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Comments on the Benchmarks in “A Proposal
for Improving the Accuracy of Linguistic

Modeling” and Related Articles

Johannes A. (Hans) Roubos and Robert Babuška

Abstract—In the above paper, the so-called accurate linguistic modeling
(ALM) method was proposed to improve the accuracy of linguistic fuzzy
models. A number of examples are given to demonstrate the benefits of the
approach. We show that: 1) these examples are not suitable as benchmarks
or demonstrators of nonlinear modeling techniques and 2) better results
can be obtained by using both standard regression tools as well as other
fuzzy modeling techniques. We argue that benchmark examples that are
used in articles to demonstrate the effectiveness of fuzzy modeling tech-
niques should be selected with great care. Critical analysis of the results
should be made and linear models should be regarded as a lower bound on
the acceptable performance.

Index Terms—Linguistic fuzzy model, rice data, spline model,
Takagi–Sugeno (TS) fuzzy model.

I. INTRODUCTION

Fuzzy models differ from nonsymbolic methods such as neural
networks mainly in that they can represent knowledge in a transparent
manner usingIF–THEN rules. Linguistic interpretability and trans-
parency are therefore important aspects in fuzzy modeling [2]–[7].
Recently, we have witnessed a strong emphasis on approaches focusing
on the prediction performance and accuracy of fuzzy systems. New
construction techniques are being introduced and their performance is
usually assessed by using simulation examples and real-world data.
The paper by Cordón and Herrera [1] is an example of one such
article. The authors acknowledge the fact that linguistic models with
fixed and evenly spaced membership functions result in models with
poor approximation properties. They propose theaccurate linguistic
modeling(ALM) method which allows consequents with two fuzzy
sets and thereby improves the accuracy.

Three examples are given to demonstrate the benefits of the pro-
posed technique: The “rice data,” a bivariate function, and a mod-
eling problem encountered in electricity distribution. In this paper, we
discuss the first two examples (the data set of the third example was
not available to us). We show that these examples are not suitable as
benchmarks or demonstrators of nonlinear modeling techniques and
that better results can be obtained by using both standard regression
tools as well as other fuzzy modeling techniques. As the rice data set
was also used by other researchers, we have included their results in
our discussion, too.

II. RICE TASTE EVALUATION

The “rice data” problem was originally introduced in [8]. Later, it
was used as a benchmark by several other authors [1], [9]–[12]. In [1],
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the data set is described as follows: “The modeling of this problem be-
comes very complex due to the large quantity of relevant variables and
to the fact that the problem-solving goal is not only to obtain an accurate
model but also a user-interpretable model representing the nonlinear re-
lationships existing in the problem as well as putting some light on the
reasoning process performed by human experts.” In the following, we
show that this modeling problem is not that complex and that standard
regression techniques yield accurate and interpretable models.

Rice overall evaluation was done by experts on the basis of five char-
acteristics: flavor, appearance, taste, stickiness, and toughness. These
characteristics are used as real-valued inputs to the model. The output
is the overall evaluation given on a real scale (positive and negative
values). The data set contains 105 samples of different rice kinds and
all the variables are normalized in the interval[0; 1]. For training and
evaluation purposes, the data set is randomly partitioned into training
data (75 samples) and test data (30 samples). Repeated training and
validation runs are performed to obtain statistically relevant results [1],
[9], [10].

A. Linear Regression

Without having any prior knowledge about the problem, one usually
first analyzes the data through correlation analysis. Fig. 1 shows strong
linear correlations between some of the inputs and the output. This
indicates that a linear regression model may already be adequate for
this data.

Given the small number of potential regressors, any standard input-
selection technique can be used, such as forward or backward selection,
stepwise regression and even exhaustive search. By using exhaustive
search, we found that a linear model using inputsx1 tox4 and an offset
(five parameters in total) gives the best cross-validation mean-squared
prediction errorMSE = 0:0014, averaged over ten runs; see Table I:1

y = 0:1490x1 + 0:1615x2 + 0:5464x3 + 0:2561x4 � 0:0631: (1)

In terms of prediction accuracy, this linear model outperforms the fuzzy
models from [1] and other related literature. Also, the interpretation of
this model is quite straightforward. All the considered features posi-
tively contribute to the overall rice evaluation and that the largest pa-
rameter is associated with inputx3 (taste).

