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The dense Kondo behaviour observed in Ce metal, its alloys and compounds is discussed by taking into 
account spin-orbit coupling and crystal field splitting. Especially, by using an expression for the Kondo 
temperature under a crystal field, we clarify the reason why the Kondo effect dominates the RKKY 
interaction. 

§ 1. Introduction 

The Ce metal, its alloys and compounds, such as CeAh, CeAla and CeBs, show the so
called dense Kondo behaviour at low temperatures_ Typical phenomena in the dense 
Kondo system are logarithmic increase of the resistivity with decreasing temperature and 
strong enhancement of the T-linear term of the specific heat. These effects are observed 
also in the Yb system. 

The usual Kondo systems such as CuMn contain magnetic atoms in very low con
centration. At a little high concentration (~1 atomic percent), interaction effects 
between magnetic atoms are dominant and magnetic alloys show long range order or spin 
glass-like behaviour. However, dense Kondo systems show Kondo-like behaviour, 
though cerium ions exist in very high concentration. The purpose of this note is to clarify 
the reason why the Kondo effect dominates intersite interactions and also the reason why 
the dense Kondo behaviour is realized only in the systems containing Ce and Yb. 

The Kondo effect in real metals has been discussed by many authors. I)_a) Okada and 
Y os ida 1) discussed the Kondo effect for the case with transition metal impurities. They 
showed that the binding energy of the bound state for the core with orbital degeneracy can 
become large by exchanging orbital moments. For example, the binding energy, E, for 
d-shell with a single electron is given by 

E = - Doexp[ - N/ (21 + 1 )plIlJ. (1) 

where 1=2: 1 ( < 0) is exchange coupling between conduction electron and localized d
electron. p is the density of state of the conduction band with width 2Do• N is the total 
number of atoms. 

On the other hand, in the half-filled d-shell, orbital momenta are quenched owing to 
the strong Hund's coupling. The binding energy for this case is very small owing to the 
absence of orbital exchange, and is given by 

E= -(21+ 1)Doexp[ -(21+ 1)N/plll]' (2) 
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This result explains the very low Kondo temperature observed in CuMn system. 
Ogawa and YoshimorF) (hereafter referred to as OY) discussed the effect of 

anisotropy energy on the ground state of Ce impurity in metals on the basis of Y osida 
theory. 4) N ozieres and Blandin3) gave a general consideration on the real systems, taking 
into account orbital stnicture of localized states, crystal field and spin-orbit splittings. 

These theories ll-
3) show the importance of taking into account real situations for 

individual cases in quantitative estimation of the Kondo temperature, TK • It is Ce system 
with one I-electron and Yb system with one I-hole that shows the dense Kondo behaviour. 
Hereafter, we discuss the Ce system, since the same discussion can be done for the Yb 
system in a parallel way by exchanging electron and hole. The lowest state of spin-orbit 
splittings, j = 5/2 for Ce3+, splits into subgroups due to a crystal field. For example, it 
splits into n doublet and Fa quartet under a cubic crystal field. 

Therefore, we consider the following Hamiltonian:2) 

H= 2: ckckMCkM-(j/2N) 2: ckMck'M,(aM't aM-bOMM,)+2:EMaM t aM. (3) 
k.M 'MM' M 

kk' . 

This Hamiltonian describes the crystal potential, EM, in addition to the exchange term 
given by Coqblin and Schrieffer,S) M being an eigenstate under a crystal field. CkM and aM 

are annihilation operators in the partial wave representation with respect to M for 
conduction electron with wave number k and localized electron, respectively. The energy 
level, EM, is defined so as to satisfy the following condition: 

(4) 

As we consider the trivalent Ce ion with one I-electron, we confine ourselves in the 
subspace 

(5) 

The second term in the bracket of the exchange term is added to make the exchange term 
traceless. 

In the next section, we discuss the binding energy of the bound state under a crystal 
field on the basis of Yosida theory,4) following OY.2) Then, we consider the Kondo 
temperature on the basis of scaling theory,3).6) with emphasis on the crystal field depen
dence of TK • Finally, we discuss the reason why the RKKY interaction is weak in 
our system. 

