. From the insights coming from the above calculation,

we expect the general structure of the divergences in the CA duality to be:

CA(Σ) =
1

δd−1

∫

Σ
dd−1σ

√
h

[
v1(R,K) + log

(
L

α δ

)
v2(R,K)

]
(3.17)

with vk(R,K) =

⌊ d−1
2

⌋∑

n=0

∑

i

c
[k]
i,n(d) δ

2n [R,K]2ni , (3.18)
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for d boundary dimensions. As in eq. (2.15), the schematic expressions [R,K]2ni appearing

in each of the integrands indicate invariant combinations of boundary curvatures (denoted

R) and the extrinsic curvature of the time slice (denoted K), with a mass dimension of

2n, so that the combination δ2n [R,K]2ni is dimensionless. Hence for the CA duality, there

are two sets of divergences: the first (coming from the bulk term in the action) associated

with v1 is a series of power law divergences beginning with 1/δd−1 and then lower powers

decreasing in steps of two. The second set of divergences (coming from the joint term)

identified with v2 involve a log δ multiplying powers 1/δd−2n−1. In both series, only even

(odd) power divergences appear for odd (even) d. Further, when d is odd, the final term

in v1 with 2n = d − 1 yields an extra log(L/δ). Hence in odd d, the universal term

(proportional to log δ) has contributions coming from both v1 and v2, while in even d there

is no log δ term. Again all of the coefficients in the two integrands are determined by

local integrals on Σ of various curvature invariants on the boundary. We note that there

is some ambiguity in these expressions related the logarithmic factor in eq. (3.17), and in

particular, because of the coefficient α in the argument there. We will return to discuss

this point in section 6.

We should comment again on the appearance of only even (odd) power divergences for

odd (even) d. As discussed at the end of section 2, this indicates that are no contributions

in v1,2 which are proportional to an odd power of the extrinsic curvature. However, this is

actually a requirement for a holographic definition of the complexity since the latter should

be independent of the orientation of time on the boundary. The gravitational action, as

described in appendix A, is independent of the orientation of time6 and so the definition

(1.2) of CA duality satisfies this requirement.

4 Subregion complexity: CV duality

It is also interesting to extend holographic complexity to subregions. That is, one would

evaluate the complexity of the mixed state produced by reducing the boundary state to a

specific subregion of the boundary time slice. Given the proposal that in holography, this

mixed state is encoded in the corresponding entanglement wedge in the bulk [23, 24], it is

natural that the holographic prescription for the complexity of this state should involve the

entanglement wedge. These ideas were first considered for time-independent geometries

by [21] in the context of CV duality — see also [22]. Below, we propose a covariant

definition of the appropriate volume, which can be applied in a time-dependent bulk and

reduces to [21] for static geometries. We then examine the structure of the UV divergences

for this subregion complexity.

For a static bulk geometry, the CV duality for subregions [21] evaluates the volume

of the extremal codimension-one surface in the bulk which is bounded by the subregion

on the asymptotic boundary and the Ryu-Takayanagi (RT) surface [15, 16] for this subre-

6We have adopted slightly different conventions in appendix A than originally presented in [14]. Our

prescription is entirely equivalent to that given in [14], but the latter has the disadvantage that it explicitly

refers to the time orientation. Since this is not the case in appendix A, the above statement becomes

manifest with the present prescription.
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gion. A natural extension of this prescription to a time-dependent bulk spacetime refers

to the Hubeny-Rangamani-Takayanagi (HRT) prescription for holographic entanglement

entropy [36] (see also [37]) as follows:7

• Beginning with a subregion A on a given boundary time slice Σ, one constructs EA,
the corresponding extremal HRT surface in the bulk — this defines the inner edge

of the entanglement wedge [24]. Then consider the codimension-one bulk surfaces

RA which are bounded by this HRT surface EA and the boundary subregion A.

The subregion complexity is then conjectured to be given by maximizing the volume

V(RA) over this class of surfaces:

CV(A) = max
A∪EA = ∂RA

[V(RA)

GN ℓ

]
, (4.1)

where as in eq. (1.1), ℓ is some length scale associated with the bulk geometry, e.g.,

the AdS radius.

We note that in defining the entanglement wedge [24], reference was made to ‘homology

surfaces,’ which had precisely the definition of RA above. Hence, our proposal for CV

duality for subregions assigns a special role to the homology surface with maximal volume.

Divergence structure. Now we make some general comments on the divergence struc-

ture of the complexity of a subregion A that would arise from the above proposal (4.1).

If the subregion is extended to the full time slice on the boundary, i.e., A = Σ, we will

reproduce the divergence structure found in section 2. In particular, the coefficients of

the various power law divergences are determined by local integrals of geometric invariants

over A = Σ, as in eq. (2.15). When the subregion A is a proper subregion of Σ, we will

still have the same ‘volume’ contributions v(R,K) now integrated only over the subregion.

However, there is the additional possibility that new divergences may arise associated with

the boundary of the subregion ∂A, which we will refer to as the entangling surface following

the discussions of entanglement entropy. Thus, we expect that the full divergence structure

of the subregion complexity has the following general form:

CV(A) =
1

δd−1

∫

A
dd−1σ

√
h v(R,K) +

1

δd−2

∫

∂A
dd−2σ̃

√
h̃ b(R, K̃; s, t) . (4.2)

Again, the first term would be identical to that found in eq. (2.15) except that the integra-

tion is restricted to the subregion A. In the second term, we have a local integral over the

entangling surface, and h̃ab is the induced metric on ∂A. Now the integrand b(R, K̃; s, t) is

again a dimensionless quantity constructed from the cut-off δ and various geometric curva-

tures including R, the background curvatures of the AdS boundary, and K̃i
ab, the extrinsic

curvatures of the codimension-two entangling surface, i.e.,

b(R, K̃; s, t) =
d−1∑

n=0

∑

i

c̃i,n(d) δ
n [R, K̃; s, t]ni . (4.3)

7There is some ambiguity in producing a covariant definition of the CV duality for subregions, just as

there was for holographic entanglement entropy [36]. However, we think this proposal is the most natural

as it connects the complexity directly to the entanglement wedge [24].
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However, we have also introduced an explicit dependence on a particular basis of vectors

in transverse space. The entangling surface ∂A is a codimension-two surface and so the

transverse space is spanned by a basis of two unit vectors. In discussions of entanglement

entropy in (relativistic) theories, there is nothing to distinguish one such basis from another.

However, in the present discussion, we have defined a preferred time slice A where the state

resides for which we are evaluating the complexity. Hence there is a preferred basis in the

space transverse to ∂A: si, the spacelike unit vector which is in the tangent space of A,

points outward from A, and is orthogonal to ∂A; and ti, the timelike unit vector which is

points to the future from A (or Σ), and is orthogonal to both si and ∂A.8

We now wish to constrain the function b(R, K̃; s, t) with some general considerations.

First, as discussed at the end of section 2, the complexity should be invariant if the time

orientation is reversed. This invariance should also apply for the subregion complexity

CV(A) and in fact, it follows because the bulk volume in eq. (4.1) does not depend on the

orientation of time. Therefore, we must have

b(R, K̃; s, t) = b(R, K̃; s,−t) , (4.4)

i.e., this functional only contains terms that are even in the timelike normal ti. Note that

this restriction was enough to eliminate the possibility of any odd powers of δ appearing

in v(R,K), the integrand in the integral over A in eqs. (2.15) and (4.2). However, the

integrand on the entangling surface may still contain odd powers of siK̃
i
ab, which would

produce odd powers of δ.

Next, let us consider a pure global state on the time slice Σ = A + Ā dual to a time-

symmetric bulk geometry. Now if we choose Σ to be the time-symmetric time slice in the

boundary, the extremal volume surface yielding the complexity of any of these regions,

i.e., Σ, A or Ā, will lie in the special Cauchy slice running through the moment of time

symmetry in the bulk and hence from eq. (4.1), we will find

time symmetry : CV(Σ) = CV(A) + CV(Ā) . (4.5)

Now as a result of the time symmetry, various extrinsic curvatures must vanish, i.e., the

extrinsic curvature of the time slice vanishes and on the entangling surface, tiK̃
i
ab = 0.

Now combining eqs. (4.2) and (4.5), we find

time symmetry : b(R, K̃; s, t)
∣∣
∂A

+ b(R, K̃; s, t)
∣∣
∂Ā

= 0 , (4.6)

where since this cancellation is a general result, we have assumed that the integrands must

cancel point by point. Now the only geometric quantity in this expression that distinguishes

∂A from ∂Ā is the spacelike normal si, which points outward from the corresponding

subregion, i.e., si|∂A = −si|∂Ā. Therefore we can write eq. (4.6) as

time symmetry :
[
b(R, K̃; s, t) + b(R, K̃;−s, t)

]
∂A

= 0 . (4.7)

That is, this geometric functional on the entangling surface only contains terms with odd

powers of the normal vector si.

