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Abstract

Discussing the paper ”Model-free model-fitting and predictive distributions” by Politis

(2013), we propose to extend this procedure to semiparametric and parametric mixed

effects models (MEM) as in practice, these are probably the most popular ones for pre-

diction. Specifically, combining Politis’ prediction method with procedures from Lom-

bard́ıa and Sperlich (2012) and González-Manteiga, Mart́ınez-Miranda, Lombard́ıa-

Cortiña and Sperlich (2013) yields new MEM-based MF/MB point and interval pre-

dictors which can be used for example for small area statistics. Combining Politis’ idea

with nonparametric matching estimators may also yield improved (point and interval)

estimators for treatment effects and policy evaluation.

Keywords: prediction, small area statistics, treatment effect estimation, non- and

semiparametric estimation.

1 Introductory Comments

The paper of Politis (2013) provides a new and original way of thinking about prediction1.

Themodel free prediction principle arms him with a universal tool that goes clearly beyond

the classical understanding of conditional mean and quantile prediction. Importantly, the

provided resampling methods extend this idea to further construct reliable prediction

intervals instead of just point predictors. In his Sections 3 and 4 he shows very well

that this principle is indeed feasible and can often be reached by slight modifications

of well-known standard estimation methods and bootstrap. His simulations provided in
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du Pont d’Arve 40, CH-1211 Genève, Suisse. E-mail address: stefan.sperlich@unige.de. The author
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1Admittedly, he has already been applying and developing this idea further since a couple of years, as

you can see from his own reference list.
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different Subsections demonstrate how powerful the resulting predictors are compared to

the procedures having been used so far.

It is evident that given the feasibility and excellent performance, this prediction principle

will open a new field of research in at least three directions: (a) the domain of possible

applications, which is the one we will mainly discuss in the following sections, (b) the

domain of practical issues like the choice of transformation and priors, namely of the

model or smoothing parameters, the smoother itself (thinking of kernels, local polynomials,

penalized or regression splines, etc.), dimension reduction (semiparametric or additive

models, essential dimension reduction, etc.), resampling alternatives (subsampling maybe,

see Politis, Romano and Wolf, 1999) and the measurement of predictive power2, (c) and

last but not least the domain of efficient and user-friendly implementation.

2 Extension to Mixed Effects Models

When Politis (2013) speaks of ’model-free’, may it be in terms of MF/MB or as MF/MF2,

it should not be unnoticed that the model choice, including the nonparametric option will

have an impact on the functioning of the prediction principle and therefore also the quality

(i.e. size and location) of the prediction interval. A particular obstacle is the potential

dependency between the variable of interest, i.e. the responses Y in his notation. While

in a model-based approach this dependency can often be handled, even if the model is

semi- or nonparametric; overcoming such a problem is more challenging in his model-free

approach discussed in his Section 4. The case of time series has been considered by him

in different papers, if only in the MF/MB context.

Being aware of both the benefits and withdraws of such a dependency, statisticians in the

different fields where such dependencies are obvious or prediction is of major interest, have

developed strategies along mixed effects models; for longitudinal data in biometrics, for

panel data in econometrics, for area-clustered data in official statistics including environ-

metrics and poverty mapping (also well-known as ’small area statistics’), or think of the

extension to more complex hierarchical models in social sciences. Limiting the discussion

to random intercepts, equation (1) of Politis (2013) then extends to a model of the form

Yd,t = µ(xd,t) + ud + σ(xd,t)εd,t for d = 1, . . . , D, and t = 1, . . . , nd (1)

where the index d indicates to which cluster (area) the observation belongs to, and∑D
d=1

nd = n is the sample size. When referring to the population we use Nd < ∞

with D → ∞ asymptotically. While Y , x, and ε are as in Politis (2013), ud stands for the

area specific effects. If this is independent from ε and x, it can be taken and treated as a

2It might be of interest in this context that the proposal by Nielsen and Sperlich (2003) of such a

measure, the so-called validated R2, is simply the classical R2 but calculated from the predictive residuals

of Politis (2013) in the numerator and denominator. Nonetheless, by parts of the community working on

empirical finance it has typically been refused as a measure of predictive power, certainly without any

sophisticated justification.
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random effect. If some dependency between the area and x is likely, then one must account

for this by first filtering out the common effect, see Lombard́ıa and Sperlich (2012).

