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Abstract. We discuss a model of non linear quantum mechanics in which the
wave equation satisfies the homogeneity condition (2.1). It is argued that in this
model the set of (mixed) states is a simplex.

I. The Setting

The term "state" of a system is customarily used in quantum physics for a
statistical ensemble of (equally prepared) samples of the system. Since such
ensembles may always be mixed the set ̂  of states is a convex set, i.e. with

and

ω = λωl +(1 — λ)ω2 (1.1)

is again a state, namely the mixture of ωl and ω2 with weights λ and (1 —A). The
extremal points of the convex set £f (i.e. those states ω which cannot be
represented as a mixture of others) are the pure states. We denote their set by S.
Since we shall be concerned here with the simplest possible generalization of
ordinary quantum mechanics it suffices to consider the case where £f is "atomic"
i.e. where every state ω is a countable convex combination of pure states1

ω = ΣλiΦi, Φ t e<f, A;>0, ΣΛ = 1 (1-2)

Still 8 will not determine £f because in general different mixtures of pure states
may result in ensembles which are indistinguishable by any measurement. The
limitations in observability introduce an equivalence relation (denoted by ~) in

* Dedicated to Professor Gϋnther Ludwig on the occasion of his sixtieth birthday
1 More generally one might take & to be a measure space and replace (1.2) by

ω=\Φdμ(Φ) (1.3)
s

with μ a (positive, normalized) measure on S
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the collection # of convex combinations of pure states. A state is then an
equivalence class in # symbolically

y=<βl~. (i.4)
If there is no (nontrivial) equivalence relation i.e. if the classes consist of but one
element then £f is a simplex. This is the situation in classical physics2. In general
the structure of ̂  as a convex set (the "statistical figure" in the terminology of [1])
determines the nature of the observational conclusions which can be made about
the system, in particular the "quantum logic". To fix this we have to describe $ and
the equivalence relation ~ .

Let us now consider the case where the system is a single spinless particle and
where as in Schrδdinger's wave mechanics a pure state Φ is described by a complex
valued wave function φ(x). Again we do not assume that the correspondence
between a pure state Φ and wave function φ is one to one but rather that Φ
corresponds to an equivalence class of such functions. In order to determine the
equivalence relation (in the space of wave functions as well as in #) we have to
specify what observations are possible. Following [1] we assume that the basic
observation is a measurement of the position of the particle. All other possible
observations are obtained by letting the particle move for a certain time interval
under the influence of some external fields (which can be chosen and varied by the
experimenter) and making a position measurement at the end of this time interval.
If we denote the external fields symbolically by A then the wave function is
transformed in the time ί (following the preparation of the ensemble) to a wave
function (Schrodinger picture)

<PA = T A ( t ) φ 9 (1.5)

where Ta(t) is some operator acting in the space of wave functions.
To complete the description of the general scheme we have to specify
i) the expression for the probability p(A,φ) of finding a particle of the pure

ensemble represented by the wave function φ in the space-region A,
ii) the possible external agents A which determine the set of obtainable

operators TA(i) (generating the "motion group" in the terminology of [1]).
For ii) Mielnik suggests that the Schrodinger equation might be replaced by a

nonlinear wave equation and proposes some examples which as in the case of
ordinary quantum mechanics lead to a continuity equation for a suitably defined
probability density ρ(x). Then i) may be answered by taking

p(A,φ)=$ρφ(x)d*x .
Δ

We mention here two of the proposals of [1].

a) ihd = -Δ(\φ\2φ)+V\φ\2φ. (1.6)

The external agent which can be chosen by the experimenter is a scalar potential
V(x,t). Here one has a continuity equation for ρ = \φ\4. One would then put

3x, (1.7)

2 Of course the restriction to countable convex combinations of pure states would not be reasonable
there any more
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where N is a normalization factor (see below),

dt 2m

Here the L2-norm is conserved and one puts

p(A,φ)=— §\φ\2d3x . (1.9)
N A

The external agents available are the two scalar potentials Vfa t\ Ufa t). If one
does not make use of U one has ordinary wave mechanics so that this scheme is an
extension of Schrodinger theory.

