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Comments on “Modified K-Means Algorithm for Vector The conventionalL-means algorithm [7] for the design of a code-
Quantizer Design” bookC = {c¢;, i = 1,---, N} of size N from the training data
T ={xm, m=1,---, M}is as follows.
Kuldip K. Paliwal and V. Ramasubramanian 1) Initialization: Iteration numben = 0; codebook at iteration,
C*={c}',i=1---, N}; convergence threshotd
Abstract—Recently a modified K-means algorithm for vector quanti- 2) E’artltlonlgg: Find the_nef:rest’-nilgfllbor p?\gtltloﬁ(cj) N
zation design has been proposed where the codevector updating step is as Xm € 1t Q(Xm) =¢ b = Loy AV Here,Q de-
follows: new codevector= current codevector + scale factor (new cen- notes vector quantization operation and is defined as follows:
troid — current codevector). This algorithm uses a fixed value for the scale Qx) = ¢} if d(x, c}) < d(x,c), i = 1,---, N under
factor. In this paper, we propose the use of a variable scale factor which some distance measuf(ax y) X,y € RK
is a function of the iteration number. For the vector quantization of image NG NP n
data, we show that it offers faster convergence than the modified -means 3) c_:OdEbOOK UR(jate.Upgitle Code\/T?J(r:tlors'C - {CZ'
algorithm with a fixed scale factor, without affecting the optimality of the Jj =1L NttwoC = {Cj . j = L., N}
codebook. as
Index Terms—Faster convergence KK -means algorithm, vector quanti- 1 n
zation. ;T =C(V(c])) 1)

whereC(V(c?)) is the centroid of the partitiol’(c} ) under the
given distance measuréx, y).

Vector quantization is a powerful data compression technique used4) Convergence Checl8top if |d,, — dyn—1|/d. < ¢, whered,, =
in a number of signal processing applications including speech coding,  (1/M) >_, d(x,, Q(xm)). Otherwise, replace by n + 1
image coding, and speech recognition [1]-[6]. Design of a vector quan-  and go to Step 2.
tizer is accomplished by generating a codebook from the training datarhe modifiedk’-means algorithm proposed by Letal.[9] updates
using a distortion measure appropriate for the given application. T current codevectar? (at iterationn) to the new codevectar; '
L’-means clustering algorithm (or the generalized Lloyd algorithm) is be used at iteration + 1 as '
usually used for this purpose [7], [8]. This algorithm is iterative in na-
ture and requires a large amount of computation time for convergence. = 4 S(C(V(eh)) — ). 2)
The computation time mainly depends on the amount of training data, I ’ T

codebook size, vector dimension, and distortion measure. .
’ ' Under a squared-error distance measure,dtes. [9] have found ex-

i I?\e\;t;gtlyr,; r:)wsogéflsdxl:;nﬂe;nsgal%?r;;ir;:og(;/ﬁ\g?rg#(?entllﬁatttl]ci)sn :le ‘perimentally that the modified-means algorithm converges slower
o brop y '_[ ] - 9 ) " in comparison to the convention&l-means algorithm whes < 1.
gorithm, the codevector updating step is as follows: new codevector,

tcod tof scale fact troid t cod ¢ Whenl < s < 2, it converges faster and results in better perfor-
current codevector scale factor (new centroie current co evec o). mance in terms of mean-squared error. Whep» 2, the algorithm
This algorithm uses a fixed value for the scale factor. In this paper,

. L . Wfther does not converge, or converges very slowly with poor perfor-
propose the use of a variable scale factor which is a function of theﬂﬁ’ance. The modifieds-means algorithm gives the best results when

eration number. For vector quantization. Of image data, we shqw thaltHE scale factor is set to a fixed valuesof= 1.8. It may be noted that
offers faster convergence than the modifiéemeans algorithm with a for s = 1, the modifiedk-means algorithm becomes the same as the

fixed scale factor, without affecting the optimality of the codebook. conventionall-means algorithm with centroid-update as given by (1).

|. INTRODUCTION

Il. MoDIFIED K-MEANS ALGORITHM
I1l. V ARIABLE SCALE UPDATE

Recently, Leeet al. [9] proposed a modifieds-means algorithm

which provides faster convergence rate than the conventiorakans The codevector updates obt_alned by the (_:onvennon_al centr_0|d-up-
te [see (1)] have progressively decreasing step-sizes [given by

algorithm [7]. This algorithm achieves acceleration in the convergen o i
9 [7] 9 g i c;‘“)] as the codevectors encode the training data with de-

by using a “scaled” updating scheme where a codevector is upda& ;i;in mean squared error at each iteration until convergence when
along the direction of the local gradient by a step-size larger than tlfé? 9 q 9

used by the centroid update of the conventiokameans algorithm. e codevectors do not have any appreciable update. Therefore, while