8Note that ti actually coincides with the timelike normal ni to Σ when the latter is evaluated on ∂A.

– 15 –



J
H
E
P
0
3
(
2
0
1
7
)
1
1
8

In particular then, eq. (4.7) rules out the possibility that b contains a constant term,

i.e., the coefficient c̃1,0 = 0 in eq. (4.3) and there will not be a contribution proportional

to V(∂A)/δd−2 in eq. (4.2). Hence given the constraint (4.4), there is only one possible

term which can appear at the next order, namely, b = c̃1,1 δ siK̃
i + O(δ2) where K̃i is

the trace of the extrinsic curvature on ∂A. More generally, it is not hard to show that

in the time-symmetric situation, all of the terms in b will involve odd powers of δ, i.e.,

all of the even n coefficients in eq. (4.3) vanish. Therefore the subregion complexity only

contains divergences with odd (even) powers of δ in even (odd) d in this case. However,

it is unclear whether this property extends to cases without time symmetry. For example,

one can imagine a term of the form δ2 (tiK̃
i)2 appearing, which would lead to a divergence

of O(1/δd−4). It would be interesting to examine explicit examples for the appearance of

such divergences.

Example: ball-shaped region. As an explicit example, consider a ball-shaped region

B in a flat background. Hence we consider AdS space in Poincaré coordinates,

ds2 =
L2

z2
[
dz2 − dt2 + dx2i

]
(4.8)

and we take B to be the region defined by
∑

i x
2
i ≤ R2 on some constant time slice. With

the bulk volume computed in [21], the subregion complexity (4.1) becomes

CV(B) =
Ωd−2L

d−1

GN (d− 1)

( 1

d− 1

Rd−1

δd−1
− d− 1

2(d− 3)

Rd−3

δd−3
+

(d− 1)(d− 3)

8(d− 5)

Rd−5

δd−5
+ . . .

)
. (4.9)

Since this is a time-symmetric configuration, there are only odd or even powers of δ ap-

pearing above, as expected from the discussion above. Now we can recognize a factor of

the volume of B in the first term, i.e., V(B) = Ωd−2R
d−1/(d− 1), and so this contribution

is simply the first term in v in eq. (4.2). Now the background curvature vanishes since

we are considering flat space and the extrinsic curvature of B also vanishes since it was

chosen to live on a constant time slice. Hence all of the subleading terms (i.e., n ≥ 1) in

v must vanish and hence the remaining contributions in eq. (4.9) must be associated with

boundary divergences. Further note we are considering a time-symmetric situation and

so CV(B) only contains odd (even) powers of δ for even (odd) dimensions, as follows from

eq. (4.7). From the same equation, we also argued that the leading term in b in must be

proportional to

siK̃
i = si K̃

i
ab h̃

ab =
d− 2

R
. (4.10)

Hence comparing to eq. (4.2), we can write the above result as

CV(B) =
Ld−1

GN

[ V(B)

(d− 1) δd−1
− 1

2(d− 2)(d− 3) δd−3

∫

∂A
dd−2σ̃

√
h̃ siK̃

i + · · ·
]
. (4.11)

The term proportional to (R/δ)d−5 in eq. (4.9) is also a boundary divergence and the

coefficient is given by some linear combination of terms in b proportional to (siK̃
i)3 and

siK̃
i (sjK̃

j
ab)

2.
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5 Subregion complexity: CA duality

In this section, we consider generalizing the CA duality to subregions, and study the re-

sulting divergence structure. We re-iterate that given the proposal that the mixed state

associated with a subregion in the boundary theory is encoded in the corresponding entan-

glement wedge in the bulk [23, 24], it is natural that the holographic prescription for the

complexity of this state should involve this bulk region. This was the motivation for the

approach taken in the previous section with the CV duality and it motivates the following

proposal here for the CA duality:

• Beginning with a subregion A on a given boundary time slice Σ, we construct the

corresponding entanglement wedge WE [A] [24], as well as the Wheeler-DeWitt patch

WWDW[Σ]. Next we define the bulk region W̃ as the intersection of these two bulk

regions: W̃ = WE [A] ∩WWDW[Σ] — see figure 3. The subregion complexity is then

conjectured to be given by the gravitational action evaluated on W̃:

CA(A) =
IWDW(W̃)

π~
(5.1)

In the limit when the subregion A is the entire time slice Σ, we have W̃ = WWDW[Σ]

and we recover eq. (1.2) for the original CA duality.

Consistency of this new holographic definition for subregion complexity would require

that the result is independent of the specific choice of the time slice used to define the

Wheeler-DeWitt patch. In particular, our definition only fixes the time slice to coincide

with the subregion of interest but leaves the extension outside of this subregion unspecified.

While it is obvious that this time slice independence arises for simply connected subregions,

we have also verified that it is realized in a number of other simple situations. For example,

we have verified that it holds for a number of disconnected intervals on the boundary of

pure AdS3 or for a number of parallel strips on the boundary of AdSd+1. However, it

requires further study to determine if this time slice independence generally applies. If

not, our definition above would have to be revised. The simplest approach would be to

redefine the bulk region W̃ as the bulk domain of dependence associated with a bulk time

slice bounded by the subregion and the corresponding HRT surface. This is analogous to

the definition of WDW patch for the full region. Further the new definition will always be

independent of any extension of time slice beyond the time slice, and it coincides with the

intersection used to define W̃ in the simple examples which we considered.

In the rest of this section, we examine the above proposal in a specific example where

A is a ball-shaped region in a flat background. In particular, we focus on the structure

of the divergences and this example allows us to infer general properties of the divergence

structure.

Example: ball-shaped region. As in the previous section, let us apply the proposed

CA duality to evaluate the subregion complexity for a ball-shaped region B in a flat back-

ground. Hence we consider AdS space in Poincaré coordinates

ds2 =
L2

z2
[
dz2 − dt2 + dr2 + r2 dΩ2

d−2

]
(5.2)
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Figure 3. For a ball-shaped boundary region B, the bulk region W̃ is the intersection of the

entanglement wedge WE [B] and the WDW patch WWDW[Σ]. (a) Showing details of the null joints

appearing in the boundary of W̃. (b) Showing a cross-section of W̃ at r = 0. (See the main text

for the notation.)
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where we use polar coordinates in the spatial boundary directions. For simplicity, we then

take B to be the region defined by: r ≤ R and t = 0. The extremal bulk surface on

which we would evaluate the holographic entanglement entropy is a hemisphere [15, 16]:

R2 = r2 + z2. The entanglement wedge WE [B] is the bulk region enclosed by the two null

cones:9

C+ : t = R−
√
r2 + z2 for 0 ≤ t ≤ R , (5.3)

C− : t = −R+
√
r2 + z2 for 0 ≥ t ≥ −R .

As in section 3, we must regulate the WDW patch by introducing a regulator surface

at z = δ. In particular, we will use the approach illustrated in figure 2b, where the null

boundaries begin at the time slice on this regulator surface, i.e., they begin at (z, t) = (δ, 0).

The boundary of the WDW patch WWDW[t = 0] is then the two null sheets:

S+ : t = z − δ for t ≥ 0 , (5.4)

S− : t = −(z − δ) for t ≤ 0 .

Now following eq. (5.1), we compute the gravitational action on the intersection of these

two bulk regions: W̃ = WE [A] ∩WWDW[Σ], as illustrated in figure 3.

Following the prescription in appendix A, there are only two kinds of nonvanishing

contributions in eq. (A.1), which need to be considered here. That is, we must evaluate

the Einstein-Hilbert integral and four null joint contributions,

I(W̃) =
1

16πGN

∫

W̃
dd+1x

√−g
(
R+

d(d− 1)

L2

)
+

1

8πGN

∫

Σ′

dd−1x
√
σ a . (5.5)

No other contributions need to be considered because all of the boundary surfaces for W̃
are null.