The literature about estimation, inference and prediction with mixed models of the form

(1) is abundant, so that we can only mention few recent contributions closely related to

our context: Verbeke and Molenberghs (2000) is a standard compendium for linear mixed

models for longitudinal data with µ(·) being a linear model and d indicating the subject

with nd repeated measurements over time. Wand (2003) combines spline smoothing and

mixed models where µ(·) is a series of orthogonal polynomials, d indicates an area of the

support of x, and ud the local deviation from the polynomials. Lombard́ıa and Sperlich

(2008) propose estimators, tests and bootstrap procedures for generalized nonparamet-

ric mixed models; µ(·) is an unknown smooth function of x, and ud the random effect.

González-Manteiga, Mart́ınez-Miranda, Lombard́ıa-Cortiña and Sperlich (2013) review the

various existing nonparametric estimators for model (1).

It is not hard to see that all these models can be embedded in the MF/MB prediction

principle of Politis (2013) almost straight forwardly; the linear-model-based methods of

Verbeke and Molenberghs (2000) for example in his Sections 3.6 and 3.7, the others men-

tioned above in 3.1 and 3.5 – they all refer to non- and semiparametric models. It is

mainly the bootstrap algorithm, cf. his Sections 2.6 and 3.5, respectively, that has to be

adapted as we have to handle two random terms, namely ud and εd,t in our mixed model

(1). Furthermore, while the latter (εd,t) are assumed to be i.i.d., the ud might have a (con-

ditional) covariance structure Σu(x). Following Lombard́ıa and Sperlich (2008), one draws

some random u∗d|x with mean zero and covariance Σ̂u(x) but can proceed for the ε∗d,t as in

Politis (2013) to obtain the bootstrap sample (y∗, x) with3 y∗d,t := m(xd,t)+u∗d+sxd,t
ε∗d,t.

From that sample one finally calculates the bootstrap estimates m∗(x), s∗x and predictors

û∗d. In other words, the resampling algorithm of Politis (2013) is almost unchanged but

enlarged by one step, say (a.2) to draw the u∗d, which are afterward added to Y ∗ in (b),

(c) and predicted (û∗d) in (d). By these steps we account for the random effect ud.

When turning to the construction of prediction intervals, notice that the incertitude of

the prediction depends, as before, on the variance of the estimator of µ(·), the individual

variation σx and its estimation error, but additionally also on the prediction error of ud.

This is automatically taken into account in step (e), namely4

prediction− error∗ = g(Y ∗

d,f )−Π(g,m∗(xd,f ), s
∗

xd,f
, û∗d,X, F̂ ∗

n) , (2)

where g(Yd,f ) is the prediction of interest for a known function g(·) and xd,f of a subject

in a given area (or cluster) d. The predictor Π(·) has to be chosen from Table 3.1 of

Politis (2013) completed by the corresponding adding5 of ûd. As in Politis (2013), F̂ ∗

n

3We try to keep here almost the notation of Politis (2013), where m(x) = µ̂(x), sx = σ̂(x), and F̂n

being the empirical distribution of the residuals.
4Again we follow the notation of Politis (2013).
5You simply substitute m(xd,f ) + ûd in Table 3.1. for mxf

.
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indicates the empirical distribution of the ε∗, and X the set of all observed (or used) ex-

planatory variables. Consequently, it seems that no further adaptation of Politis’ proposal

for constructing prediction intervals is necessary.

Unfortunately, in mixed effects models the choice of bandwidth and consequently also

the choice of the bootstrap bandwidth becomes even more crucial and complex. This

is especially true when some of the explanatory variables vary only over the different

areas d = 1, . . . , D. An inappropriate bootstrap bandwidth does not always lead to an

undercoverage, it can equally well lead to an overcoverage. In any case it distorts the

correctness of the prediction interval, see Remark 3.3 of Politis (2013). Sperlich (2013)

explains that this bandwidth problem is similar to that of finding the optimal subsample

size in subsampling (see Politis, Romano and Wolf, 1999). Consequently, in order to find

an appropriate bootstrap bandwidth he proposes – with some success in his simulations –

to apply the same procedure as it is used for determining an appropriate subsample size.