§ 2. Binding energy of bound state under crystal field 

Now, we consider the ground state energy of Hamiltonian (3), which has been 
discussed by Ogawa and Y oshimori. 2) , In the absence of crystal field, the binding energy 
of the bound state, Eo, is similar to (1) and is given by 

Eo= - Doexp{-2N/ [PIJI(2j+1)]}, (6) 

where 2j+1=6 for j=5/2. Thus, we can see that the degeneracy of I-level plays an 
important role in increasing the binding energy,71.8) corresponding to the orbital degenerate 
case in 3-d transition metals. I) 
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However, a crystal field lifts the degeneracy. In usual case, crystal field splitting is 
larger than binding energy, Therefore, higher states seem not to give any essential effect 
in this system at low temperatures, and it seems to be a good approximation to take only 
the lowest state into account. However, this is not true for a moderately strong crystal 
field. It is the main purpose of this note to show an important role played by higher levels 
under crystal field. 

The wave-function for the ground state of Hamiltonian (3) is written as2
),4) 

(7) 

where r 1
M

, rl'ff''''are the amplitudes to be determined, and 1,2,'" represent wave number 
k1, k2·... 10> is the Fermi state. 

Up to moderately strong crystal field, the integral equation for r 1
M is given by 

The ground state energy E is given byE=E+LlE, where 

(9) 

and E is determined by (8). The energy shift LlE has EM-dependent terms in addition to 
(9), but these terms can be neglected for the case with 

Ll = Emax- Emin4;. - Eo/ IIp/ 2NP-,m/(2j+l) , (10) 

where Ll is the total splitting due to the crystal field. ))m is the degree of degeneracy of 
the lowest level and Eo is given by (6). 

The kernel of the integral equation has also EM-dependence, hut if 

log[Ll/ IEol]4;. 2N [(2j + 1 )plJlJ-1 , 

it can be approximated by 

KMM,(c) = (z-1-1)(2j+ 1)-1 [8MM,{1 +(2j+ 1)-2}-2(2j + 1)-1], 

Z=1-(2j+1)( f'lv )log[(e-E)/Do]. 

(11) 

(12) 

By retaining the most divergent terms for EM-independent terms and also for EM-depen
dent terms, we obtain the eigenvalue equation, 2) 

(13) 

The energy E determined by (13) contains a contribution from crystal field. An essential
ly anomalous part of the binding energy, Ee , is obtained by subtracting the average crystal 
field energy Ea from E, 

(14) 
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(15) 

where AM is a weight factor defined by <¢laM t aMI¢>/ <¢I¢>. 
The eigenvalue equation (13) has been derived on the assumptions (10) and (11). 

However, this equation gives a correct limit of strong crystal field in the most divergent 
approximation,2) 

E= - Doexp[ -2N/ IJplllm]+ Em1n • (16) 

As shown later, strong crystal field means Ll ~ Do. After the general discussion 
mentioned above, Ogayva and Y oshimori calculated the binding energy Ee for the case 
with a uniaxial anisotropy, 

EM=Ll[M2_(35/ 12)]/6, (17) 

M=+~ +~ +l -2' -2'-2 (18) 

1.0..,...--~,........-----------, 

0.5 

o 5 10 15 

Fig. 1. The essential binding energy is shown as a 
function of the splitting, L1=EQ-ED >O, due to 
the cubic crystal field. Here, we assumed that g 
doublet is lower than r. quartet.· The full line 
shows the binding energy Ee and the dotted line 
shows the weight factor of g doublet in the 
ground state. 

The numerical result is shown in their 
paper.2) 

In the present paper, we assume a 
cubic crystal field and define crystal 
potential ED = - 2Ll/ 3 for n doublet and 
E Q=Ll/3 for rs quartet. Hereafter, we 
consider two cases depending on the sign 
of Ll=EQ-ED. 

Case 1. E Q > ED ,(Ll >0). 