Let us begin with the Einstein Hilbert term. Using the Einstein equations, we may

substitute R = −d(d+ 1)/L2, and this contribution simplifies to evaluating the spacetime

volume of the intersection region

Ibulk = − d

8πGNL2
V(W̃) . (5.6)

As shown in figure 3b, it is straightforward to evaluate this volume by first dividing it into

two parts:

V(W̃) = V1

(
z >

R+ δ

2

)
+ V2

(
z <

R+ δ

2

)
, (5.7)

where V1(z > (R + δ)/2) is the volume of the portion of the region bounded above and

below entirely by the null cones C±, and V2(z < (R+ δ)/2) is the volume of the portion of

the region which is also bounded above and below by the null sheets S±. We begin with

9The boundary of the entanglement wedge has no caustics in this simple example.
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the former

V1 = 2Ld+1Ωd−2

∫ R−δ

2

0
dt

∫ R−t

R+δ

2

dz

zd+1

∫ √
(R−t)2−z2

0
dr rd−2

=
2Ld+1Ωd−2

d− 1

∫ R−δ

2

0
dt

∫ R−t

R+δ

2

dz
((R− t)2 − z2)

d−1
2

zd+1
(5.8)

This volume remains finite in the limit δ → 0 since the integration does not reach the

asymptotic boundary. Hence in an expansion for δ/R ≪ 1, V1 only contains positive

powers of δ. Turning to the volume of the region with z < (R+ δ)/2, we find

V2 =
2Ld+1Ωd−2

d− 1

∫ R−δ

2

0
dt

∫ R+δ

2

t+δ
dz

((R− t)2 − z2)
d−1
2

zd+1
(5.9)

=
2Ld+1Ωd−2

d(d− 1)

[
Rd−1

(d− 1)δd−1
− Rd−2

(d− 2)δd−2
+

(−d2 + 3d− 4)Rd−3

2(d− 2)(d− 3)δd−3
+ · · ·

]
, (5.10)

where in the second line, we have expanded the integrand for small z to identify the

divergent terms arising from the integration near the asymptotic boundary. Hence the

divergences appearing in the bulk action (5.6) become

Ibulk = − Ld−1

4πGN

Ωd−2

d− 1

[
Rd−1

(d− 1)δd−1
− Rd−2

(d− 2)δd−2
+

(−d2 + 3d− 4)Rd−3

2(d− 2)(d− 3)δd−3
+ · · ·

]
. (5.11)

Note that there are both even and odd power law divergences in this expression and also

that the overall sign is negative.

Now we move on to compute the contributions of the null joint in eq. (5.5). The

region W̃ has four null joints coming from the intersections of the various null boundaries:

S+ ∩ S−, C+ ∩ C−, C+ ∩ S+ and C− ∩ S− — see figure (3)a. Hence we divide the null

joint term into the four corresponding contributions

Ijnt = I(1)(S+ ∩ S−) + I(2)(C+ ∩ C−) + I(3)(C+ ∩ S+) + I(4)(C− ∩ S−) (5.12)

and evaluate each in turn using the prescription given in appendix A. Note that the latter

requires writing the (outward directed) null normals for each of the corresponding surfaces,

which we find using eqs. (5.3) and (5.4):

S+ : k1 = α ( dt− dz) , S− : k2 = α (−dt− dz) , (5.13)

C+ : k3 = β

(
dt+

r dr + z dz√
r2 + z2

)
, C− : k4 = β

(
−dt+ r dr + z dz√

r2 + z2

)
,

where α and β are arbitrary (dimensionless) normalization constants for the null normals.

For simplicity, we have chosen the same normalization constant on S+ and S−, and on

C+ and C−.

Beginning with I(1)(S+ ∩ S−), we find a = −2 log(α δ/L) using eq. (A.8). Hence the

joint contribution becomes

I(1) = − Ld−1

4πGN

Ωd−2

d− 1
log

(
α δ

L

)
(R2 − δ2)

d−1
2

δd−1
(5.14)

= − Ld−1

4πGN

Ωd−2

d− 1
log

(
α δ

L

)[
Rd−1

δd−1
− d− 1

2

Rd−3

δd−3
+

(d− 1)(d− 3)

8

Rd−5

δd−5
+ · · ·

]
.
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Hence the divergence structure here involves a logarithmic divergence multiplying power

law divergences, with only odd (even) powers for even (odd) d. Note that the overall sign

of this null joint contribution is positive.

Next for C+ ∩ C−, we have a = −2 log(βz/L) and so the joint contribution becomes

I(2) = −L
d−1Ωd−2

4πGN

∫ R

δ
dz

(R2 − z2)
d−3
2

zd−1
log

(
βz

L

)
(5.15)

= −L
d−1Ωd−2

4πGN
log

(
β δ

L

)[
Rd−2

(d− 2)δd−2
− (d− 3)

2(d− 4)

Rd−4

δd−4
+

(d− 3)(d− 5)

8(d− 6)

Rd−6

δd−6
+ · · ·

]

−L
d−1Ωd−2

4πGN

[
Rd−2

(d− 2)2δd−2
− (d− 3)

2(d− 4)2
Rd−4

δd−4
+

(d− 3)(d− 5)

8(d− 6)2
Rd−6

δd−6
+ · · ·

]

Again, we find that there are only even or odd powers, but not both. There are also terms

involving both power law divergences multiplied by a logarithmic divergence.

For C+ ∩ S+, we have a = log
(
αβ
2

z2

L2
R+δ

R+δ−z

)
and the joint contribution is given by

I(3) =
Ld−1Ωd−2

8πGN

(
R+ δ

)d−2
∫ R−δ

2

δ
dz

(
1− 2z

R+δ

) d−3
2

zd−1
log

(
αβ

2

z2

L2

R+ δ

R+ δ − z

)
(5.16)

=
Ld−1Ωd−2

4πGN
log

(√
αβ

2

δ

L

)[
Rd−2

(d− 2)δd−2
− (d− 3)

2(d− 4)

Rd−4

δd−4
+

(d− 3)(d− 5)

8(d− 6)

Rd−6

δd−6
+ · · ·

]

+
Ld−1Ωd−2

4πGN

[
Rd−2

(d− 2)2δd−2
+

d− 5

2(d− 3)(d− 2)

Rd−3

δd−3
− 3d2 − 20d+ 36

4(d− 4)2(d− 2)

Rd−4

δd−4
+ · · ·

]
.

Note that this joint contributions has both even and odd power divergences, as well as

a logarithmic factor in some of the contributions. Further, we note in passing that both

here and in eq. (5.15), the integrals can generate additional logarithms and so we may find

divergences of the form log2 δ. For example, such terms would appear in both eqs. (5.15)

and (5.16) for d = 2. Next, we must evaluate the joint contribution coming from C− ∩ S−

but by the symmetry of the present geometry under t → −t, we have I(4)(C− ∩ S−) =

I(3)(C+ ∩ S+).

Up to this point, it seems that we have taken into account all of the contributions to

the gravitational action, however, we need to point out that our discussion has overlooked

one geometric structure in the boundary of W̃. In particular, there is a codimension-three

‘corner’ where all four null surfaces simultaneously intersect, i.e., S+ ∩ S− ∩ C+ ∩ C−

which is the spherical surface given by (z, t, r) = (δ, 0,
√
R2 − δ2). As discussed in [14],

the boundary terms that might be required in the gravitational action for such higher

codimension corners requires further analysis and remain unknown at the present time.

While our intuition is that the contribution from this corner vanishes in our example,10

this provides further motivation for a detailed study of such higher order intersections of

boundary surfaces. In any event, in our example, it seems that all possible divergences are

10In part, this intuition is informed by the vanishing contribution of similar singularities in the exam-

ples in [38].
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already appearing in our final result, and hence even if this extra corner were to make a

contribution to the action, it would not add anything conceptually new.

Finally, the total action I(W̃) combining the results in eqs. (5.11) and (5.14)–(5.16)

and then eq. (5.1) yields the leading divergence structure for the subregion complexity as

CA(B) =
1

π

(
Ibulk + I(1) + I(2) + 2 I(3)

)
(5.17)

= − Ld−1

4π2GN

Ωd−2

d− 1

[
Rd−1

(d− 1)δd−1

−
(

2d− 3

(d− 2)2
− (d− 1)

d− 2
log 2

)
Rd−2

δd−2
− 3d2 − 13d+ 12

2(d− 2)(d− 3)

Rd−3

δd−3
+ · · ·

]

+
Ld−1

4π2GN

Ωd−2

d− 1
log

(
L

α δ

)[
Rd−1

δd−1
− d− 1

d− 2

Rd−2

δd−2
− d− 1

2

Rd−3

δd−3
+ · · ·

]
.

Note that we can recognize the leading divergences (∝ 1/δd−1) as being proportional to

the volume of the ball-shaped region, i.e., V(B) = Ωd−2R
d−1/(d− 1). Now we expect the

coefficients of the subleading divergences are also proportional to various geometric factors.

However, in this example, both the background curvature and the extrinsic curvature of

the time slice vanish. Hence, the next pair of divergences (∝ 1/δd−2) must be proportional

to the volume of the boundary, i.e., V(∂B) = Ωd−2R
d−2. Similarly the coefficients of

the terms proportional to 1/δd−3 involve an integral of siK̃
i = (d − 2)/R over ∂B, as in

eq. (4.11), while the higher order terms will involve higher powers of the boundary extrinsic

curvature. One notable feature of eq. (5.17) is that the coefficient β has canceled out in the

total action. In fact, it is straightforward to show that this cancellation extends to include

the Rd−6/δd−6 terms and higher. We return to discuss this feature in section 6.