Frst e by desrbe s Sclec update s i respct . 5 1A Caetupdate s (2 an sccelerate e coruegence Lse
the conventional{-means algorithm. 9 9

of step sizes larger than the corresponding centroid-update at iterations
closer to convergence and causes undesirably high perturbations of
the codevectors which are otherwise converging to some optimal
Manuscript received December 3, 1997; revised June 5, 2000. The asso&@Bfiguration. This in turn has the effect of increasing the number
editor coordinating the review of this manuscript and approving it for public&f iterations required to converge as well as perturbing the codebook
tion was Dr. Antonio Ortega. convergence to a poorer local optimum. This can also be seen from
KtK Efr‘i"s"t‘)’guzWg[‘éhjlslihcﬂgt‘;g’”gr&eﬁ‘;ﬁ:?’g%ﬁﬁ‘gggg@'ngiaha%r)“'the convergence characteristics observed in [9] and [10] for fixed
ve\rls.l é’amasubraﬁanian is \}vith the Tata Institufe of Fundamlgnt.al Rlese.aréﬁfale Va'!‘es larger than 2, Wher.e eltht_ar the cqnvergence is very slow
Bombay 400005, India. or nonexistent due to the step-size being considerably larger than the
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Fig. 1. (a) Number of iterations (ltr) required to reach convergence and (b) MSE at convergence for the NEW algorithm as a fun@tomwef in solid line)
on the Lena image data with dimensiih= 16 and codebook siz& = 256 . Dashed horizontal lines show Itr and MSE for the CONV algorithm.

TABLE | TABLE I
PERFORMANCE COMPARISON OF THEALGORITHMS (CONV, MODI, PERFORMANCE COMPARISON OF THEALGORITHMS (CONV, MODI,
AND NEW) FOR THE IMAGE DATA SeT | AND NEW) FOR THE IMAGE DATA SET II
Initialization by minmax method Initialization by minmax method
Codebook Size (V) Codebook Size (N)
Image Alg 256 512 1024 Alg 256 512 1024 2048 4096
Ttr | MSE | Itr | MSE | Itr | MSE Itr | MSE | Itr | MSE | Itr | MSE | Ttr | MSE | Itr | MSE
CONV [ 25| 444 [ 237 331 | 15 | 246 CONV | 31 | 1499 | 29 | 126.1 | 23 [ 1046 | 20 | 85.8 | 16 | 68.1
Lena MODI | 18 | 428 [ 17 [ 321 | 16 | 23.1 MODI [ 19 {1484 ] 241123322 [ 101.8| 18 | 83.2 [ 15 | 65.8
NEW [ 18| 429 [ 15| 32.4 | 12 | 232 NEW |20 | 1485 |20 | 1239 ] 16 [ 103.1 | 20 | 834 | 13 | 65.9
CONV [ 23] 494 |17 363 [ 12 ] 27.3 Initialization by splitting method
Pepper | MODI' | 18 | 47.7 [ 16 | 35.1 | 16 | 25.8 Codebook Size (N)
NEW |14 ] 481 [ 14| 351 [ 11 | 258 Alg 256 512 1024 2048 4096
CONV [ 21 1250516 [ 2114 ] 13 | 173.6 Itr | MSE [ Itr | MSE [ Itr | MSE | Itr | MSE | Ttr | MSE
Baboon | MODI | 18 | 247.1 | 16 | 207.7 | 15 | 168.9 CONV | 20 | 148.1 | 25 | 1237 | 18 [ 103.1 | 15 ] 8.9 | 14 | 68.5
NEW | 19 [ 2482 ] 12 [ 209.0 | 11 | 168.8 MODI | 21 | 1469 | 19 [ 1224 [ 18 [ 1015 | 15 | 83.2 | 14 | 66.6
Initialization by splitting method NEW 17 | 1481 ] 19 | 123.2 | 14 | 1022 | 12 | 836 | 12 | 66.9
Codebook Size (N)
Image Alg 256 512 1024
Itr | MSE | Itr | MSE | Itr | MSE . .
CONV | 21 | 30 |15 332 |15 247 wherex > 0. In this equations = 2whenn = 0, ands = 1
Lena | MODI | 19 | 422 |14 | 322 | 15 | 23.8 whenn = oc¢; thus, it satisfies the aforementioned conditions. Note
NEW [ 15[ 419 [12 ] 323 [12 | 237 that this type of functional dependence of the scale factor on the itera-
CONV | 16 | 46.9 | 14 | 363 [ 14 | 274 tion number has been used earlier in a number of algorithms reported in