3 Its use in Small Area Statistics

Small area statistics is one of the fields to which mixed effects models owe their extraor-

dinary popularity. Again, the literature about small area statistics is abundant: see for

example Rao (2003) for a classical compendium, and Jiang and Lahiri (2006) for a review

of more recent contributions. Opsomer, Claeskens, Ranalli, Kauermann and Breidt (2008)

and Sperlich and Lombard́ıa (2010) were probably the first presenting nonparametric small

area estimators and specification tests based on mixed effects models. Salvati, Chadra,

Ranalli and Chambers (2010) discussed nonparametric direct estimators for small areas.

Lombard́ıa and Sperlich (2012) showed how the necessary independence of the random

effects can be reached.

The problem is always to estimate or predict a certain parameter for all small areas,

mostly the mean but sometimes certain quantiles or even a special distribution parameter

which indicates e.g. the percentage of poor in an area. The available data can be census

data with some missing responses Y (typically assumed to be missing at random) or

sample data with some missing Y . Let us consider in the following the simple example of

predicting the missing responses Y in a census to afterward predict a linear combination

(like e.g. the mean) of the Y in each area, say γ′dY d where Y d = (Yd,1, . . . Yd,Nd
) for given

γd ∈ IRNd . Let us split it to γd = (γ′d,s, γ
′

d,f )
′ where the first part of the vector stands for

the observed Y , and the second for the ones which have to be predicted. Analogously we

split Y d = (Y ′

d,s, Y
′

d,f )
′ of which Y d,f is unobserved, and xd = (x′d,s, x

′

d,f )
′ which consists

only of observed explanatory variables. Holding census data (in this example), the for the

prediction interval relevant prediction error comes exclusively from γ′d,f Ŷ d,f .

Following exactly the prediction and bootstrap procedure from above, Section 2, we get

by resampling as many

prediction− error∗ = γ′d,f Ŷ
∗

d,f − γ′d,f{m
∗(x̂d,f ) + û∗d + s∗xε

∗

d,f}
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as we need (or want) to simulate the distribution of the real prediction error. From these

one can easily construct now any prediction interval for γ′dY d, and analogously for any

other area d = 1, . . . , D.

We must be aware that albeit the excellent properties Politis’ procedure exhibits in his sim-

ulations should carry over to this problem, the bad properties of predictors not following

his procedure might not. The reason is that the prediction problem is somewhat easier as it

is just a summary statistic like the average of predictors (i.e. where γd = (1, 1, . . . , 1, 1)/Nd)

that matters. In particular, it has to bee studied whether and to what extend the superior-

ity or discrepancy of his method is maintained or even increases for an increasing number

of missing responses Y .

4 Improved Matching Estimators for Average Treatment

Effects (of the Treated)?

Treatment effect estimation has a long history in biometrics. During the last fifteen years

it was experiencing a revival when it finally was detected by the econometricians. We start

with explaining in brief why in first line this is actually a problem of prediction rather

than of estimation. To this aim, let T be the treatment indicator.

The interest is to estimate the effect of a treatment (T = 1) on ’output’ Y versus the

counterfactual case of no treatment (T = 0) for the same person, and the population

average of this effect. The important thing to understand is that we speak of the same

person, i.e. treatment effect TEi = Y 1

i −Y 0

i of person i or its average ATE = E[Y 1

i ]−E[Y 0

i ].

Often one is already happy with obtaining a good estimate for the average treatment effect

for the treated (only)

ATET = E[Y 1

i |Ti = 1]− E[Y 0

i |Ti = 1] . (3)

For the ease of notation let us concentrate on the latter. It is clear that (
∑

i:T i=1
Yi)/(

∑
i:T i=1

Ti)

is a reasonable estimator for E[Y 1

i |Ti = 1]. The real problem is to construct an estimator

for E[Y 0

i |Ti = 1]. With a control group of non-treated subjects at hand we are tempted

to set

Ê[Y 0

i |Ti = 1] = (
∑

i:T i=0

Yi)/(
∑

i:T i=0

Ti) . (4)

Unfortunately, this is only a good idea if both groups are random samples of the total

population, a rather unrealistic assumption in practice. Therefore, what remains unsolved

is the prediction problem (4) to forecast the potential non-treatment outcome Y 0 for the

treated with the aid of the non-treated control group.