II. Homogeneity

The wave Equations (1.6) and (1.8) do not satisfy the homogeneity condition3

< <2 »
for cΦ 1. This affects the question of normalization.

Let us consider the case b) which is simpler to discuss and also more realistic.
The total probability of finding the particle at a given time somewhere in space
should be equal to 1:

= 1; so N=\\φ\\2. (2.2)
IV

Unlike ordinary quantum mechanics and due to the fact that (2.1) is not satisfied
we can determine \\φ\\ already from the ratios of the counting rates for different
experiments, disregarding (2.2). To find φ at ί = 0 we can, using first only ordinary
quantum mechanical potentials V (taking U = Q) determine the shape of the wave
function from the ratios of counting rates i.e. determine φ up to an arbitrary
complex factor c. If, on the other hand, we use a "strange" potential U for some
time which changes φ by a nonlinear operator T to Tφ then if the homogeneity
condition T(cφ) = cTφ is not satisfied the shape of the wave function Tφ will
depend on the absolute value of c so that also |c| and therefore l l φ l l can be
determined from ratios of counting rates. Therefore φ and λφ are different pure
states. One might think of imposing the additional condition

l l φ l l = l (2.3)

in order to bring the pure states again into one to one correspondence with unit
rays in Hubert space. But this is not admissable due to macroscopic locality.
Consider a sequence of wave functions

φn = ψ-l-ιp'n 5 (2.4)

where the support of ψ'n is separated from that of ψ by a distance rn and
lim rn—>oo. Let T be any operator in the motion group resulting from the action

More precisely: if φ(x, t) is a solution and c a constant the cφ is not a solution
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of potentials [7, V during a finite time interval t (the choice of U, V, t being
arbitrary but fixed i.e. independent of n). The fact that the evolution law is a
differential equation implies presumably

lim \\Tφn-Tψ-1\p'\\=Q (2.5)
n-xx)

and, for any fixed, bounded A

lim \\Tιp'n\
2d*x = Q. (2.6)

Jn-»oo

Thus for n-+ oo the ensemble φn will give the same ratios of counting rates as the
ensemble described by ψ for all experiments performed in finite space time regions.
Choosing l l φ J I 2 = l the probabilities are scaled

p(Δ,Tφn)^\\ψ\\2p(Δ,Tψ)

which means that in the ensemble φn the fraction (1 — l i t / ; I I 2 ) of systems escapes the
detection and the remainder behaves like an ensemble with wave function φ. This
shows that a state corresponding to a wave function ψ with l i t / ; I I < 1 can indeed be
prepared [essentially by preparing a state φn of the form (2.4) with ||φ,J = l
and absorbing the part which is far away].

To sum up: The violation of the homogeneity condition (2.1) has the
consequence that wave functions with the same shape but differing in norm
represent different pure states. The number \\φ\\ is a constant of motion which
although related to the conservation of the number of systems in the ensemble is
not a normalization factor but influences the ratios of counting rates. This is not a
decisive objection against such models but at this stage it appears perhaps more
natural to consider wave equations which—though non linear—satisfy the
homogeneity condition (2.1). An example which we will discuss somewhat in the
next section is

i — = — Δφ-\-Vφ-\-A- VSφφ (setting h = 1, m = ^) , (2.7)

where VSφ is the gradient of the phase of φ i.e.

_ φ*Vφ-φVφ*

«~ 2i\φ\2 ' ( ' }

The external agents are a scalar potential V(x,t) and vector potential A(x,t).

III. The Statistical Figure in the Model (2.7)

The evolution equation proposed in (2.7) is non linear but homogeneous.
Therefore as in Schrodinger theory the pure states are in one to one cor-
respondence with rays in L2. The availability of the "vector potential" A as a
possible external agent makes a finer distinction of mixed ensembles possible. In
fact we want to show

Proposition 1. // Φt (i=l,2,...,n) and Φ} (/=l,2,...χ) are two different sets of

pure states then two ensembles ω = ̂ jλiΦί and ω' = ΣtyΦj are always distinguishable
(inequiυalent).
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This means that (up to topological questions which we do not study here) the
statistical figure is a simplex.

