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1. Introduction   
 

 
Drs. Hamill et al. (2009, hereafter “H09”) presented a critique of our recent work (Ambadan 

and Tang 2009, hereafter “AT09”). In their comment, two core points are that i) AT09 

incorrectly stated the nature of measurement function; ii) AT09 should use more appropriate 

experimental  designs, especially a state-of-the art EnKF as a reference benchmark in 

comparison with “Sigma-point” Kalman filter (SPKF)”. While we thank Drs Hamill et. al for 

their constructive criticism, we would like to clarify the two issues.   

2. Nature of measurement function in EnKF  
   
  For the purpose of presentation, we start from the standard EnKF formulation, as follows 

(Hamill 2006):  
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t; R is the observation error covariance matrix, and h is a nonlinear measurement function. H is  
 
the Jacobian matrix of h, i.e., the linearized measurement operator. The forecast error  
 
covariance matrix at time step t is approximated using a finite set of model state ensemble  b

tP
 
(say M) given by, 
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Apparently, the H used in Kalman gain (2) is a linearized operator, thus imposing the  
 
assumption of the linearization of nonlinear measurement function in the standard EnKF  
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formulation. The linearization can be done either by analytical analysis like EKF (Extended  
 
Kalman Filter) or by ensemble members, as proposed by (Houtekamer and Mitchell 2001;  
 
Hamill 2006). The latter is often implicit and might not be very straightforward, deserving  
 
further analysis.   
 
   In Houtekamer and Mitchell (2001) and Hamill (2006), Kalman gain (2) was written by 
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 (5) and (6) allow direct evaluation of the nonlinear measurement function h in calculating  
 
Kalman gain. Mathematically, (5) and (6) approximately hold if and only if    
 
       )x()x( bhh b =                                            (7)  
          

                          M ..., 2 1, ifor  small is  )( Norm   , i ==− εε i
bb

i xx        (8)  

   
 Under the conditions of (7) and (8), (5) and (6) actually linearize the nonlinear measurement  
 
functions h to H. Therefore, direct application of the nonlinear measurement function in (5) and  
 
(6) in fact imposes an implicit linearization process using ensemble members.  
 
  For many realistic atmospheric and oceanic estimation problems, especially for model state  
 
estimation, (7) and (8) approximately hold since the nonlinearity of the measurement function h  
 
might not be strong and perturbation growth is relatively small. However in some cases where  
 
either condition is not held, (5) and (6) could cause large errors in estimating the Kalman gain.  
 
To demonstrate this, we now consider an example of a one-dimensional nonlinear model with a  
 
nonlinear measurement function, as shown below: 
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State-space model:             kkk qxx +=+

2
1 ),(~ QNqk 0

Measurement model    kk r)sin(x +=ky       ),(~ RNrk 0
 

At step k, we have an analysis of the model state, denoted by . In the next assimilation cycle, a
kx

 
the and are required to calculate for the Kalman gain. Here we use two  THPb THHPb

 
approaches: one is to directly calculate them since H is known and the other is to use (5)  
 
and (6). The ensemble is generated by perturbing  with random numbers drawn from a  a

kx
 
normal distribution with mean zero and variance 0.1. Initially  is arbitrarily set to 10, and  a

kx
 
ensemble size is 10000. A small perturbation and a large ensemble size will help obtain a  
 
relatively stable analysis.  
 

        Table 1:  Comparison between LHS and RHS of (5) and (6)  
 

   a
kx

Ensemble size  LHS of  
  (5)   

RHS of   
  (5)  

LHS of  
  (6) 

RHS of  
  (6)  

 10    10000  3.62   0.48  3.22   0.49 
 

 
As shown in Table 1, when the measurement function is a nonlinear sine function, (5) and (6)  
 
produce large errors. In other words, (5) and (6) hold only if the linearization conditions (7) and  
 
(8) are satisfied. The nonlinearity of the measurement functions may exist in some realistic  
 
problems, especially in the estimation of model parameters. In the EnKF framework, the  
 
parameter estimation is typically processed by defining the parameter as a special or specific  
 
system state. This makes the measurement function mapping the observation of real system  
 
states to the parameter space to be nonlinear.  
 
   Mathematically, a good solution for this issue is to re-formulize the Kalman Gain. As  
 
shown by Eq (9) in AT09, the Kalman gain can be expressed:  
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Here, y~  is defined as the error between the noisy observation and its prediction given by  
 

)xyy~ b
t(ht −= . (9) avoids the use of the Jacobian while retaining consistency and accuracy,  

 
which allows strong nonlinear measurement functions such as the parameter estimates of  
 
strongly nonlinear Lorenz 63 and Lorenz 96 models (Ambadan and Tang 2009b)  

 
3. Reference benchmark used in comparison  

   The general focus of AT09 was to introduce the SPKFs to atmospheric assimilation 

community. The SPKF concepts were originally derived by Julier et al. 1995, and subsequently 

developed by many researchers as mentioned in AT09. The so called SPKF and its square-root 

variants were originated in the signal processing community. The SPKF is based on 

deterministic sampling approach whereas EnKF is based on random sampling of ensembles. 

The essential difference between SPKF and EnKF is the perturbation for generating ensemble 

and the formulation of Kalman gain. As an early introductory work, AT09 performed two basic 

SPKF filters: unscented Kalman filter and central difference Kalman filter. For the sake of 

comparison in the same line, we chose the standard EnKF, rather than some recently developed 

derivatives of EnKF such as the Local Ensemble Transform Kalman Filter (LETKF, Hunt et al. 

2007) or Ensemble Square-Root Filters (EnSRF, Tippett et al 2003). It should be noted that the 

L63 experimental settings were very similar to those in Evensen (1997).  

   We agree with H09 that these state-of-the-art EnKFs can effectively improve the 

assimilation analysis. It is our motivation that the AT09 can bring SPKF to the attention of the 

atmospheric assimilation community, making further development and application of SPKF in 
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the field of atmospheric assimilation. It might be more appropriate to compare a state-of-the-art 

EnKF, as mentioned in H09, with a similar SPKF, which is being pursued. 

4. Conclusion 

 In current EnKF formulation, the measurement function is implicitly assumed to be linear or 

locally linearized. The direct application of nonlinear measurement operators in current EnKF  

formulation, as proposed in Houtekamer and Mitchell (2001) and Hamill (2006), is actually an 

implicit linearization through ensemble members. In some cases, the implicit linearization of 

nonlinear operators might lead to large errors of Kalman gain. An alternative treatment of 

nonlinear measurement function is to re-formulize Kalman gain used in SPKF as presented in 

AT09.    

 We agree with H09 that the state-of-the-art EnKFs can lead to better assimilation analysis 

than a standard EnKF used in AT09. However we think a parallel comparison between EnKF 

and SPKF in the same line, as performed in AT09, should be allowed. We expect a comparison 

between a state-of-the-art EnKF and a state-of-the-art SPKF in the near future.   
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