Now given the results of the above calculation and our previous experience, we expect

the the CA duality produces the following general form for the divergences in subregion

complexity:

CA(A) =
1

δd−1

∫

A
dd−1σ

√
h

[
v1(R,K) + log

(
L

α δ

)
v2(R,K)

]
(5.18)

+
1

δd−2

∫

∂A
dd−2σ̃

√
h̃

[
b1

(
R, K̃; s, t

)
+ log

(
L

α̃ δ

)
b2

(
R, K̃; s, t

)]

with vk(R,K) =

⌊ d−1
2

⌋∑

n=0

∑

i

c
[k]
i,n(d) δ

2n [R,K]2ni , (5.19)

bk(R, K̃;n, t) =

d−1∑

n=0

∑

i

c̃
[k]
i,n(d) δ

n
[
R, K̃; s, t

]n
i
. (5.20)

with d boundary dimensions. The expressions in eq. (5.19) would be identical to those found

in eq. (3.18) and the only difference here is that the corresponding integral in eq. (5.18)

is now restricted to the subregion A. As in the previous section, we also find additional

divergences that are associated with the entangling surface ∂A. The corresponding inte-

grands b1,2 involve: R, the background curvatures of the AdS boundary; K̃i
ab, the extrinsic
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curvatures of the codimension-two entangling surface; and also si and ti, a preferred basis

in the space transverse to ∂A— see the description under eq. (4.2). The appearance of the

coefficients α and α̃ in the logarithmic factors introduces some additional ambiguity in the

above expressions and we will return to discuss this point in section 6. We note that the

contribution associated with the entangling surface may involve divergences proportional

to log2 δ coming from the b2 term, as discussed for the example above.

We note that invariance under time reversal results in only even powers of δ appearing

in the integrands v1,2, but this is not the case for b1,2. There it only imposes the weaker

constraint: bk(R, K̃; s, t) = bk(R, K̃; s,−t) — see discussion around eq. (4.4). Further,

with CV duality, we were able to find further restrictions by considering the case of time

symmetry, e.g., in eq. (4.3), c̃1,0 vanishes. However, the same considerations cannot be

made here because

CA(Σ) 6= CA(A) + CA(Ā) , (5.21)

even in the special case of time symmetry and in fact, we saw contributions proportional

to V(∂A), the volume of the entangling surface, explicitly appear the example above in

eq. (5.17).

6 Discussion

In this paper, we studied the two conjectures for holographic complexity: the complex-

ity=action (CA) conjecture and the complexity=volume (CV) conjecture. In particular,

we examined the structure of UV divergences in the complexity following from these two

conjectures. We found that both CA and CV contain a series of power law divergences and

the coefficients of these divergences are determined by local integrals of various geometric

invariants over the corresponding time slice Σ, as shown in eqs. (2.15) and (3.17). These

coefficients also contain dimensionless parameters characterizing the underlying CFT, e.g.,

CT ∼ Ld−1/GN in the present case where the bulk is described by Einstein gravity.11 The

leading divergence appearing with the CV duality is proportional to the volume of the

boundary time slice, i.e., CV(Σ) ∼ V(Σ)/δd−1. A similar divergence appears with the CA

duality, however, an extra factor proportional to log δ arises from the asymptotic joint con-

tributions in the WDW action, e.g., see eq. (3.15). Hence the leading divergence appearing

with the CA duality takes the form

CA(Σ) ∼ log[L/(α δ)]
V(Σ)
δd−1

, (6.1)

where L is the AdS curvature scale and α is a (dimensionless) normalization constant —

see further discussion below.

We note that the asymptotic joint contribution, which produces this divergence (6.1),

is essential for the consistency of our CA calculations in sections 3 and 5. The bulk integral

of the Einstein-Hilbert action (3.6) contributes a divergence proportional to the boundary

11If the boundary CFT is deformed by a relevant operator, it is straightforward to show that the corre-

sponding (dimensionful) coupling will also appear in these coefficients [39]. In this case, the structure of

the UV divergent terms is analogous to the results found for holographic entanglement entropy in [18].
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volume but the coefficient is negative, which follows from Einstein’s equations and the

negative cosmological constant. That is, we have Ibulk ∼ −V(Σ)/δd−1 but if this was the

leading divergence, the resulting WDW action would be negative. Since by definition the

complexity is positive, this would produce an inconsistency for CA duality.12 However, the

joint contribution is positive and contains an even stronger divergence with the extra log δ

factor, e.g., see eqs. (3.15) and (3.16). Hence it is responsible for making the holographic

complexity positive and ensuring the consistency of the CA duality.

As noted in the introduction, the locality of the coefficients in the holographic complex-

ity suggests that these divergences should be associated with establishing local correlations

down to the cutoff scale in the boundary CFT. On the gravity side, since the calculations

in CV duality resemble those in holographic entanglement entropy so closely, it is not sur-

prising that the coefficients of the power law divergences are determined by local integrals.

Essentially, the initial terms in the FG expansion (2.2) are expressed in terms of the bound-

ary geometry and the equations determining the asymptotic shape of the extremal surface

have a similar geometric interpretation [18]. On the other hand, it is not immediately

clear that the CA duality should produce coefficients with a similar locality. Of course,

our explicit calculations in section 3 demonstrate that this is the case, at least for the first

few divergences. It would be interesting to thoroughly investigate if this locality extends

to all of the UV divergences appearing in the holographic complexity, as assumed in the

discussion at the end of section 3. It is clear that locality continues to hold for all of the

divergences in the joint contribution, since these only rely on evaluating the asymptotic

expansion of the metric at z = δ. On the other hand, one needs a better understanding of

the general geometry of the null boundaries of the WDW patch to determine if the bulk

integral also produces coefficients which are always local.

In passing, we note that in the context of holographic entanglement entropy, ref. [40]

shows that this behaviour may fail in certain situations. Although the coefficients are still

determined by local integrals, the integrand involves state dependent data in these cases.

It would also be interesting to see if these results extend to holographic calculations of

complexity.

We now turn to the factor of α appearing in the argument of the logarithm in eq. (6.1),

or more generally in eq. (3.17) for the CA duality. As noted previously, this (dimensionless)

coefficient is an arbitrary normalization constant for the null normals, e.g., see eq. (3.13) or

(5.13),13 which arises because of the freedom to rescale the affine parameter along the future

and past null boundaries of the WDW patch [14]. In order to make a meaningful comparison

of the gravitational action for different WDW patches, e.g., in different spacetimes as in [38],

one must first fix this normalization constant in a consistent way. The suggestion of [14]

was to impose a normalization condition on the null normals near the asymptotic AdS

12Note that with regularization scheme illustrated in figure 2a, there is an additional GHY surface term

which is positive and which will dominate over the bulk term, e.g., compare eqs. (C.5) and (C.7) for the

example examined in appendix C.
13In general, we have two independent normalization constants for the normals on the future and past

null boundaries, as in eq. (3.13), in which case the factor of α is replaced by
√
α1α2, as in eq. (6.1).
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boundary. In particular, one can choose

k · t̂ = ±α (6.2)

at the AdS boundary. Here, k is the normal to the future (+) or past (–) null boundary

(written as an outward pointing one-form — see appendix A); t̂ = ∂t is the timelike vector

in the asymptotic AdS geometry which is normalized to describe the time flow in the

boundary theory; and α is an arbitrary positive constant.

One simple choice that was suggested in [14] is α = 1. However there is a puzzle here as

follows: with α = 1, the result, e.g., in eq. (6.1) takes the form CA(Σ) ∼ log(L/δ)V(Σ)/δd−1

and so the complexity explicitly depends on the AdS curvature scale L, which has no inter-

pretation in the boundary theory. Hence it seems another choice is required to eliminate

this dependence. Let us instead set α = L/ℓ where ℓ is some scale in the boundary theory

which is common to all states and geometries for which we might want to evaluate the

complexity. One candidate would be ℓ = δ, the short-distance cutoff, however, with this

choice, the argument of the log reduces to one and the contribution in eq. (6.1) vanishes.

Unfortunately, as noted in the discussion above, this would leave us with a negative com-

plexity14 and so this choice of ℓ appears inconsistent. Another choice would be the size

of the boundary time slice, i.e., ℓ = ℓV ∼ V1/(d−1). However, with this choice, the com-

plexity becomes superextensive, i.e., the leading contribution grows faster than the volume

of the time slice. As this contribution to the complexity seems most naturally related to

the establishing very short-distance correlations in the boundary CFT, it seems that this

contribution should only be proportional to V(Σ) and should not be superextensive. Un-

fortunately, these two choices seem to be the only scales in the boundary theory that will

naturally arise in any geometry and for any state, and they both yield undesirable results.

