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Comments on “Multiple Antenna Spectrum Sensing
In Cognitive Radios”

Erik Axell, Sudent Member, IEEE, and Erik G. LarssonSenior Member, |IEEE

Abstract—We point out an error in a derivation in the recent  of the exposition:
paper [1], and provide a correct and much shorter calculation of

the result i_n question. In pass_ing, we also connect the rc_esu_alin - tr(YYH) ||hHYu2

[1] to the literature on array signal processing and on prindpal h = argmax | — 5 5 5

component analysis, and show that the signal detection methis hi|[h[2=1 Tn (Z—g + |||l ) o2 )
proposed in [1] follow as special cases of standard resulta these °

fields.

2
—MLlog(m) — Llog(% ||h||2 +1)— LM log (oi)) ,

|. INTRODUCTION whereY = [y y2 ... yz] € CM*" is a matrix of observed
I:gignals. Section IlI.A of [1] find$ by computing the gradient

The recent paper [1] deals with the following hypothesof the objective function in (2) and setting it equal to zero.

test: . : ! . . )
) N While this calculation, coincidentally, gives the corrdictal
Ho:yg ~N(0,0.1) iidk=1,...,L (1) result, itis flawed.
Hy :yp ~ N(0,0?hh? +521) iidk=1,...,L, Fundamentally, one cannot treat the problem of maximizing

h h ¢ cMx1 tain ob d dat a function subject to a set of constraints by maximizing the
where e veclory, < contain observed data, andfunction without the constraints, and then applying the-con

Mx1 ; H i
h e C s a channel vector. The cited paper derlVe§traint afterwards. The point is that the optimization ¢oaiats

the generalized “.ke“hOOd ratio test (GLRT) under the mreheednot be satisfied at the point(s) where the gradient of the
O!'ﬁe“?“‘ assumptions that objective function is zero, and there is no guarantee that th
(') h is unknown, buw; ando, are known; stationary points can be normalized to obtain a maximum of
(!!.) h ando, are unknown, but, is known; and the constrained optimization problem. We provide a cowaxter
(iii) all of h, o, anda, are unknown. ample to illustrate this point, using the cost function ij i@

W.l?] all tﬂree cases .(')_(”r']) 'td's _a§sumedb|thﬁh!| = L ﬂ’ue special case whdm = h andY = y are complex-valued

defined, owing to the ambiguity between a scalindh@ndo ;.

Replacing(cs, h) with (o4/c, ch) yields precisely the same % = argmax |hyl® —log (|h[2 + 1) 3)

hypothesis test, for any constant- 0. This means in particu- ne=1 \ 1+ [h]? '

lar, thato, and||h|| would not be identifiable fro , hot : I _— L

even ifLU—> 0. |I‘t s”hould be noted, however thatri}(;kc}onstrair.;rtakmg the deny ative of the.objgctwe functionin (3) (awei

that|h|| = 1 does not impose an;/ knowlecige about the norf the Appendix), 'f.jmd setting It equal ‘29 zerozshows that the

of the effective channel gain,h. The uncertainty aboulio h|| g?tt';r; zleh emﬂziisigsgeengnh ;iglgrvjlﬁL t:h!ylogsirﬁi!\tl?i)rle

is instead contained in the parameter However, knowledge q are comp . -

of o, as in case (i) effectively means knowledge|jof.h]|. 1 The correct solution in this special case can be found by
Note that similar problems as (1) were also dealt witH‘SpeCtlon'

recently in the context of spectrum sensing for cognitivdida |hy|?

. . . . h = argmax

in [2], [3], using a slightly different approach. (1+1)

h:|h|2=1
which is satisfied by any on the unit circle.

The point is, of course, that by setting the derivative of the
The calculation of the GLRT for case (i) is performed inypjective function equal to zero, one finds stationary oint
Section IIl.A of [1]. It requires, among others, the maxiB¥z However, there is no guarantee that the optimal solution to
tion of Equation (7) in [1], reproduced here for completenesne constrained problem can be attained by normalizingethes

This work was supported in part by the Swedish Research Go(YR), stationgry _points. T.his i.s illustrated in Figure 1, whiclosls
the Swedish Foundation for Strategic Research (SSF) ancEthelT. E.  the objective function in the example (3) for some sample
Larsson is a Royal Swedish Academy of Sciences (KVA) RebeBrtlow  values ofy. It is clear that there is a stationary point on the unit
supported by a grant from the Knut and Alice Wallenberg Fetiod. circle only if |y|2 —1=1. In all other cases, it is impossible
to satisfy the constraint,|? = 1 at any stationary point.

