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Comments on “Modified -Means Algorithm for Vector
Quantizer Design”

Kuldip K. Paliwal and V. Ramasubramanian

Abstract—Recently a modified -means algorithm for vector quanti-
zation design has been proposed where the codevector updating step is as
follows: new codevector= current codevector+ scale factor (new cen-
troid current codevector). This algorithm uses a fixed value for the scale
factor. In this paper, we propose the use of a variable scale factor which
is a function of the iteration number. For the vector quantization of image
data, we show that it offers faster convergence than the modified -means
algorithm with a fixed scale factor, without affecting the optimality of the
codebook.

Index Terms—Faster convergence, -means algorithm, vector quanti-
zation.

I. INTRODUCTION

Vector quantization is a powerful data compression technique used
in a number of signal processing applications including speech coding,
image coding, and speech recognition [1]–[6]. Design of a vector quan-
tizer is accomplished by generating a codebook from the training data
using a distortion measure appropriate for the given application. The
K-means clustering algorithm (or the generalized Lloyd algorithm) is
usually used for this purpose [7], [8]. This algorithm is iterative in na-
ture and requires a large amount of computation time for convergence.
The computation time mainly depends on the amount of training data,
codebook size, vector dimension, and distortion measure.

Recently, a modifiedK-means algorithm for vector quantization de-
sign was proposed by Leeet al. [9] for faster convergence. In this al-
gorithm, the codevector updating step is as follows: new codevector=
current codevector+ scale factor (new centroid� current codevector).
This algorithm uses a fixed value for the scale factor. In this paper, we
propose the use of a variable scale factor which is a function of the it-
eration number. For vector quantization of image data, we show that it
offers faster convergence than the modifiedK-means algorithm with a
fixed scale factor, without affecting the optimality of the codebook.

II. M ODIFIED K-MEANS ALGORITHM

Recently, Leeet al. [9] proposed a modifiedK-means algorithm
which provides faster convergence rate than the conventionalK-means
algorithm [7]. This algorithm achieves acceleration in the convergence
by using a “scaled” updating scheme where a codevector is updated
along the direction of the local gradient by a step-size larger than that
used by the centroid update of the conventionalK-means algorithm.
First, we briefly describe this “scaled” update scheme with respect to
the conventionalK-means algorithm.
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The conventionalK-means algorithm [7] for the design of a code-
bookC = fci; i = 1; � � � ; Ng of sizeN from the training data
T = fxm; m= 1; � � � ; Mg is as follows.

1) Initialization: Iteration numbern = 0; codebook at iterationn,
Cn = fcni ; i = 1; � � � ; Ng; convergence threshold�.

2) Partitioning: Find the nearest-neighbor partitionV (cnj ) =
fxm 2 T : Q(xm) = cnj g, j = 1; � � � ; N. Here,Q de-
notes vector quantization operation and is defined as follows:
Q(x) = cnj if d(x; cnj ) � d(x; cni ), i = 1; � � � ; N under
some distance measured(x; y), x; y 2 RK.

3) Codebook Update:Update codevectorsCn = fcnj ,
j = 1; � � � ; Ng to Cn+1 = fcn+1j , j = 1; � � � ; Ng
as

c
n+1
j = C(V (cnj )) (1)

whereC(V (cnj )) is the centroid of the partitionV (cnj ) under the
given distance measured(x; y).

4) Convergence Check:Stop if jdn� dn�1j=dn � �, wheredn =
(1=M) M

m=1d(xm; Q(xm)). Otherwise, replacen by n+ 1
and go to Step 2.

The modifiedK-means algorithm proposed by Leeet al.[9] updates
the current codevectorcnj (at iterationn) to the new codevectorcn+1j

to be used at iterationn+ 1 as

c
n+1
j = c

n
j + s(C(V (cnj ))�c

n
j ): (2)

Under a squared-error distance measure, Leeet al. [9] have found ex-
perimentally that the modifiedK-means algorithm converges slower
in comparison to the conventionalK-means algorithm whens < 1.
When1 < s < 2, it converges faster and results in better perfor-
mance in terms of mean-squared error. Whens > 2, the algorithm
either does not converge, or converges very slowly with poor perfor-
mance. The modifiedK-means algorithm gives the best results when
the scale factor is set to a fixed value ofs = 1:8. It may be noted that
for s = 1, the modifiedK-means algorithm becomes the same as the
conventionalK-means algorithm with centroid-update as given by (1).