By inserting EQ and ED into (13) and 
(15), we obtain the binding energy. It is 
shown as a function of Ll in Fig. 1, together 
with the weight factor of the r7 in the 
ground state. For a moderately strong 
crystal field (Do~Ll~-Ee), the essential 
binding energy Ee is given by 

(19) 

For a very strong crystal field (Do~Ll), the binding energy is given by 

- -(E )2 Ee2=-Doexp[-N/pIJiJ=Eo D: . (20) 

The binding energy, Eel of (19), in the intermediate case is rewritten by the use of Ee2 of 
(20) as 

- (D)2-Eel = Llo E e2 . (21) 

Thus, we can see that higher states under a crystal field should not be neglected in 
order to obtain correct order of the binding energy, as far as Ll~Do even if Ll~IEol. 
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(22) 

In a similar way to the case 1, Ee is obtained from (13) and (15). For a moderately strong 
crystal field, (Do}>ILlj}>IEel), 

Eel = Eo {lEol/ ILl 1)1/2 . (23) 

For a very strong crystal field (ILlI~ Do), 

E e2 = - Doexp[ - N/2(plJl)]=Eo( I~:I /,2. (24) 

Eel given by (23) is rewritten as -

(25) 

§ 3. Scaling theory in the presence of crystal field 

In the previous section, we have discussed the binding energy of the bound state. 
Here, we consider the Kondo temperature by using scaling theory. 3),6) 

To make -the scaling equation more general, we generalize the exchange part of 
Hamiltonian (3) as 

H. - ~ II t t ~ 10 t t 
ex- - ~, 2N CkMCk'M'aM'aM- ,t;:., 2N CkmCk'm'am'am 

k~ k~ 

(26) 

Capital M represents a higher level state in,a cubic crystal field, and m stands for a 
lower level state. The exchange interactions 10 and!l work in the subspace of lower and 
higher levels, respectively and 12 is that between two subspaces. 

Following the poorman's derivation,6) we obtain the following scaling equations: 

(27) 

(28) 

d]2 = ~ ]1]2 + ~ ]0]2 
dD M D+EM-z m D+Em-z' (29) 

Z is the total energy of the impurity in the crystalline field and the interacting electron.3) 
Hereafter, we assume a cubic crystal field; E m=-2L1/3 and EM=LI/3 for LI>O, and Em 
=LI/3 and EM=-2L1/3 for LI<O. 

Case l.LI>O, z~-2L1/3. 

d]o = 2]02 + 4]l 
dD D D+LI' (30) 
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(31) 

(32) 

If we assume JO=J1=J2=J and io=i1=i2=i, Eqs. (30)~(32) are reduced to the 
following equation: 

(33) 

This isotropic case is realized, when the localized I-level Cf is low enough from the Fermi 
level/> E F, and L1 satisfies U~IEF-cfl~IL1I, U being the intra-Coulomb repulsion between 
I-electrons. The solution of (33) is given by 

1 2N D D+L1 
- i + pJ =2 log Do +4 log Do+L1 ' (34) 

where Do and pJ/2N are given by an initial condition. For the case with Do~L1, i is 
given by 

(35) 

Since the Kondo temperature is defined as D giving rise to infinite coupling constant, TK 
is determined by the following equation (in this paper we put kB = 1): 

If TK~L1, we obtain 

1+ pIJI} TK + 2p1JI} TK+L1· 0 
N og Do N og Do . , 

T =D e-NIPIJIX( Do )2 
K 0 TK +L1 . 

This is the same expression as (21). 

Table 1. Kondo temperature TK 'for typical values of LJ and fo. 

TK(K) ILJI (K) fo 

50 0 0.062 
LJ>O 10 100 0.062 

(Case 1) 0.001 00 0.062 
10 00 0.145 

20 0 0.054 

LJ<O 10 100 0.054 
(Case 2) 1 00 0.054 

10 00 0.072 

fo=l]pl/N, Do=104K. 

0.004 
0.004 
0.004 
0.021 

0.003 
0.003 
0.003 
0.005 

(36) 

(37) 

(38) 
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Case 2. L1<0, z~-IL1I/3. 

dj _ 4j2 2j2 
dD -----yy+ D+IL11 . (39) 

1 2N _ D+IL11 
- j + pI -4logD/Do+2log Do+IL11 ' (40) 

j = pI [1 + pIIllogD+IL11 +2 pIII 1ogk]-1 . 
2N N Do N Do 

(41) 

T K is given by 

TK=(Do/ (TK+IL1I))1/2 Doexp[ - N/ 2pIIIJ (42) 

( 
D )1/2 

~ 1L11 Doexp[ - N/ 2pIJIJ for TK~IL1I. (43) 

This expression for TK is the same as IEe11 in (25). The above results are shown in 
Table I for typical values of L1 and pj/ N = jo, with Do = 104K. 