Pepper | MODI | 14 | 46.1 | 15 | 35.4 | 16 | 265 . . ; ; imati
NEW [ 127 460 | 10| 350 T 11 1 263 the literature; e.g., algorithms used for stochastic approximation [11],

CONV [ 17 | 2506 12 | 23212 1764 [12], self-organizing feature_ map generation [13], _simulated annealing

Baboon | MODI | 15 | 248.5 | 14 | 208.9 | 13 | 171.0 [14], etc. Also, note that this is not the only functional form that sat-

NEW | 12 | 2481 [ 11 [ 2100 [ 11 [ 1716 isfies the above-mentioned requirements. Other functional forms are
also possible and may be investigated in future.

Therefore, in order to obtain codevector updates for iteratich IV. SIMULATION RESULTS

1, which are reliable look-ahead estimates of conventional codevector - -
updates corresponding to iterations- 2, 1 + 3, - - -, the scale factor We compare the convergence characteristics of the threeeans

in (2) should decrease with increase in iteration. Here, we propose fistering algorithms, namely

use of a scale factorin the codevector update in (2) which varies as 1) CONV, which uses the conventional update given by (1);
a function of the iteratiom and is inversely proportional t. This 2) MODI, which uses the modified update given by (2) with a fixed
scale factor should satisfy the following two conditions. 1) It should ~ scale value of = 1.8;
be greater than 1 to ensure a faster convergence than the conventiond) NEW, the algorithm proposed here, which uses a variable scale
K-means algorithm [9] and 2) it should be less than 2 to avoid avery ~ factors = 1 +a/(x +n) (wheren is the iteration number).
slow or nonexistent convergence [9], [10]. A functional forsna a The three/{-means algorithms are also compared with two initializa-
function ofn) that meets these requirements is as follows: tions as in [9]: 1) maximum distance initialization using the minmax
method [15] and 2) splitting initialization [7].
@ The performance of th&-means algorithms are studied here under
s=1+ (x+n) 3) squared-error distance measure for the vector quantization for image
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Fig. 2. MSE as a function of number of iterations for the CONV algorithm (dashed line), the MODI algorithm (dotted line) and the NEW algorithméolid lin
on the Lena image data with dimensih= 16. (a) Codebook siz&" = 256 and (b) Codebook siz& = 1024.

data. For this we have used two sets of image data: 1) Set-I: Lenaing training data of 16 384 vectors. In Table Il, we have used data
Baboon and Pepper used separately as in [9] and 2) Set-ll: A sinflem set-Il for codebook sized = 256, 512, 1024, 2048 and 4096
data set consisting of the images (6386, baboon, bank, c43m, face, &atl dimensiody = 16 with 114 688 vectors. In order to illustrate the
vegas). Each of these monochrome images has6%22 pixels with  convergence behavior of the three algorithms, we show in Fig. 2 the
256 gray levels. MSE as a function of number of iterations for the Lena image with di-
We divide the images into a number of disjoint blocks, each of sizeensionk’ = 16 and codebook size¥ = 256and 1024.
4 x 4 pixels and each resulting in a 16-dimensional vector. Different From these two tables and the figure, we can make the following ob-
clustering algorithms are used to generate codebooks of sizes 256, S&2vations: 1) the modified-means algorithm (MODI), which uses
1024, 2048, and 4096. These codebooks are then used to vector gadixed scale value of 1.8, provides most of the times (but not always)
tize the images. The quality of the coded image is evaluated in terfaster convergence than the conventiaiaineans algorithm (CONV)
of mean-squared error (MSE) which is defined as and 2) the-means algorithm proposed here, NEW, which updates
codevectors using a variable scale function, always provides a faster
1 LI 5 convergence than the CONV algorithm. Also note that the NEW algo-
MSE = 77 Z Z (xij —yij)"s (4)  rithm does not sacrifice the optimality of the codebook with respect to
=1 =1 the CONYV algorithm in the sense that it does not increase the MSE. In
fact, it reduces the MSE compared to the conventidfiaheans algo-
rithm, though this reduction may not be significant. It is important to

note here that the modification proposed in this paper is very simple
As done in [9], we also stop the algorithm and consider the converge prop pap y P