If attempting to find optima of the objective function in
(2) by taking derivatives, then a proper way of handling
the constraint|h|> = 1 would be to include a Lagrange

—log (1 + 1)) = argmax |hy|?,
h:|h|2=1

Il. FLAW OF THE DERIVATION IN [1, SECTION I11.A]



y=14+i y=2

Imh) -5 -5 Re(h) Imh) 5 -5 Re(h)

y=if2 y=(1+3i)/2

Imthy 5 -5 Re(h) Im(h) -5 -5 Re(h)

Fig. 1. Example of the objective function in (3) fdf =1, L = 1, 02 = 1, o2 = 1. The unit circle,|h|? = 1, is shown in white.

multiplier. However, as we show in Section lll, there is nand A is a diagonal matrix that contains the eigenvalues of
need to use a Lagrange multiplier or to take any derivatives¥-Y ', sorted in decreasing order. Then, the quadratic form
the solution to (2) can be found by inspection. h”YY”h = hTATHh is maximized whenT”?h =

We end this section by pointing out that the expressidm, 0, ...,0]” so thath = T[1,0,...,0]”, which is by construc-
for the gradient of the log-likelihood function given by [1,tion precisely the dominant eigenvector ®¥fY . A similar
eq. (17)] is incorrect in that the constants 8 and v given derivation was presented in [3].
there are wrong. In the Appendix, we compute the correct

values ofa, 3, v (see Eq. (6)). IV. RELATION TO THE ARRAY SIGNAL PROCESSING

LITERATURE
[1l. CALCULATION OF h IN (2) FROM FIRST PRINCIPLES Section Ill.A of [1] deals with the GLRT for the model (1)

The solution to the constrained maximization problem (é case () ar_1_d has been discussed above_. Sec_t|o_n lIl.B in [1]
freats case (i), and the results there follow in a similannex.

'S s.|mple to find from first principles. The problem (2) is Section I11.C of [1] derives the GLRT for case (iii), when all
equivalent to L
parameters, o, o, are unknown. This is perhaps the most

~ HhHYH2 02 9 interesting case in practice. We point out in passing that th
h = arguax gz—th — Llog <§ [hf” + 1) GLRT for this case is well known in the literature on prindipa
Billn(l"=1 (0_2 + ] ) Tn " component analysis and in the array signal processingiiter
HhHYH2 2 ture. In particular, it fo!lows as a specigl case of the more
= argmax —- — Llog (—2 + 1> general result showed in [5]. More precisely, [5] derived th
bl *=1 (0_3 + 1) o n maximum-likelihood estimate of amx n covariance matrix of
= argmax h YY¥h. the “low-rank-plus-identity” formGG* + 521, whereG is of
h:||h|2=1 dimensionn x r andr < n. The result derived in Section I11.C

(4) of [1] follows as a special case when= 1. The results of [5],
The solution to (4), and thus to (2), is well known and jand the associa_ted G_LRT that result_s fr_om insertin_g the ML
given by the eigenvector t& Y that corresponds to the CoVanance matrix estimate into the likelihood functioavé
largest eigenvalue, normalized to unit norm [4, pp. 176}1776€N extensively used in the array signal processing titeza.
To see this using elementary algebra, ¥ = TAT¥ be for tasks such as detection of the number of signals impmgin

the eigenvalue-decomposition &FY, whereT is unitary on a sensor array. See, for example, [6] for early work in this
' direction and [7] for a comprehensive summary of the field.
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APPENDIX [5] T.W. Anderson, “Asym_ptotic the_ory for principal compent analysis,”
leth — a+ jb be a complex vector, where, — ':Il'geé;\nnals of Mathematical Satistics, vol. 34, no. 1, pp. 122-148, Mar.
[a1,az,...,a,]" andb = [by,bs,...,b,]T are its real and [6] M. Wax, and T. Kailath, “Detection of signals by inforni theoretic

imaginary parts, respectively. The gradient of a real-edlu
function f(h) w.rt. the complex-valued vectdr is defined as [,
[8, p. 798]

97 () 97 (h) (8]
aafa}ll) a?lfil)
or(h) » OFh) | or) 4 || |
oh T : T
9(n) o (n)
dan by,

Then, the gradient of the log-likelihood function is wriite
in (5), where in the third equality we used th§)§xHAx =

2Ax for any Hermitian matrixA [8, pp. 796-798]. Setting the
expression (5) equal to the zero vector is equivalent toisglv

(aI+ Bhh*) YY#h = vh,
1

where, A=~
g
(% +In)*) o
1 @
p=- T TR 20 (6
(% +mP) oz P ©
L 2
1/:272: O'n
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