III. V ARIABLE SCALE UPDATE

The codevector updates obtained by the conventional centroid-up-
date [see (1)] have progressively decreasing step-sizes [given by
d(cnj ; c

n+1
j )] as the codevectors encode the training data with de-

creasing mean squared error at each iteration until convergence when
the codevectors do not have any appreciable update. Therefore, while
the use of a scaled-update as in (2) can accelerate the convergence, use
of a “fixed” scaling for the entire range of iterations results in the use
of step sizes larger than the corresponding centroid-update at iterations
closer to convergence and causes undesirably high perturbations of
the codevectors which are otherwise converging to some optimal
configuration. This in turn has the effect of increasing the number
of iterations required to converge as well as perturbing the codebook
convergence to a poorer local optimum. This can also be seen from
the convergence characteristics observed in [9] and [10] for fixed
scale values larger than 2, where either the convergence is very slow
or nonexistent due to the step-size being considerably larger than the
conventional centroid-update.
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Fig. 1. (a) Number of iterations (Itr) required to reach convergence and (b) MSE at convergence for the NEW algorithm as a function ofx (shown in solid line)
on the Lena image data with dimensionK = 16 and codebook sizeN = 256 . Dashed horizontal lines show Itr and MSE for the CONV algorithm.

TABLE I
PERFORMANCECOMPARISON OF THEALGORITHMS (CONV, MODI,

AND NEW) FOR THEIMAGE DATA SET I

Therefore, in order to obtain codevector updates for iterationn +
1, which are reliable look-ahead estimates of conventional codevector
updates corresponding to iterationsn+ 2; n+ 3; � � �, the scale factor
in (2) should decrease with increase in iteration. Here, we propose the
use of a scale factors in the codevector update in (2) which varies as
a function of the iterationn and is inversely proportional ton. This
scale factor should satisfy the following two conditions. 1) It should
be greater than 1 to ensure a faster convergence than the conventional
K-means algorithm [9] and 2) it should be less than 2 to avoid a very
slow or nonexistent convergence [9], [10]. A functional form (s as a
function ofn) that meets these requirements is as follows:

s= 1+
x

(x+n)
(3)

TABLE II
PERFORMANCECOMPARISON OF THEALGORITHMS (CONV, MODI,

AND NEW) FOR THEIMAGE DATA SET II

wherex > 0. In this equation,s = 2 whenn = 0, ands = 1
whenn = 1; thus, it satisfies the aforementioned conditions. Note
that this type of functional dependence of the scale factor on the itera-
tion number has been used earlier in a number of algorithms reported in
the literature; e.g., algorithms used for stochastic approximation [11],
[12], self-organizing feature map generation [13], simulated annealing
[14], etc. Also, note that this is not the only functional form that sat-
isfies the above-mentioned requirements. Other functional forms are
also possible and may be investigated in future.

IV. SIMULATION RESULTS

We compare the convergence characteristics of the threeK-means
clustering algorithms, namely

1) CONV, which uses the conventional update given by (1);
2) MODI, which uses the modified update given by (2) with a fixed

scale value ofs = 1:8;
3) NEW, the algorithm proposed here, which uses a variable scale

factors= 1+x=(x+n) (wheren is the iteration number).

The threeK-means algorithms are also compared with two initializa-
tions as in [9]: 1) maximum distance initialization using the minmax
method [15] and 2) splitting initialization [7].

The performance of theK-means algorithms are studied here under
squared-error distance measure for the vector quantization for image
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Fig. 2. MSE as a function of number of iterations for the CONV algorithm (dashed line), the MODI algorithm (dotted line) and the NEW algorithm (solid line)
on the Lena image data with dimensionK = 16. (a) Codebook sizeN = 256 and (b) Codebook sizeN = 1024 .

data. For this we have used two sets of image data: 1) Set-I: Lena,
Baboon and Pepper used separately as in [9] and 2) Set-II: A single
data set consisting of the images (6386, baboon, bank, c43m, face, hat,
vegas). Each of these monochrome images has 512� 512 pixels with
256 gray levels.

