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Comments on “Multiple Antenna Spectrum Sensing
in Cognitive Radios”

Erik Axell, Student Member, IEEE, and Erik G. Larsson,Senior Member, IEEE

Abstract—We point out an error in a derivation in the recent
paper [1], and provide a correct and much shorter calculation of
the result in question. In passing, we also connect the results in
[1] to the literature on array signal processing and on principal
component analysis, and show that the signal detection methods
proposed in [1] follow as special cases of standard results in these
fields.

I. I NTRODUCTION

The recent paper [1] deals with the following hypothesis
test:

H0 : yk ∼ N(0, σ2
nI) i.i.d, k = 1, . . . , L

H1 : yk ∼ N(0, σ2
shh

H + σ2
nI) i.i.d, k = 1, . . . , L,

(1)

where the vectorsyk ∈ CM×1 contain observed data, and
h ∈ CM×1 is a channel vector. The cited paper derives
the generalized likelihood ratio test (GLRT) under the three
different assumptions that
(i) h is unknown, butσs andσn are known;
(ii) h andσs are unknown, butσn is known; and
(iii) all of h, σs andσn are unknown.

In all three cases (i)–(iii) it is assumed that‖h‖ = 1.
Without this assumption the decision problem is not well
defined, owing to the ambiguity between a scaling ofh andσs.
Replacing(σs,h) with (σs/c, ch) yields precisely the same
hypothesis test, for any constantc > 0. This means in particu-
lar, thatσs and‖h‖ would not be identifiable from{yk}, not
even ifL → ∞. It should be noted, however, that the constraint
that‖h‖ = 1 does not impose any knowledge about the norm
of the effective channel gainσsh. The uncertainty about‖σsh‖
is instead contained in the parameterσs. However, knowledge
of σs as in case (i) effectively means knowledge of‖σsh‖.

Note that similar problems as (1) were also dealt with
recently in the context of spectrum sensing for cognitive radio
in [2], [3], using a slightly different approach.

II. FLAW OF THE DERIVATION IN [1, SECTION III.A]

The calculation of the GLRT for case (i) is performed in
Section III.A of [1]. It requires, among others, the maximiza-
tion of Equation (7) in [1], reproduced here for completeness
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of the exposition:
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whereY = [y1 y2 . . . yL] ∈ CM×L is a matrix of observed
signals. Section III.A of [1] findŝh by computing the gradient
of the objective function in (2) and setting it equal to zero.
While this calculation, coincidentally, gives the correctfinal
result, it is flawed.

Fundamentally, one cannot treat the problem of maximizing
a function subject to a set of constraints by maximizing the
function without the constraints, and then applying the con-
straint afterwards. The point is that the optimization constraints
neednot be satisfied at the point(s) where the gradient of the
objective function is zero, and there is no guarantee that the
stationary points can be normalized to obtain a maximum of
the constrained optimization problem. We provide a counterex-
ample to illustrate this point, using the cost function in (2) for
the special case whenh = h andY = y are complex-valued
scalars andσ2

n = σ2
s = 1. Then, the problem simplifies to

ĥ = argmax
h:|h|2=1

(
|hy|2

1 + |h|2
− log

(
|h|2 + 1

))
. (3)

Taking the derivative of the objective function in (3) (as shown
in the Appendix), and setting it equal to zero shows that the
optimalh must satisfy eitherh = 0 or |h|2 = |y|2 − 1. None
of these equations are compatible with the constraint|h|2 =
1. The correct solution in this special case can be found by
inspection:

ĥ = argmax
h:|h|2=1

(
|hy|2

(1 + 1)
− log (1 + 1)

)
= argmax

h:|h|2=1

|hy|2,

which is satisfied by anyh on the unit circle.
The point is, of course, that by setting the derivative of the

objective function equal to zero, one finds stationary points.
However, there is no guarantee that the optimal solution to
the constrained problem can be attained by normalizing these
stationary points. This is illustrated in Figure 1, which shows
the objective function in the example (3) for some sample
values ofy. It is clear that there is a stationary point on the unit
circle only if |y|2 − 1 = 1. In all other cases, it is impossible
to satisfy the constraint|h|2 = 1 at any stationary point.