Proof. If ω ~ ω' then at least the corresponding density matrices must be identical
otherwise we could already distinguish ω and ω' by measurements using only the
ordinary quantum mechanical potentials V.

Let φk (/c = 1,2,..., n + n') be wave functions representing respectively. Φt for
(fc = i=l, . . . ,n) and Φ' for (k = n+j, 7 = l,...,n'), and μk real numbers μk = λk (for
fc = i)9 μk= — λj (for k = n +j). Then, if ω~ω' we must have

*) = 0 (3.1)
k

for any operator T of the motion group4. Using (3.1) for T=l and for T
corresponding to a motion (2.7) for an infinitesimal time interval we get

k

Since the function Λl(jt) is free to choose we must have

(3.2)

(3.3)

k

Suppose now that the φk span an m-dimensional subspace (certainly m<n + n'
since the wave functions cannot be linearly independent if ω ~ ω') and choose an
orthonormal basis χr (r=l,2,...,m) in this space. Then

(Pk = ΣckrXr (3-5)
r

and (3.2) and (3.4) become
n + n'

Σ μkckrckr,=Q for any r,r' , (3.6)
fc=l

Σ μkckrφk(x)VSk(x) = 0 for any r, jc . (3.7)
k = l

We may assume that the φi9 φ' are a minimal set of wave functions for which the
equivalence ω ~ ω' holds i.e. that on the left hand side of (3.6) no partial sum over a
proper subset / of indices k vanishes. In particular we may choose the basis so that

ΣVkCkicki=° imPlies /-{1,2,..., n + n'} (3.8)
kel

and Imc f c lc k 2Φθ for all k —1,2,...,n + n'.
The essential point is now that for given expansion coefficients ckr the phases

Sk(x) depend on the basis functions χr. Since already the ordinary quantum
mechanical motions (A=0) generate the unitary group (compare [1]) we may
choose for Tin (3.1) in particular an arbitrary unitary operator. This means in turn
that (3.7) should hold for arbitrary choice of the orthonormal basis functions χr(x).

Choose now χ^ and χ2 to have the same support, e.g. the cube K with the origin
as center and edge length 1 and choose the support of χr with r>2 disjoint from K.

4 The left hand side is the difference between the statistical matrices (in the jc-representation) which
correspond to ω and ω' after a motion T
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otherwise, <3'9>

a = 2 ] / 3 . (3.10)

Then for xeK

Specifically let

ίl for xεK

^ _ (312)

/c2 + α2x2 |c fc2 |
2 '

Condition (3.7) demands now that the functions φkVSk should be linearly
dependent. According to (3.11) and (3.12) these are broken rational functions and
only those of them can be linearly dependent, for which the positions of the poles

/->
coincide. Now the poles of PSt lie at -- ^— . Therefore we can have linear

ack2

dependence only for such subsets of φkVSk for which the φk within K are
proportional and hence the VSk identical. In that case we get from (3.7) for such a
subset / of indices k

kel

or

kel

Due to the minimality assumption (3.8) this means that / = {l,2,...,n + n'} i.e. that
all functions φk must be proportional within K which in turn implies that the
subspace spanned by them is at most (m— 1)- dimensional which is a
contradiction. Π

Thus the fact that we can influence the motion by the non linear ,4 -term in this
model makes mixtures of different sets of pure states distinguishable. As far as only
single particle systems are considered one might claim that \φ(x)\ and VS(x)
describe the "objective state" of an individual particle. However it is not our
intention to maintain that thereby one achieves a classical theory (where \φ\ and
VS are hidden variables of the particle) because problems with such an in-
terpretation would immediately arise as soon as one considers 2-particle systems.
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