We divide the images into a number of disjoint blocks, each of size
4� 4 pixels and each resulting in a 16-dimensional vector. Different
clustering algorithms are used to generate codebooks of sizes 256, 512,
1024, 2048, and 4096. These codebooks are then used to vector quan-
tize the images. The quality of the coded image is evaluated in terms
of mean-squared error (MSE) which is defined as

MSE =
1

IJ

I

i=1

J

j=1

(xij � yij)
2; (4)

whereI�J is the size of the image andxij andyij are the pixel values
of the original and coded images, respectively, at the coordinate(i; j).
As done in [9], we also stop the algorithm and consider the convergence
to be reached when the ratio of the MSE difference between the current
and the preceding iterations and the MSE of the current iteration is less
than 0.0005 or 0.05%.

Since the computation time for each iteration is almost the same for
all the three algorithms, we use the number of iterations (Itr) needed
to reach the convergence as a measure of the computational cost of an
algorithm. The value of MSE at convergence is used as a measure of
the optimality of the designed codebook. The same measures have been
used by Leeet al. [9] to characterize the performance of theK-means
algorithms.

In order to see the effect of variablex used in the scale factor equa-
tion s = 1 +x=(x+ n), we have studied the NEW algorithm with
various values ofx. Fig. 1 shows number of iterations (Itr) needed to
reach convergence and the value of MSE at convergence as a function
of x. As a reference, we also show in this figure by dashed horizontal
lines the values of Itr and MSE for the CONV algorithm. It can be seen
that the NEW algorithm performs better than the CONV algorithm for
all the values ofx. This is consistent with the results obtained by Lee
et al. [9], as the scale factor in the NEW algorithm always satisfies the
condition1 < s < 2 for all x. Also, note that the NEW algorithm
works equally well for a wide range ofx values. For the results re-
ported hereafter in this paper, we usex = 9.

In Table I, we show the number of iterations (Itr) required for con-
vergence and MSE for images from Set-I for codebook sizesN =
256; 512; 1024and dimensionK = 16(using blocks of4�4 pixels)

using training data of 16 384 vectors. In Table II, we have used data
from set-II for codebook sizesN = 256; 512; 1024; 2048and 4096
and dimensionK = 16with 114 688 vectors. In order to illustrate the
convergence behavior of the three algorithms, we show in Fig. 2 the
MSE as a function of number of iterations for the Lena image with di-
mensionK = 16and codebook sizesN = 256and 1024.

From these two tables and the figure, we can make the following ob-
servations: 1) the modifiedK-means algorithm (MODI), which uses
a fixed scale value of 1.8, provides most of the times (but not always)
faster convergence than the conventionalK-means algorithm (CONV)
and 2) theK-means algorithm proposed here, NEW, which updates
codevectors using a variable scale function, always provides a faster
convergence than the CONV algorithm. Also note that the NEW algo-
rithm does not sacrifice the optimality of the codebook with respect to
the CONV algorithm in the sense that it does not increase the MSE. In
fact, it reduces the MSE compared to the conventionalK-means algo-
rithm, though this reduction may not be significant. It is important to
note here that the modification proposed in this paper is very simple
and easy to implement.

We have reported here results for dimensionK = 16. However, we
have also carried out experiments for dimensionsK = 4and64. These
experiments show results similar to those described above for the three
K-means algorithms.

V. CONCLUSIONS

In this paper, we have proposed the use of a modified update step
based on a variable scale size which is a function of the iteration and
shown that it offers faster convergence than the modifiedK-means al-
gorithm with a fixed scale update without effecting the optimality of the
codebook. Though the scale factor in the proposed algorithm varies as
a function of iteration number, it is same for all the components of a
vector in a given iteration. In principle, it is possible to assign different
scale values for different components of a vector according to some
criterion which might improve the convergence behavior further. How-
ever, this has to be investigated in the future.
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A Least-Squares-Based 2-D Filtering Scheme for Stereo
Image Compression