§ 3. Conclusion and discussion . 

. First, we assume that r7 doublet is the ground state (case 1) and discuss the contribu
tion of higher levels to the Kondo temperature. If we put L1/TK=10, we can see from 
Fig. 1 that the doublet state contributes to 94 % of the ground state and the quartet to only 
6 %. If we use the same value for exchange coupling parameter and neglect mixing with 
higher levels, TK or IEe11 decreases from 10 K to 1O-3K. This example shows that by 
mixing with higher levels in a few percents, the Kondo temperature increases drastically. 

For case 2, in which Fa quartet is the ground state, the Kondo temperature is high 
owing to the degeneracy of the ground state, similar to the case in the absence of crystal 
field. 1

),2),7) Even in this case, TK increases by one order of magnitude by mixing with r7 
doublet state (see Table 1). 

The role played by the higher levels for the case with Do-:?L1-:? TK can also be 
explained on the basis of the scaling theory. The coupling constant j is scaled with D 
decreasing from Do to 1L11 by 

(44) 

This is the same equation in the absence of crystal field splitting and increases the 
coupling constant rapidly. From (44) the coupling constant j = ji at D=L1 is given by 

(45) 

This coupling constant ji is finite but larger than that scaled by using only lower states. 
Then, j is rescaled with D decreasing from L1 to TK, starting from the enlarged initial 
coupling constant ji. Thus, we have a large value of Kondo temperature. 

The other magnetic rare earth metals than Ce and Yb have multiply occupied I-shell. 
For I-shell with plural electrons or holes, Hund's coupling is dominant and is of the same 
order as Do. Thus, Hund's coupling in I-shell reduces the degree of freedom of exchang
ing angular momentum and spin, to reduce remarkably the Kondo temperature. I) Thus, 
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we have shown the reason why the metallic system with Ce has a high Kondo temperature, 
although the exchange interaction is very weak. 

Now, we discuss the reason why the RKKY interaction is weak in the Ce system. 
Though the RKKY interaction depends on the band structure in general, its strength is 
proportional to 52, 5 being the magnitude of the localized spin. Therefore, the RKKY 
interaction between cerium ions with a single I-electron is weak. For example,Gd metal 
with localized spin 5 = 7/2 orders in the ferromagnetic state below300K. Assuming that 
magnetic ordering temperature is scaled by 52, we obtain 6K as the critical temperature 
for Ceo This result is confirmed also by the following consideration. If we scale the 
paramagnetic Curie temperature by the de Genne factor (gj_1)2j(j + 1), we obtain 3K for 
that of Ce3+. These values for magnetic ordering temperature of Ce system are reason
able compared with observed ones. Moreover, if we take into account the Kondo effect, 
it lowers further the ordering temperature estimated above. 

In conclusion, we have clarified the two reasons concerning the origin of dense Kondo 
state. One is that for the high Kondo temperature in spite of weak exchange interaction. 
The other is that for low ordering temperature due to weak RKKY interaction. By these 
two effects, the dense Kondo state is realized in Ce system. Though we have discussed 
the case of Ce, the same consideration can be applied to Yb with one hole in I-shell. 

Finally, we would like to mention briefly the low temperature behavior of the dense 
Kondo system on the same standpoint we have taken in this paper. This standpoint is 
that the 41 level Cf is deep enough, intra-Coulomb repulsion U is very large and s-I 
exchange model is well applied. This system shows the logarithmic increase of the 
resistivity with decreasing temperature, but since deep 41 levels are arranged on the 
periodic lattice, they act as the periodic potential to the conduction electrons. The 
periodicity make!? scattering coherent. Therefore, 'the resistivity decreases through 
maximum at low temperatures and vanishes at the absolute zero. unless magnetic order 
takes place. 

In these low temperature regions, the conduction electrons will behave as heavy fermi 
liquid because they must keep localized 41 electrons in the Kondo states. This heavy 
fermion system can become superconducting if enough attraction exists between· heavy 
fermions to overcome repulsion arising from the s-I exchange. In this case, strong 
repulsion U is ineffective since 4/-levels are singly occupied. Recently found supercon
ductivity in the dense Kondo system, CeCu2Sh9

) could reasonably be understood in this 
way although detailed calculations are needed for quantitative understanding. 
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