Interestingly, a linear model usingx3 only givesMSE = 0:0021 on
the test data, which is a result as good as the best fuzzy model in [1]
and related works of the authors

y = 1:0879x3: (2)

As the singleton fuzzy model reported in [8] achieves a slightly better
result, a question arises whether the performance of the linear regres-
sion model can be improved by using nonlinear regression (including
fuzzy models).

B. Polynomial Regression

By using a range of input-selection techniques, polynomial regres-
sion models can be constructed. A simple exhaustive search over model

1Some of the performance indexes have been converted from the original ones
to the index used in [1] (e.g., the error in [8] and [9] was the summed quadratic
error divided by two).
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Fig. 1. Scatter plots of the rice data.

TABLE I
RESULTSOBTAINED BY VARIOUS AUTHORS FOR THERICE DATA PROBLEM. THE MSE VALUES ARE AVERAGESOVER 7–12 CROSS-VALIDATION RUNS ( =

NOT GIVEN IN THE REFERENCE)

structures including the original inputs and products of two input vari-
ables (bilinear models) results in the following model:

y = 0:1371x2 + 0:5804x3 + 0:3332x1x4 + 0:1941x4x5: (3)

Again, the individual parameters should not be difficult to interpret by
experts. The product terms represent combined effects of the attributes
involved. One can see in Table I that this model is marginally better
than the best fuzzy model from the literature, while using only four
parameters (compared to 243 parameters used in [8]). However, this
does not suggest that fuzzy models are inferior to other techniques, as
shown in Section II-C.

C. Fuzzy TS Model

By using an automated technique based on Gustafson–Kessel (GK)
fuzzy clustering [13], a two-rule Takagi–Sugeno (TS) fuzzy model was
constructed from the data. Two rules represent the maximum reason-
able complexity, as by adding more rules the cross-validation error in-
creases quite rapidly (Fig. 2 ). This confirms the observations made in
Section II-A on the remarkable accuracy of the linear model.

In the TS model, inputx4 is partitioned into two fuzzy subsets la-
beled as ’Low’ and ’High’. The corresponding rules are as follows.

1)

Ifx4is low; then

y =0:1243x1 + 0:6017x3 + 0:2757x4 � 0:0074: (4)

Fig. 2. Average MSE over ten runs for the training (solid line) and test (dashed
line) rice data for the TS fuzzy model with an increasing number of rules.

2) If x4 is High, then y = 0:2059x1 + 0:6774x3 + 0:2335x4 �

0:0651.
The performance of this model is identical to that of the linear model
(1). Note, however, that the TS model only uses three input regressors,
rather than four. The consequent parameters of the individual rules can
be interpreted in a similar way as in the linear model. Comparing the
two rules, one can see that the coefficient in front ofx1 is larger in the
second rule, which means thatx1 has more influence ony whenx4 is
high. This corresponds well with the interpretation of the polynomial
model (3).
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Fig. 3. Output surfaces for functionsF1 throughF4.

III. A PPROXIMATION OFBIVARIATE FUNCTIONS

In addition to the rice data, Cordónet al.used several bivariate func-
tions to demonstrate their methods [1], [14]–[19]. Four frequently used
examples are shown in Fig. 3.

Note that functionsF1 andF2 are reasonably interesting for the
study of linguistic fuzzy modeling as their behavior can be summarized
by using a relatively small number of fuzzyIF–THEN rules. However,
functionsF3 andF4 are characterized by a complex behavior with
a large number of local extrema and therefore are not likely to yield
any useful fuzzy models. It will be shown that simple lookup tables
give more accurate and transparent results than those reported in the
literature.

A. FunctionF1

The following function was used in [1], [14], and [15]:

F1(x1; x2) = 10 �
x1 � x1x2

x1 � 2x1x2 + x2
(5)

with x1; x2 2 [0; 1] andF1(x1; x2) 2 [0; 10]. A training data set
with 676 samples2 was obtained forx1; x2 2 f0; 0:04; . . . ; 1g with
F1(0; 0) 10 andF1(1; 1) 0. The test set contains 67 randomly
distributed data pairs.