Sang-Hoon Seo, Mahmood R. Azimi-Sadjadi, and Bin Tian

Abstract—A two-dimensional (2-D) least squares (LS)-based filtering
scheme for high fidelity stereo image compression applications is in-
troduced in this correspondence. This method removes the effects of
mismatching in a stereo image pair by applying the left image as the ref-
erence input to a 2-D transversal filter while the right image is used as the
desired output. The weights of the filter are computed using a block-based
LS method. A reduced order filtering scheme is also introduced to find
the optimum number of filter coefficients. The principal coefficients and
the disparity vectors are used together with left image to reconstruct
the right image at the receiver. The proposed schemes were examined
on a real stereo image pair for 3DTV applications and the results were
benchmarked against those of the block-matching method.

Index Terms—Least squares, stereo image compression, 2-D adaptive fil-
tering.

I. INTRODUCTION

Three-dimensional (3-D) video imaging has found applications in
numerous areas such as 3DTV, computer games, augmented reality
and surgical environments due to its capability in providing stereo-
scopic pictures with high resolution and great sensation of reality [1].
The compression schemes for stereo image sequences generally uti-
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lize the characteristics that there are strong spatial correlations between
the right and left images as well as between the current and previous
frames. The former correlation is exploited to reproduce pictures by
using either the right or left image and a small amount of informa-
tion that corresponds to the binocular parallax. This operation, which
is similar to motion compensation generally used to predict motion in
a sequence of images, is known as disparity estimation [2]–[9]. The
disparity (mostly limited to the horizontal direction) vector, which re-
quires considerably shorter length codes, will then be encoded. The
decoded disparity vector is then used in conjunction with one image to
generate the other one at the receiver.

Traditionally, motion estimation algorithms have been applied for
disparity estimation. However, the estimation of disparity vectors re-
quires greater accuracy compared with the estimation of motion vec-
tors, since human eyes can see still objects sharper than moving ones
and have higher resolution with 3-D images than with two-dimensional
(2-D) images. In addition, there are mismatching problems between the
left and right images that are caused by reflectivity/illumination differ-
ences, object occlusion, deformation,and noise that need to be compen-
sated for.

Block-matching method is used for both disparity estimation [2],
[3] as well as motion estimation [10], [11] due to its simplicity and
low encoding overhead requirements. However, for disparity estima-
tion this method has several shortcomings including blocking artifacts
and lack of compensation ability for the mismatched areas. Several
block-based methods were proposed [4]–[9] to provide better com-
pensation ability with accurate disparity and/or motion estimation. The
generalized block-matching method [4], [5] provides models of rota-
tions and deformations of blocks between two images by employing
the generalized spatial transformations such as affine, perspective and
bilinear coordinate transformations. The phase-based methods [6], [7]
use the characteristic that the phase difference in the phase domain can
be related to the displacement vector between two blocks or pixels.
Unlike the generalized block-matching method, these schemes are rel-
atively insensitive to changes in the intensity and can represent dis-
placement vector by subpixel accuracy using continuous phase infor-
mation. However, these methods can not compensate for the intensity
mismatching between two blocks. Baysian method [8], [9] attempts
to model motion or disparity map using Markov random fields with
the smoothness assumption among neighboring displacement vectors.
To take care of the discontinuity of displacement vector at the object
boundaries and occlusion, this method needs somea priori knowledge
about these regions. This method does not provide compensation ability
for intensity differences and further the computational effort to detect
the depth discontinuity is very high.

In this correspondence, a new scheme using 2-D filtering is pro-
posed which can be viewed as a modified version of the block-matching
scheme utilizing a 2-D transversal filter to represent the effects of mis-
matching in stereo image pairs prior to disparity estimation. To mini-
mize the number of filter coefficients for reconstructing the blocks, a
reduced order filtering scheme is also proposed. Simulation results are
presented which attest to the effectiveness of the proposed scheme in
compensating for the mismatching effects when compared with the re-
sults of the standard block matching method.

II. TWO-DIMENSIONAL FILTERING SCHEME

FOR DISPARITY ESTIMATION

The block diagram of the proposed system is shown in Fig. 1. In
this scheme, the right image is considered as the desired image and
the left image as the input image,X, to the 2-D transversal filter. The
function of the filter is to represent the effects of mismatching between
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