If attempting to find optima of the objective function in
(2) by taking derivatives, then a proper way of handling
the constraint‖h‖2 = 1 would be to include a Lagrange
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Fig. 1. Example of the objective function in (3) forM = 1, L = 1, σ2
n
= 1, σ2

s
= 1. The unit circle,|h|2 = 1, is shown in white.

multiplier. However, as we show in Section III, there is no
need to use a Lagrange multiplier or to take any derivatives—
the solution to (2) can be found by inspection.

We end this section by pointing out that the expression
for the gradient of the log-likelihood function given by [1,
eq. (17)] is incorrect in that the constantsα, β and ν given
there are wrong. In the Appendix, we compute the correct
values ofα, β, ν (see Eq. (6)).

III. CALCULATION OF ĥ IN (2) FROM FIRST PRINCIPLES

The solution to the constrained maximization problem (2)
is simple to find from first principles. The problem (2) is
equivalent to

ĥ = argmax
h:‖h‖2=1

∥∥hHY
∥∥2
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n

σ2
s
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n

− L log
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s
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n

+ 1

)

= argmax
h:‖h‖2=1

hHYYHh.

(4)

The solution to (4), and thus to (2), is well known and is
given by the eigenvector toYYH that corresponds to the
largest eigenvalue, normalized to unit norm [4, pp. 176-177].
To see this using elementary algebra, letYYH = T∆TH be
the eigenvalue-decomposition ofYYH , whereT is unitary

and∆ is a diagonal matrix that contains the eigenvalues of
YYH , sorted in decreasing order. Then, the quadratic form
hHYYHh = hHT∆THh is maximized whenTHh =
[1, 0, ..., 0]T so thath = T[1, 0, ..., 0]T , which is by construc-
tion precisely the dominant eigenvector ofYYH . A similar
derivation was presented in [3].

IV. RELATION TO THE ARRAY SIGNAL PROCESSING

LITERATURE

Section III.A of [1] deals with the GLRT for the model (1)
in case (i) and has been discussed above. Section III.B in [1]
treats case (ii), and the results there follow in a similar manner.

Section III.C of [1] derives the GLRT for case (iii), when all
parametersh, σs, σn are unknown. This is perhaps the most
interesting case in practice. We point out in passing that the
GLRT for this case is well known in the literature on principal
component analysis and in the array signal processing litera-
ture. In particular, it follows as a special case of the more
general result showed in [5]. More precisely, [5] derived the
maximum-likelihood estimate of ann×n covariance matrix of
the “low-rank-plus-identity” formGGH +σ2I, whereG is of
dimensionn×r andr < n. The result derived in Section III.C
of [1] follows as a special case whenr = 1. The results of [5],
and the associated GLRT that results from inserting the ML
covariance matrix estimate into the likelihood function, have
been extensively used in the array signal processing literature
for tasks such as detection of the number of signals impinging
on a sensor array. See, for example, [6] for early work in this
direction and [7] for a comprehensive summary of the field.
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APPENDIX

Let h = a + jb be a complex vector, wherea =
[a1, a2, . . . , an]

T and b = [b1, b2, . . . , bn]
T are its real and

imaginary parts, respectively. The gradient of a real-valued
functionf(h) w.r.t. the complex-valued vectorh is defined as
[8, p. 798]

∂f(h)

∂h
,
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.

Then, the gradient of the log-likelihood function is written
in (5), where in the third equality we used that∂

∂x
xHAx =

2Ax for any Hermitian matrixA [8, pp. 796-798]. Setting the
expression (5) equal to the zero vector is equivalent to solving

(
αI + βhhH

)
YYHh = νh,
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