. . easy to implement.
to be reached when the ratio of the MSE difference between the currer\y\,e ha)\//e repgrted here results for dimension= 16. However. we

and the preceding iterations and the MSE of the current iteration is Ime also carried out experiments for dimensihhs: 4and64. These

thar) 0.0005 or 0'05%.' . . L Fx eriments show results similar to those described above for the three
Since the computation time for each iteration is almost the same RP

all the three algorithms, we use the number of iterations (Itr) needed means algorithms.
to reach the convergence as a measure of the computational cost of an

algorithm. The value of MSE at convergence is used as a measure of

the optimality of the designed codebook. The same measures have begh this paper, we have proposed the use of a modified update step
used by Leeet al. [9] to characterize the performance of themeans based on a variable scale size which is a function of the iteration and
algorithms. shown that it offers faster convergence than the modifietheans al-

In order to see the effect of variableused in the scale factor equa-gorithm with a fixed scale update without effecting the optimality of the
tions = 1 +4x/(x +n), we have studied the NEW algorithm with codebook. Though the scale factor in the proposed algorithm varies as
various values of. Fig. 1 shows number of iterations (Itr) needed tQ, fnction of iteration number, it is same for all the components of a
reach convergence and the value of MSE at convergence as a funcligiyor in a given iteration. In principle, it is possible to assign different
of x. As a reference, we also show in this figure by dashed horizongly e yaiues for different components of a vector according to some

lines the values of Itr and MSE for the CONV algorithm. It can be seeliori : s .
X . t hich might th beh further. How-
that the NEW algorithm performs better than the CONV algorithm fo tterion which rmight Improve the convergence behavior further. How

all the values ofc. This is consistent with the results obtained by Leeéver' this has to be investigated in the future.
et al.[9], as the scale factor in the NEW algorithm always satisfies the
conditionl < s < 2 for all z. Also, note that the NEW algorithm

works equally well for a wide range of values. For the results re- [1] H. Abut, Ed.,Vector Quantization Piscataway, NJ: IEEE Press, May

wherel x.J is the size of the image and; andy; ; are the pixel values
of the original and coded images, respectively, at the coord{nate.

V. CONCLUSIONS
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Abstract—A two-dimensional (2-D) least squares (LS)-based filtering atively insensitive to Changes in the intensity and.can represenF dis-
scheme for high fidelity stereo image compression applications is in- Placement vector by subpixel accuracy using continuous phase infor-
troduced in this correspondence. This method removes the effects of mation. However, these methods can not compensate for the intensity
mismatching in a stereo image pair by applying the left image as the ref- mismatching between two blocks. Baysian method [8], [9] attempts
grenc%inpgt t? _?_hZ‘D tr_ar;:verfstahl ﬁ:jﬁ;;"’;lecté‘r?‘ rigtr;t dim:_%e EEIZ?:dk %Z ;23 to model motion or disparity map using Markov random fields with

esired output. The weights of the fi uted usi - . : . i
LS methodPA reducedgorder filtering scheme Es also intr%duced to find the smoothness assu_mptlop among nelghborlng displacement ve(_:tors.
the optimum number of filter coefficients. The principal coefficients and 10 take care of the discontinuity of displacement vector at the object
the disparity vectors are used together with left image to reconstruct boundaries and occlusion, this method needs sopréori knowledge
the right image at the receiver. The proposed schemes were examined ahout these regions. This method does not provide compensation ability
on a real stereo image pair for 3DTV applications and the results were o jntensity differences and further the computational effort to detect
benchmarked against those of the block-matching method. . N .

the depth discontinuity is very high.
I_ndexTerms—Least squares, stereo image compression, 2-D adaptive fil- |, this correspondence, a new scheme using 2-D filtering is pro-
tering. posed which can be viewed as a modified version of the block-matching
scheme utilizing a 2-D transversal filter to represent the effects of mis-

|. INTRODUCTION matching in stereo image pairs prior to disparity estimation. To mini-

mize the number of filter coefficients for reconstructing the blocks, a

Three-dimensional (3-D) video imaging has found applications {q, ceq order filtering scheme is also proposed. Simulation results are

numerous areas such as 3DTV, computer games, augmented reglifiented which attest to the effectiveness of the proposed scheme in

and surgical environments due to its capability in providing steregeyensating for the mismatching effects when compared with the re-
scopic pictures with high resolution and great sensation of reality [gults of the standard block matching method
The compression schemes for stereo image sequences generally uti-

Il. TWO-DIMENSIONAL FILTERING SCHEME
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