Note that the use of noise-free training data placed on a grid covering
the entire domain makes the approximation task very easy. A more re-
alistic approach would be to generate the training data randomly (per-
haps deliberately avoiding parts of the domain) and to test the model
generalization capability on the entire grid.

Many techniques can be applied to this approximation problem.
Here, we show that standard cubic-spline approximation with nu-
merical optimization of the knots results in a model of the same
complexity, but of considerably higher accuracy than the best lin-
guistic fuzzy model from the literature. We also demonstrate that the
same kind of rule-based interpretation can be given as with the ALM
method [1].

2Cordón et al. use 674 samples, omitting the data points at (0, 0) and (1, 1)
which are not defined by (5).

TABLE II
LOOKUP TABLE APPROXIMATION OFFUNCTION F

The standard MATLAB functiongriddata was used to approximate
the training data on a grid of 49 points (this is the same number of
rules as the smallest fuzzy model from the literature, see Table IV).
The positions of the two extreme grid points in each input domain
were fixed to 0 and 1, respectively. The remaining five points
were selected randomly from the uniform distribution and then
optimized by at most ten iterations of the Levenberg-Marquardt
algorithm (using the standard MATLAB function lsqnonlin). Out
of ten randomly initialized runs, the following coordinates of the
grid points for bothx1 andx2 give the best fit on the training data
[0;0:0347; 0:1918; 0:4390; 0:8175; 0:9655; 1]. The corresponding
lookup table values (model outputs) at the Cartesian product of the
grid points are given in Table II.

A linguistic interpretation in terms of rules with double consequents
(in the terminology of [1]) is easily obtained by choosing, for instance,
five triangular membership functions for the output (very small, small,
medium, large and very large) and listing the labels for which theF1

value has nonzero membership degrees, see Table III. This is the sim-
plest case of linguistic approximation [20]. This rule base is similar to
the one given in Table IV in [1], however, the spline model is five times
more accurate.

Table IV summarizes the results obtained with the spline model and
several other models from the literature. Note that in terms of numerical
performance, the spline model is superior to all the models, but the TS
model, which has at least three times more parameters. By increasing
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Fig. 4. F surfaces by grid interpolation with 16 (left) and 49 (right) grid points.

TABLE III
LINGUISTIC RULE BASE CORRESPONDING TO THELOOKUPTABLE FORF

TABLE IV
RESULTSOBTAINED FOR FUNCTION F

the number of rules to 81, the performance of the spline model improves
by a factor of six.

B. FunctionF2

In [14] and [15], Mamdani and TS models were constructed for the
following function:

F2(x1; x2) = x
2

1 + x
2

2 x1; x2 2 [�5; 5] (6)

using 1681 training data pairs (uniformly spaced on a 41� 41 grid)
and 168 random test data pairs. A summary of the results is given in
Table V. The Mamdani model fits the data reasonably well, however,
the output surface is irregular, as shown in [14]. Better results were
obtained with the TS model, but the number of rules (49) is very large
for such a smooth surface.

By applying a fuzzy modeling method based on GK clustering and
genetic optimization [3], a four-rule TS model was obtained whose per-
formance is similar to the 49-rule TS model given in [15], see Table V.

Note that spline and polynomial regression models similar to those
applied in Section II give for this function a zero approximation error
for both the training and the test data.

TABLE V
RESULTSOBTAINED FOR FUNCTION F

C. FunctionsF3 andF4

F3 is the following bi-variate function:

F3(x1; x2) = e
x

� sin2 x2 + e
x

� sin2 x1 (7)

with x1; x2 2 [�8; 8]. In [15], Mamdani and TS models were con-
structed based on 1089 training and 108 test data pairs, generated sim-
ilarly to F2. The models found contain 49 to 100 rules, with 0.5 MSE
in the range 28 691–68 971 for the training data and 19 838–41 000 for
the validation data.3 From the plots shown in [1] it is clear that none of
the models found approximates the original surface well. Moreover, it
can easily be demonstrated that the presented fuzzy models have no
advantage over standard interpolation methods. A simple fixed-grid
interpolation (MATLAB ’s functiongriddata) with 16 uniformly dis-
tributed grid points gives 0.5MSE = 36 705 for training and 0.5
MSE = 35781 for testing, respectively. With 49 grid points, 0.5
MSE = 13316 is obtained for training and 0.5MSE = 10502 for
validation (see Fig. 4).