However, it may then be that ℓ is a new scale defined by the precise microscopic rules

used to define the complexity. For example, if we set ℓ = eσδ (i.e., α = e−σL/δ) where

σ is some numerical factor,15 then eq. (6.1) becomes CA(Σ) ∼ σ V(Σ)/δd−1 and one can

imagine that different choices of σ correspond to different choices for the set of universal

gates which are used to prepare states and define the complexity, e.g., ℓ might be related

to the maximum range over which the universal gates act in the CFT. Note that with

this prescription, there is no real distinction between the two families of divergent terms

appearing in eq. (3.17) since δ is eliminated from the argument of the logarithm. However,

generically the null boundaries for the WDW patch will end on joints deep in the interior of

the bulk geometry, and the corresponding null joint terms will introduce new contributions

where log δ is mixed with IR features, e.g., if one considers complexity of the thermofield

double state dual to a black hole. Further, this log δ may also ‘infect’ quantities which

14As emphasized in footnote 12, we re-iterate that this is a feature of the regularization illustrated in

figure 2b. With the alternate regularization in figure 2a, the GHY contribution on the regulator surface

dominates over the bulk term to produce a positive action, without the joint contribution — see appendix C.
15Of course, given the previous discussion, there must be a lower bound on σ. Examining eq. (3.16), we

find σ > 1/(d− 1).
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Figure 4. We consider the ground state |ψ0〉 of the boundary theory but evaluate the complexity

on three different time slices, Σ1, Σ2 and Σ3. Comparing the first two time slices, the complexity

sees a large reduction of Σ2 because the proper volume of this time slice is reduced by ∆V =

(
√
∆ℓ2 −∆t2 − ∆ℓ)Vtrans where Vtrans is the volume in the transverse directions. The third time

slice Σ3 is composed of null segments and so the leading divergence in the complexity vanishes.

might otherwise be expected to be finite, such as the rate of growth of the complexity in

certain situations [10, 41].16

One of the key features which was observed here was the geometric nature of the

coefficients in the various power law divergences appearing in the holographic complexity.

While this feature is entirely expected given our experiences from holographic entanglement

entropy [17, 18, 35], it means that the complexity has some unusual features. To illustrate

this point, recall again that the leading term for both CA and CV duality is proportional

to the volume of the time slice, i.e., CV(Σ) ∼ V(Σ)/δd−1. Now consider the ground state of

the boundary theory in flat space but let us evaluate the complexity on two different time

slices, Σ1 and Σ2, as illustrated in figure 4. In the second case, we have pushed Σ2 forward

in time over a portion of the time slice and hence, because of the Lorentzian signature

of the boundary theory, the proper volume is reduced. Comparing these two time slices

illustrated in the figure, ∆V = V(Σ2)−V(Σ1) = (
√
∆ℓ2 −∆t2−∆ℓ)Vtrans < 0 where Vtrans is

the volume in the directions transverse to the page. Hence there is an enormous reduction

in the corresponding complexity: ∆C ∼ ∆V/δd−1 < 0. In fact, the leading divergence can

be completely removed by evaluating the complexity on a time slice composed of a series of

16Recently, ref. [42] divergences in the WDW action using a additional boundary term introduced in [14],

which renders the action invariant under reparameterizations of the null boundary coordinates. In partic-

ular, it was found that this boundary term also removes the log(L/δ)V(Σ)/δd−1 divergence.

– 26 –



J
H
E
P
0
3
(
2
0
1
7
)
1
1
8

null segments, as illustrated by Σ3 in figure 4. In this case, we expect that the complexity

will still contain otherwise subleading divergences associated with the ‘folds’ between the

null segments in this case,17 i.e., C(Σ3) ∼ Vtrans/δ
d−2.

However, it seems challenging to understand this behaviour from the usual perspective

of circuit complexity. The latter involves using discrete gates to prepare a lattice approxi-

mation of the state in the boundary field theory. While this provides an intuitive picture

for the complexity of states on a constant time slice, it seems ill-suited to discuss states

(even ground states) that are defined on Cauchy surfaces which vary in time. Given a

state defined on a discrete lattice for a constant time slice, one might consider evolving it

to a time-varying slice with a differential application of the (local) Hamiltonian across the

lattice. However, it is not at all clear why this process should significantly reduce the com-

plexity of the state. Of course, similar issues arise if one considers entanglement entropy

for discrete lattice models. However, in this case, we have a field theoretic approach where

the entanglement entropy can be defined in terms of a path integral approach. Hence we

naturally anticipate that the divergences in the entanglement entropy are defined in terms

of covariant geometric quantities in a curved background or with a time-varying Cauchy

surface. Of course, this discussion highlights the challenge of developing an analogous field

theoretic approach to define complexity in a covariant manner. Perhaps, the techniques de-

veloped in [45–47] or in [48] can provide better insight towards developing such a covariant

approach.

Subregion complexity. In sections 4 and 5, we also considered generalizing the CV and

CA conjectures to the complexity of the mixed state produced by reducing the boundary

state to a specific subregion of the boundary time slice. Our proposals were motivated by

the idea that this mixed state should be encoded in the corresponding entanglement wedge

in the bulk [23, 24]. While our suggestion for CV duality applies for general time-dependent

situations, it reduces in a time-independent case to the proposal first studied in [21] — see

also [22].

The original notion of circuit complexity that was introduced in holography, e.g., [4, 8–

10], referred to pure states in the boundary theory. For a subregion complexity, we are

instead considering the preparation of a mixed state, described by the density matrix ρA
which comes from reducing the global pure state to the region A. Since a pure reference

state will never become mixed by the application of a unitary circuit, we should instead

think in terms of preparing ρA with a completely positive trace-preserving (CPTP) map

acting on the reference state. From this perspective, the set of allowed universal gates would

be extended to include ‘ancillary’ and ‘erasure’ gates, which add and remove additional

degrees of freedom [1, 49]. However, the dilation theorems [50] imply that the most general

CPTP maps acting on a system of qubits can be realized as unitary evolution of the system

coupled to ancillary qubits [1]. That is, we may also think of subregion complexity as first

extending the Hilbert space of A with new ancillary degrees of freedom to purify the state

ρA and then determining the minimum number of universal gates needed to prepare the

17A logarithmic divergence appears with d = 2 and in this case, the holographic calculations for the CV

duality would be closely related to those evaluating the cusp anomaly in holographic gauge theories [43, 44].
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resulting pure state from a reference state in the extended Hilbert space. However, we

expect in the present holographic context (or in quantum field theory, more generally) that

the specific rules defining subregion complexity must restrict the allowed ancilla and how

they are permitted to interact with the QFT degrees of freedom in the subregion. For

example, locality of the QFT may suggest that the ancilla only interact with the degrees

of freedom near the boundary of the subregion. Better insight into these restrictions may

come from further studies of holographic subregion complexity.

Turning to the structure of the UV divergences revealed by our calculations in sec-

tions 4 and 5, we found that these were more or less the same as found for the pure states.

In particular, for a given region A, both CA(A) and CV(A) contained power law divergences

and the coefficients of these divergences are again determined by local integrals of vari-

ous geometric invariants, as in eqs. (4.2) and (5.18). However, there are now two types

of integrals: the first were (d-1)-dimensional integrals over the entire region A and the

integrands were identical to those found in the previous calculations for a pure state on an

entire time slice. The second were (d-2)-dimensional integrals over the boundary ∂A and

the integrands involved geometric invariants constructed on this geometry, as described

schematically in eqs. (4.3) and (5.20). In the discussion of complexity for pure states, we

observed that it seems natural that the UV divergences multiplying ‘bulk’ integrals over

A should be associated with the necessity of establishing correlations between the CFT

degrees of freedom down to the arbitrarily short distance scales. Similarly then, the di-

vergences multiplying the ‘boundary’ integrals must be related to the UV structure of the

portion of ρA describing the degrees of freedom near the boundary ∂A. In particular, we

note that these degrees of freedom behave as though they are nearly maximally mixed

or strongly entangled with ancilla, i.e., the near-boundary degrees of freedom appear as

though they are in the Rindler vacuum with a local temperature that diverges at ∂A —

see discussions in [51, 52].

We note that there were no essential differences between the CV and CA duality for the

divergences associated with the integrals over A. On the other hand, those associated with

the boundary integrals seemed to show some more interesting differences. For example,

the CA duality generally produces a divergence proportional to V(∂A)/δd−2, while the

analogous divergence never arises in the CV duality. Similarly, for a configuration which

is time-symmetric about a time slice Σ = A ∪ Ā, we argued that CV(Σ) = CV(A) + CV(Ā)

in eq. (4.5), while it is clear that CA(Σ) 6= CA(A) + CA(Ā) even in the time-symmetric case.

These differences must be related to differences in the implicit microscopic rules defining

the subregion complexity for these two dualities. In particular, as discussed above, the

different dualities may introduce different types of ancilla and allow for different types of

interactions between the ancilla and the CFT degrees of freedom in the subregion.

We close here with a technical observation about our proposal for subregion complexity

with the CA duality. One notable feature of eq. (5.17) is that the coefficient β does not

appear in the final complexity. That is, while this coefficient which appears in the two joint

contributions individually in eqs. (5.15) and (5.16), it cancels out in the total action. In

fact, we will now argue that this cancellation is complete, rather than only holding to some

high order in the expansion near the asymptotic boundary. The first observation is that
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β dependence in eqs. (5.15) and (5.16) is proportional to the volume of the corresponding

surface, i.e.,

I(2) ∼ − log β

4πGN
V(C+∩C−) , I(3) ∼ +

log β

8πGN
V(C+∩S+) , I(4) ∼ +

log β

8πGN
V(C−∩S−) .