Formally spoken, in order to use (4) one would need the independence condition T ⊥

(Y 1, Y 0) which typically is unlikely to hold in social sciences unless we can force people to

treatment and exclude them equally well. Having so-called ’confounders’ x at hand, i.e.
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variables that have an impact on T but not vice verse at the time of its observation, one

may hope for the conditional independence T ⊥ (Y 1, Y 0)|x, the CIA. Given CIA one has

E[Y |T = t, x] = E[Y t|T = t, x] = E[Y t|x] =: µt(x) , t = 0, 1, (5)

where µ0(·) can be estimated from the observations of the control group. As

ATET =

∫
Y − E[Y 0|T = 1, x] dF (x|T = 1) =

∫
Y − µ0(x) dF (x|T = 1), (6)

cf. equation (3), a resulting matching estimator is simply

ÂTET =
∑

i:Ti=1


Y 1

i −
∑

j:Tj=0

Wi,jY
0

j


 /(

∑

i:Ti=1

Ti) (7)

with Wi,j a weight function regarding closeness of j to i ’in x’ and summing up to 1 (like

kernel smoothers do), see Abadie and Imbens (2006) for more details and discussion.

In other words, as already mentioned above and can be seen now from (7), one forecasts

Y 0 for subject i in the treatment group by matching it with members of the control group

which are similar to i in their characteristics. The error distribution of these matching

estimators is typically approximated by bootstrap methods6. We conclude this section

with basically the same remark that we mentioned at the end of Section 3. The number

of needed predictions is large, if not huge, and can easily amount to several thousands to

be integrated over afterwards. Consequently, it would be interesting to see whether the

superiority of Politis’ method is then still maintained, increases or vanishes.

5 Concluding Remarks

It would be too lengthy to discuss the further thinkable, often quite straight extensions of

what is outlined above. In Section 2 one might continue with multilevel models including

some more nested random effects, discuss the particular implementation via prior modes

or (pseudo) likelihood functions, or switch to generalized (linear) mixed effects models

with known link function.

In Section 3, apart from the just mentioned ones, it is most interesting to see how the

method carries over to problems where specific distribution parameters are demanded

that are more complex than the mean or a quantile; think of the various definitions of a

poverty line and how to estimate the proportion(s) of the area-population(s) lying below

it, cf. Elbers, Lanjouw and Lanjouw (2003).

In Section 4 the first question coming up to my mind is the extension to propensity score

based (or propensity score weighted) matching. There, the full information x gets reduced

6However, to the best of my knowledge, the consistency of bootstrap for nonparametric matching

estimators has so far not been proved in general. In contrast, Abadie and Imbens (2008) have proved the

inconsistency of the bootstrap procedure for the often used kNN matching.
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to the so-called ’propensity to treatment’ P (T = 1|x) as this is supposed to contain all

relevant information, functioning thus like a sufficient statistic. The obvious advantage

is the dimension reduction; in econometrics x often amounts to a set of about twenty to

thirty variables whereas the propensity score regression is just one dimensional. Further

desirable extensions comprise the ATE estimation or the difference-in-difference matching.

All these extensions, however, are more or less straight (even though not always trivial).

Personally, I am curious about the seemingly more challenging question how to extend

the MF/MF2 idea of Section 4 of Politis (2013) to those kinds of models and prediction

problems. Certainly, one could try to work in e.g. the random effects or the (treatment)

selection process in Politis’ procedure. But when doing so we are easily tempted to switch

to a model-based approach. On the other hand we could equally well ask whether a

MF/MF2 is at all desirable if we already have knowledge about some structure in the data,

and how to decide which approach is superior then? We could even go a step further and

ask the same question that has been bothering statisticians since decades if not centuries:

the one of model selection, see e.g. Linhart and Zucchini (1986) and Claeskens and Hjort

(2008), or (if using nonparametric models) bandwidth selection, cf. Köhler, Schindler and

Sperlich (2013).
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