Similar results can also be shown for functionF4[14], [15], [19],
which is given by

F4(x1; x2) = x
2

1 + x
2

2 � cos(18x1)� cos(18x2) (8)

withx1; x2 2 [�1; 1]. Here, 1681 training data pairs (uniformly spaced
on input grid with 41� 41 values) and 168 random test data pairs were
used. More accurate approximations forF4 are given in [18], however,
the number of rules becomes extremely large. Models with 200 to 3000
rules were presented forF4, while only 1681 training data points are
available. On the other hand, also models with 7–15 rules were given,
which are clearly too simple to approximateF4. The 0.5 MSE given
for the training data is between 0.50 and 0.58 which is close to the
performance one obtains by taking the average value of the data as
a constant model (0.61). The performance obtained for the validation

3The performance on the validation data is better than the performance on the
training data set because of the random choice of the former one. The uniformly
spaced training data include the extrema of the function which are difficult to
approximate. These extrema, however, have a low chance of being randomly
selected.
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data is even worse with the nine-rule model (0.5MSE = 0:66). These
results are rather meaningless, which could have been discovered by
using the variance accounted for (VAF) performance index instead of
the MSE.

IV. DISCUSSION ANDCONCLUSION

We argued that the numerical examples used in [1] and a number of
related articles are not suitable as benchmarks or demonstrators of non-
linear (fuzzy) modeling methods. The rice data data very easy to model
by simple linear models, whose accuracy is in fact superior to that of
most fuzzy models reported in the literature (see Table I). A bilinear
model and a properly tuned two-rule TS fuzzy model give a slight im-
provement over the linear model. All these models are transparent and
easy to interpret. This data set thus does not appear suitable for demon-
strating either accuracy or interpretability aspects of fuzzy modeling
techniques. One can also question the approximation power of the pro-
posed ALM method [1] and the other methods from the cited literature,
as the results given for the training data are in some cases considerably
worse than those achieved with the linear model (Table I). Some of the
fuzzy models also seem to suffer from severe over-fitting, as up to 30
times lower accuracy has been reported for the validation data.

Next, we discussed the bivariate functionsF1 throughF4 that have
been used as examples in several publications [14]–[19], [21]. In these
examples, the training data are generated on a uniform grid, while the
validation data are random. This choice makes the approximation task
very easy. The usual approach is to generate training data randomly
and to test the model generalization capability on the entire grid. This
is much more realistic, as with real systems, one is often not able or
allowed to design experiments to obtain data on a grid. A typical ex-
ample is the identification of a dynamic system in which case the data
distribution is dictated by the process dynamics and the choice of the
input sequence. In addition, real data will always be corrupted by noise
and other disturbances.

For training data placed on a regular grid, standard spline methods
can easily be applied. The spline model obtained in this paper for func-
tion F1 is twice as accurate as the best fuzzy linguistic model reported
in the literature (with the same number of interpretable rules). Note
that spline models have the same interpretation as linguistic (singleton)
fuzzy models [22]. Some of the linguistic models reported for functions
F3 andF4 perform worse than the baseline model using just the mean
of the output data. Other models contain more rules (and therefore pa-
rameters) than data points in the training data set.

Summarizing, we propose that benchmark examples used to demon-
strate the effectiveness of fuzzy modeling techniques should be selected
with great care. The problem should not be too simple. While the use of
small simple examples has a high pedagogical value, one must be aware
of the fact that the results do not automatically carry over to more com-
plex problems. At the same time, many methods can be found that will
solve the simple problem well (as shown in this article). The quality
of the proposed technique should be evident from a comparison with
state-of-the-art regression or classification techniques. Critical analysis
of the results should be made and linear models should be regarded
as a lower bound on the acceptable performance. Fuzzy models cer-
tainly have the potential to outperform other techniques, but this must
be clearly shown by comparisons with nonfuzzy approaches. Only in
this way, fuzzy techniques can gain higher credibility outside the fuzzy
community.
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