(6.3)

Next, the key observation is that for the particular geometry which we are considering

in the example in section 5 (i.e., the bulk geometry is empty AdS and the boundary

region is a ball on a constant time slice), the boundary (5.3) of the entanglement wedge

is actually a Killing horizon and the corresponding normals (5.13) are null Killing vectors,

e.g., [53, 54]. Hence, C+∩C−, which corresponds the a portion of the bifurcation surface,

is mapped to either C+ ∩ S+ or C− ∩ S− by the Killing flow along the horizon — see

figure 3. Hence the ‘area’ of these three cross-sections of the Killing horizon are identical,

i.e., V(C+∩C−) = V(C+∩S+) = V(C−∩S−), and hence the sum of the three expressions

in eq. (6.3) exactly cancel, ensuring that the total action contains on β dependence.

It was a fortunate coincidence that β did not appear in the subregion complexity

for the simple example considered in section 5. For more generic situations, we would

expect the subregion complexity to depend on the analogous normalization constant for

the null generators of the boundary of entanglement wedge. Essentially, the same issues

which were discussed above for α, the normalization constant for the null generators on

the boundaries of the WDW patch, will arise again here for β. It may seem natural to

normalize the corresponding null normals near the asymptotic AdS boundary, in a manner

similar to eq. (6.2). However, we point out that in the generic situation, the generators

of the boundary of the entanglement wedge intersect the AdS boundary outside of the

domain of dependence of the particular subregion of interest [24]. As a result, we have the

somewhat unsettling possibility that the subregion complexity may depend of features of

the background geometry or of the global state which are casually disconnected from the

subregion. Certainly, our holographic proposals for evaluating subregion complexity should

be studied further to make sure that they are consistent with the expectations which come

from a quantum information perspective.

To conclude the discussion, we make a few comments on other possible future direc-

tions: it would be interesting to study the rate of growth or time-dependence of subregion

complexity. For example, if one considers the thermofield double state and a subregion

that includes portions on both boundaries of the dual black hole, then we know that at

some late time, there will be a transition to the RT surface which is disconnected and

the holographic entanglement entropy saturates at some constant value [55]. Similarly, we

expect that the subregion complexity defined using either eq. (4.1) or eq. (5.1) will also

saturate at the same time. Another possibility would be to extend the present considera-

tions to holographic complexity in other bulk geometries, such as Lifshitz black holes and

Dp-branes.

Recently, ref. [56] introduced the concept of ‘bit threads’, which are flow lines emanat-

ing from a boundary region A and threading the extremal RT surface, to define holographic

entanglement in terms of the max flow-min cut principle. It would be interesting to un-

derstand if some property of the bit threads or the corresponding flows can be related to
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holographic complexity. It might also be of interest to consider other covariantly defined

geometric features of the bulk, e.g., the spacetime volume of the entire entanglement wedge

or the graviational action evaluated on this region [22]. It might also be interesting to ex-

tend the holographic complexity calculations to connect to the constructions appearing

in [57–60], where other fields are integrated over surfaces and regions in the bulk.
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A Action user’s manual

The CA duality [9, 10] requires evaluating the gravitational action for a bulk spacetime

region with null boundaries. It is only very recently that a careful analysis was made of the

boundary terms which must be added to the gravitational action for null boundary surfaces

and for joints where such null boundaries intersect with other boundary surfaces [14] —

see also [61]. We review these results here but present them with a slightly different set

of conventions. In particular, as discussed below, the normals to the boundary surfaces

are always directed outward from the region of interest, and we do not make any special

account for their orientation in time.

To begin, we write the gravitational action as

I =
1

16πGN

∫

M
dd+1x

√−g (R− 2Λ) +
1

8πGN

∫

B
ddx
√

|h|K

− 1

8πGN

∫

B′

dλ dd−1θ
√
γ κ+

1

8πGN

∫

Σ
dd−1x

√
σ η +

1

8πGN

∫

Σ′

dd−1x
√
σ a . (A.1)

In the first line, we have the standard Hilbert action, with a cosmological constant, and the

Gibbons-Hawking boundary term [62, 63]. We have normalized the negative cosmological

constant here such that L is the curvature scale of the anti-de Sitter vacuum.

Note that the Gibbons-Hawking boundary term is written in a way that it can be eval-

uated on either spacelike or timelike boundaries. However, to do so, we have a convention
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Figure 5. Various joints or junctions considered by Hayward [64]. Class I junctions are shown in

(a) and (b) while Class II junctions are given in (c), (d) and (e).

where the normal one-form is directed away from or out of the region of interest. That is,

if a certain point of the boundary is determined by an equation f(x) = 0, then the function

f(x) increases as we move out of the region of interest and hence, the form df is directed

outward. This may seem somewhat unconventional [14] since for a spacelike boundary, the

(timelike) normal form t = tµ dx
µ is outward directed but the normal vector ~t = tµ ∂µ is

then inward directed.

The first term in the second line of eq. (A.1) is the corresponding surface term for null

boundaries. The constant κ is defined by the equation

kρ∇ρ kµ = κ kµ (A.2)

where k = kµ dx
µ is the outward directed null normal. We can think that κ measures

the failure of λ to be an affine parameter on the null generators of the null boundary. Of

course, by choosing the normalization k appropriately then, we can always set κ = 0.

For nonsmooth boundaries, we have the two joint terms appearing as the second and

third terms in the second line of eq. (A.1). Here we are only considering the contributions

required for spacelike joints. In particular, the first term is required for spacelike jointss of

spacelike and timelike boundary regions [64], as illustrated in figure 5 — see also [65]. The
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Figure 6. Various different joints involving null boundaries. The null boundaries are indicated

in blue.

integrand η is given by:

(a) & (c) : cosh η ≡ |t1 · t2| with sign(η) = −sign(t1 · t2) sign(n̂1 · t2) (A.3)

(b) & (d) : cosh η ≡ |n1 · n2| with sign(η) = −sign(n1 · n2) sign(n1 · t̂2) (A.4)

(e) : sinh η ≡ ǫ t1 · n2 with ǫ = −sign(n2 · n̂1) (A.5)

Our notation here distinguishes timelike and spacelike normals. In particular, timelike

normals are denoted ti with ti · ti = −1, and spacelike normals are denoted ni with

ni · ni = +1. Implicitly again we are referring to the outward directed normal one forms.

We have also introduced auxiliary unit vectors, n̂i and t̂i — vectors, not one-forms. These

are defined as the unit vector that is in the tangent space of the appropriate boundary

region, orthogonal to the joint and pointing outward from the boundary region. We have

chosen to normalize these auxiliary vectors as unit vectors but the signs in eqs. (A.3)–

(A.5) are independent of the normalization of these vectors. Further note that although

the expression for the sign of η is not symmetric in 1 and 2 (in the first two expressions), the

result does not depend on which surfaces are labeled 1 or 2 since, e.g., we have sign(n̂1·t2) =
sign(n̂2 · t1) in eq. (A.5).

The last term in eq. (A.1) is the appropriate boundary term for a spacelike joint

involving one or two null boundary surfaces, as illustrated in figure 6. Here, the integrand
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a is given by:

(a) & (e) : a ≡ ǫ log |t1 · k2| with ǫ = −sign(t1 · k2) sign(n̂1 · k2) , (A.6)

(b) & (f) : a ≡ ǫ log |k1 · n2| with ǫ = −sign(k1 · n2) sign(k1 · t̂2) , (A.7)

(c) & (d) : a ≡ ǫ log |k1 · k2/2| with ǫ = −sign(k1 · k2) sign(k̂1 · k2) . (A.8)

Implicitly again we are referring to outward directed normal null one forms with k1 or k2.

Again, we also introduce auxiliary null vectors k̂i — vectors, not one-forms. These are

defined as the null vector that is in the tangent space of the appropriate boundary region,

orthogonal to the joint and pointing outward from the boundary region. Again, although

the expression for the sign of a is not symmetric in 1 and 2 (in the last expression), the result

does not depend on which surfaces are labeled 1 or 2 since, e.g., we have sign(k̂1 · k2) =

sign(k̂2 · k1) in eq. (A.8).

Further, we should recall from the discussion in [14], the boundary terms in eq. (A.1)

associated with the null boundary surfaces and null joints are somewhat ambiguous. By

construction, the variation of these boundary terms is well-defined and cancels the corre-

sponding total derivative terms coming from the variation of the bulk action. However,

when the gravitational action is evaluated on a particular spacetime geometry, it will gen-

erally yield different numerical values depending on different choices that can be made in

constructing these boundary terms. In particular, κ depends on an arbitrary choice for

the parameterization for the null generators. Further, for the null joints, a depends on the

arbitrary normalization of the null tangent kα and in principle, we could add an additional

function a0 to a in eqs. (A.6)–(A.8), which remains fixed when the action is varied.

Now as discussed [14], there is a natural prescription to these ambiguities in the grav-

itational action. As mentioned above, the κ ambiguity is easily resolved by choosing the

generators of the null boundary surfaces to be affinely parametrized, and then the cor-

responding boundary terms simply vanish. Further, eqs. (A.6)–(A.8) make a particular

choice for the functions a0 at the null joints which guaranteed additivity for the gravita-

tional action. These choices leave only the freedom to rescale the affine parameter along

any of the null boundaries by a constant factor. However, this final ambiguity can be

removed by imposing a normalization condition on the null normals near the asymptotic

AdS boundary. One particularly appealing aspect of these choices is that they allow us

to make a meaningful comparison of the action for different WDW patches, including in

different bulk spacetimes. For the most part, we simply adopt these choices formulated

in [14] for our calculations of IWDW. However, we will not choose a fixed normalization

condition for the null normals at the AdS boundary in sections 3 and 5 — see discussion

in section 6.

B Example: extremal volume for a spherical boundary

Let us consider an explicit example of a codimension-one slice of the boundary where both

the intrinsic and extrinsic curvatures are non-vanishing. For simplicity, we will consider

Euclidean AdSd+1 in a foliation where the full boundary metric is simply Sd, with standard
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Figure 7. Extremal surface with θ0 6= π

2
obtained by boosting the symmetric extremal surface at

θ0 = π

2
.

coordinates {θ, φ1, · · · , φd−1} (see figure 7). Then we can consider a codimension-one slice

with the geometry Sd−1 given by θ = θ0, for which the extrinsic curvature is nonvanishing

as long as θ0 6= π
2 . To obtain the corresponding extremal surface in the bulk, we could

write the volume functional (2.6) and attempt to solve the Euler-Lagrange equations (2.7).

From spherical symmetry, we know that θ = θ (ρ) where ρ is the bulk radial direction which

certainly simplifies the latter task.

However, we proceed with a useful trick following the discussion in [53]. That is, we

use the fact that AdS can be embedded in flat space in one higher dimension

ds2 = −dy2−1 +

d∑

i=0

dy2i . (B.1)

Now AdSd+1 is basically a hyperbolic slice of this, such that

y2−1 −
d∑

i=0

y2i = L2 (B.2)

Consider the foliation

y−1 = L coshu , y0 = L sinhu cos θ

y1 = L sinhu sin θ cosφ1 , · · · , yd = L sinhu sin θ · · · sinφd−1 (B.3)

which then yields the induced metric for the AdS geometry

ds2 = L2
[
du2 + sinh2u dΩ2

d

]
(B.4)

where dΩ2
d is the usual line element on a unit Sd. Let us look at the plane y0 = 0

=⇒ θ = π
2 . By symmetry, this must be an extremal surface and its intersection with

the boundary which lies at u → ∞, is the equator of the boundary Sd. Hence we can see

the bulk surface described by y0 = 0 is a codimension-one extremal surface with an Sd−1

boundary. Now we simply perform a boost with boost parameter β in the embedding space
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(B.1), which shifts the plane and hence its intersection surface (B.2),

y−1 = (cosh β)L cosh u+ (sinh β)L sinh u cos θ′ ,

y0 = (sinh β)L cosh u+ (cosh β)L sinh u cos θ′ .

where θ′ is the angular coordinate for the symmetric extremal surface. Setting θ′ = π
2 , we

get an equation for θ(u)

cos θ = cothu sinhβ (B.5)

where, as u→ ∞, θ → cos−1( sinh β) = θ0 6= π
2 . We can check that this bulk surface (B.5)

satisfies the required Euler-Lagrange equation. Transforming the radial coordinate with

u = log(2L/z), the AdS metric (B.4) is put in FG form (2.1)

ds2 =
L2

z2

[
dz2 +

(
1− z2

4L2

)2

L2 dΩ2
d

]
(B.6)

with the extremal surface becoming θ(ρ) = cos−1
((

1+ρ/4
1−ρ/4

)
cos θ0

)
. From this result, we

can obtain the induced metric which, when substituted into the volume functional, yields

the complexity

CV =
Ld−1

GN

sind−1 θ0Ωd−1

d− 1

(
Ld−1

δd−1
− (d− 1)2Ld−3

4(d− 3) δd−3
− (d− 1)(d− 2) cot2 θ0 L

d−3

2(d− 3) δd−3
+ · · ·

)
,

(B.7)

where as in the main text, we have set the regulator surface at z = δ.

Now the boundary metric is ds2bdy = L2 dΩ2
d. Hence we recognize Ld−1 sind−1 θ0Ωd−1

as the volume of the Sd−1 boundary slice. Further we can evaluate

R =
d(d− 1)

L2
, Ra

a =
(d− 1)2

L2
, K =

(d− 1) cot θ0
L

(B.8)

Then we can explicitly confirm that the expansion of the complexity in eq. (B.7) matches

eq. (2.13), with integrals of boundary curvature invariants. There is one minor discrepancy

in this comparison, namely, the cot2 θ0 term above appears with a positive sign while the

sign of the K2 term in eq. (2.13) is negative. This difference occurs because implicitly this

sign is set by a factor of n · n and while the calculations in the section 2 use a Lorentzian

signature, in this appendix, we work with a Euclidean signature.

C Example: Wheeler-DeWitt action for global AdS

Using the rules prescribed in appendix A, here we study the divergence structure of the

WDW action in the simple example of a constant time slice on the boundary of global

AdSd+1. We will also compare the results found using the two different regularization

procedures illustrated in figure 2. In either case, we introduce a standard (timelike) reg-

ulator surface at a distance δ from the boundary of AdS. Then in figure 2a, we discard

the portion of the WDW patch extending beyond this surface, i.e., we only integrate the

bulk action out to this maximum radius. However, the regulated WDW region then has
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a new timelike boundary segment and two null joints at this surface, which contribute to

IWDW. In figure 2b, we instead regulate the calculation by simply shifting the edge of the

WDW patch inwards to the regulator surface. We will show that the structure of the UV

divergences in the corresponding complexity CA is the same for both procedures.

The AdSd+1 metric with boundary geometry R × Sd−1 can be written in the follow-

ing form:

ds2 =
L2

cos2 θ

(
−dτ2 + dθ2 + sin2 θ dΩ2

d−1

)
, (C.1)

where L is the AdS radius, and the boundary is at θ = π/2. From the previous discussion

of the geometries in figure 2, we see that the WDW action may receive contributions from

the Einstein-Hilbert bulk term, the Gibbons-Hawking-York boundary term, and the null

joint terms in eq. (A.1):

IWDW = Ibulk + IGHY + Ijnt . (C.2)

As discussed in appendix A, we are assuming that the generators on null boundaries are

affinely parametrized so that we may ignore the null boundary terms, i.e., κ = 0. One may

also examine the contributions to the gravitational action coming from the caustics at the

tips of the WDW patch where all of the null generators meet. However, these contributions

were examined in detail in [38] and were shown to vanish there.

Using the regularization of figure 2a, the boundaries of the WDW patch are

S+ : θ = π
2 − τ for

π

2
≥ τ ≥ δ′ ,

S− : θ = π
2 + τ for − π

2
≤ τ ≤ −δ′ , (C.3)

R : θ = π
2 − δ′ for − δ′ ≤ τ ≤ δ′ ,

where S+ and S− are the future and past null boundaries, while R is the UV regulator

surface. Of course, implicitly we have chosen the boundary time slice to be τ = 0. The

bulk contribution to the WDW action then becomes

Ibulk = −dL
d−1Ωd−1

4πGN

∫ π

2

δ′
dθ′ θ′ cotd−1θ′ csc2θ′ (C.4)

where θ′ = π
2 − θ and Ωd−1 is the area of a unit (d-1)-sphere. The integral above can

be evaluated in terms of hypergeometric functions, but here we are only looking for the

leading behavior as δ′ → 0, which can be extracted using a series expansion for small θ′,

Ibulk = −dL
d−1Ωd−1

4πGN

[
1

(d− 1)δ′d−1
− d− 2

30(d− 3)δ′d−3
+ . . .

]
(C.5)

To evaluate the GHY and null joint terms, we must consider the normals to the boundary

surfaces (C.3),

S+ : k1 = α1 L (dθ + dτ) , S− : k2 = α2 L (dθ − dτ) , R : n =
L

sin δ′
dθ , (C.6)
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where α1,2 are (dimensionless) normalization constants. For the regulator surface R, we

have K = 1
L

(
d−1
cos δ′ + cos δ′

)
and hence the corresponding boundary term becomes

IGHY =
Ld−1Ωd−1

4πGN
δ′

cosd δ′

sind δ′

(
d− 1

cos2 δ′
+ 1

)
=
Ld−1Ωd−1

4πGN

(
d

δd−1
− d2 − 3d+ 3

3δ′d−3
+ . . .

)
,

(C.7)

where we are considering the limit δ′ → 0 in the final expression. For the null joint at

S+ ∩ R, eq. (A.7) yields a1 = − log (n · k1) = − log(α1 sin δ′). Similarly for S− ∩ R,

a2 = − log(α2 sin δ′). Hence combining the two joint contributions yields

Ijnt = −L
d−1Ωd−1

4πGN

cosd−1 δ′

sind−1 δ′
log
(√
α1α2 sin δ

′
)

=
Ld−1Ωd−1

4πGN

[
log

(
1√

α1α2 δ′

)(
1

δ′d−1
− d− 1

3δ′d−3
+ · · ·

)
+

(
1

6δ′d−3
− 10d− 11

180δ′d−5

)]

(C.8)

Combining all of the above results, we see the divergence structure of the corresponding

complexity (1.2) emerges as

CA =
Ld−1Ωd−1

4π2GN

[
d(d− 2)

(d− 1) δ′d−1
− 10d3 − 61d2 + 117d− 75

30(d− 3)δ′d−3
+ · · ·

]

+
Ld−1Ωd−1

4π2GN
log

(
1√

α1α2 δ′

)[
1

δ′d−1
− d− 1

3 δ′d−3
+ · · ·

]
(C.9)

Note that the leading divergence coming from the joint term is positive. Likewise, the

leading power divergence is positive in this regularization.

This result is expressed in terms of the (dimensionless) boundary regulator δ′, which

was convenient in the present coordinates (C.1). To relate δ′ to the short-distance cutoff δ

appearing in the main text, we introduce the coordinate transformation

z =
2L cos θ

1 + sin θ
. (C.10)

Thus, the two regulators are related by

δ =
2L sin δ′

1 + cos δ′
−→ δ′ =

δ

L
− δ3

12L3
+ · · · . (C.11)

Then, in terms of δ, the complexity (C.9) becomes

CA =
Ld−1Ωd−1

4π2GN

[
d(d− 2)

d− 1

Ld−1

δd−1
− 15d3 − 97d2 + 199d− 135

60(d− 3)

Ld−3

δd−3
+ · · ·

]
(C.12)

+
Ld−1Ωd−1

4π2GN
log

(
L√
α1α2 δ

)[
Ld−1

δd−1
− d− 1

4

Ld−3

δd−3
+ · · ·

]
.

Alternatively, we could have used the second regularization illustrated figure 2b. For

this case there is no time-like boundary, and the null normals k1 and k2 are the same as

in eq. (C.6). The boundaries of the WDW patch are:

S+ : θ = π
2 − τ − δ′ for

π

2
− δ′ ≥ τ ≥ 0 ,

S− : θ = π
2 + τ − δ′ for − π

2
+ δ′ ≤ τ ≤ 0 , (C.13)
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For this case there is no space-like boundary. The joint terms turn out to be the same in

the two regularizations. Expressed in terms of the cutoff δ, eq. (C.8) becomes

Ijnt =
Ld−1Ωd−1

4πGN

[
log

(
L√
α1α2 δ

)(
Ld−1

δd−1
− d− 1

4

Ld−3

δd−3
+ · · ·

)
+

(
Ld−3

4δd−3
+ · · ·

)]
.

(C.14)

However, the bulk term is slightly modified:

Ibulk =
2

16πGN

∫ π

2
−δ′

0
dθ

∫ π

2
−θ−δ′

0
dτ

∫
dΩd−1

Ld+1 sind−1 θ

cosd+1 θ

(−2d

L2

)

= −dL
d−1Ωd−1

4πGN

∫ π

2

δ′
dx(x− δ′) cotd−1 x csc2 x

= −L
d−1Ωd−1

4πGN

[
1

(d− 1)δ′d−1
− d

3(d− 3)

1

δ′d−3
+ . . .

]

= −L
d−1Ωd−1

4πGN

[
Ld−1

(d− 1)δd−1
− (d+ 1)

4(d− 3)

Ld−3

δd−3
+ · · ·

]
(C.15)

Combining these two contributions for the action, we find

CA = −L
d−1Ωd−1

4π2GN

[
Ld−1

(d− 1)δd−1
− d− 1

2(d− 3)

Ld−3

δd−3
+ · · ·

]
(C.16)

+
Ld−1Ωd−1

4π2GN
log

(
L√
α1α2 δ

)[
Ld−1

δd−1
− d− 1

4

Ld−3

δd−3
+ · · ·

]

This result can also be compared with the general geometric expression in eq. (3.16). The

required curvature invariants for the present example are

R = Ra
a =

(d− 1)(d− 2)

L2
, K2 = KabK

ab = 0 . (C.17)

Now substituting these expressions into eq. (3.16) reproduces precisely the divergences

given above in eq. (C.16).

Comparing eqs. (C.12) and (C.16), we see that the form of divergences remains the

same between the two regularizations, however, the coefficients are typically different. Gen-

erally, these coefficients are not universal and so these differences are not at all surprising.

However, it is of interest to compare the logarithmic contribution appearing with the two

regulators since the coefficient of this term is usually regarded as universal. However, unfor-

tunately a careful analysis shows that in general the two regularizations produce different

coefficients for this term as well. We expect that this difference is related to the ambiguity

in the choice of the normalization constants, α1 and α2, discussed in section 6.

D Geometric details for CA duality calculation

Two coefficients, q
(2)
0 and q

(0)
2 , appear in eq. (3.11) and here we will derive eq. (3.12)

which provides a geometric translation for these factors. Recall that these coefficients were
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defined by the double expansion of the measure
√
γ =

√
det[gab(x, z)] in eq. (3.8), which

we reproduce here for the reader’s convenience:
√
γ =

√
h(σ)

( [
1 + q

(2)
0 (σa) z2 + . . .

]
+
[
q
(0)
1 (σa) + q

(2)
1 (σa) z2 + . . .

]
t

+
[
q
(0)
2 (σa) + q

(2)
2 (σa) z2 + . . .

]
t2 + · · ·

)
. (D.1)

Expanding the determinant using FG expansion (2.2), as well as eq. (2.3), then yields

√
γ =

√
h

(
1 +

z2

2

(0)
g ab (1)

gab + · · ·
)

=
√
h

(
1− z2

2(d− 2)

(
Ra

a −
1

2
R
)
+ · · ·

)
(D.2)

where Ra
a = habRab — recall that the boundary metric takes the form given in eq. (3.1)

and we are considering the time slice t = 0. Hence comparing eqs. (D.1) and (D.2), we see

q
(2)
0 (σa) = − 1

2(d− 2)

(
Ra

a −
1

2
R
)∣∣∣∣

t=0

. (D.3)

To evaluate q
(0)
1 and q

(0)
2 , we first set z = 0 to reduce eq. (D.1) to

√
γ
∣∣
z=0

=
√
h
(
1 + q

(0)
1 (σa)t+ q

(0)
2 (σa)t2 + · · ·

)
. (D.4)

Now differentiating with respect to time, we find

1√
h
∂t
√
γ
∣∣
t=0

= q
(0)
1 (σa) ,

1√
h
∂2t

√
γ
∣∣
t=0

= 2q
(0)
2 (σa) . (D.5)

Now we may write the trace of the extrinsic curvature as

K(t, σ) = ∇µn
µ =

1√−g∂µ(n
µ√−g) = 1√−g∂t(n

t√−g) = 1√−g ∂t
( √−g√−gtt

)
=

1√
γ
∂t
√
γ ,

(D.6)

since we have fixed the boundary metric as in eq. (3.1). Hence comparing the last two

equations, we see

q
(0)
1 (σa) = K(t, σ)

∣∣
t=0

. (D.7)

Now turning on to q
(0)
2 , eq. (D.6) gives

√
γ K(t, σ) = ∂t

√
γ . (D.8)

By differentiating this result, we can rewrite the expression for q
(0)
2 in eq. (D.5) as

q
(0)
2 (σa) =

1

2
√
h
∂2t

√
γ
∣∣
t=0

=
1

2
√
h
∂t
[√
γ K(t, σ)

]∣∣
t=0

=
1

2

[
K2 + ∂tK

]∣∣
t=0

, (D.9)

where the final result uses eq. (D.8) again. To find a covariant replacement for ∂tK, we

can use the following identity (e.g., see [66])

1

N

[
LmK +DaD

aN
]
= KabK

ab + ninjRij (D.10)

where N is the lapse function. In our case, Lm = ∂t and N = 1, and hence we may write

∂tK = KabK
ab + ninjRij = KabK

ab +Ra
a −R (D.11)

where we used ninjRij = Ra
a − R. Thus from eq.(D.9), we have

q
(0)
2 (σa) =

1

2

(
K2 +KabK

ab +Ra
a − R

)∣∣∣
t=0

. (D.12)
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