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Comments on the Dense Kondo State
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The dense Kondo behaviour observed in Ce metal, its alloys and compounds is discussed by taking into
account spin-orbit coupling and crystal field splitting. Especially, by using an expression for the Kondo
temperature under a crystal field, we clarify the reason why the Kondo effect dominates the RKKY
interaction. )

§1. Introduction

The Ce metal, its alloys and compounds, such as CeAl., CeAls; and CeBs, show the so-
called dense Kondo behaviour at low temperatures. Typical phenomena in the dense
Kondo system are logarithmic increase of the resistivity with decreasing temperature and

strong enhancement of the 7-linear term of the specific heat. These effects are observed

also in the Yb system.

The usual Kondo systems such as CuMn contain magnetic atoms in very low con-
centration. At a little high concentration (~1 atomic percent), interaction effects
between magnetic atoms are dominant and magnetic alloys show long range order or spin
glass-like behaviour. However, dense Kondo systems show Kondo-like behaviour,
though cerium ions exist in very high concentration. The purpose of this note is to clarify
the reason why the Kondo effect dominates intersite interactions and also the reason why
the dense Kondo behaviour is realized only in the systems containing Ce and Yb.

The Kondo effect in real metals has been discussed by many authors.’~® Okada and
Yosida® discussed the Kondo effect for the case with transition metal impurities. They
showed that the binding energy of the bound state for the core with orbital degeneracy can
become large by exchanging orbital moments. For example, the binding energy, E, for
d-shell with a single electron is given by

E=—Doexp[— N/ (21+1)olJ]], (1)

where /=2 J(<0) is exchange coupling between conduction electron and localized d-
electron. p is the density of state of the conduction band with width 2D,. N is the total
number of atoms.

On the other hand, in the half-filled d-shell, orbital momenta are quenched owing to
the strong Hund’s coupling. The binding energy for this case is very small owing to the
absence of orbital exchange, and is given by

E=—(21+1)Doexp[—(2{+1)N/olJI). (2)
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This result explains the very low Kondo temperature observed in CuMn system.
Ogawa and Yoshimori? (hereafter referred to as OY) discussed the effect of
anisotropy energy on the ground state of Ce impurity in metals on the basis of Yosida

theory.? Noziéres and Blandin® gave a general consideration on the real systems, taking

into account orbital structure of localized states, crystal field and spin-orbit splittings.
These theories?’~® show the importance of taking into account real situations for
individual cases in quantitative estimation of the Kondo temperature, T«. It is Ce system
with one f-electron and Yb system with one f-hole that shows the dense Kondo behaviour.
Hereafter, we discuss the Ce system, since the same discussion can be done for the Yb

system in a parallel way by exchanging electron and hole. The lowest state of spin-orbit.

splittings, 7=5/2 for Ce®*, splits into subgroups due to a crystal field. For example, it
splits into Iy doublet and I's quartet under a cubic crystal field.
Therefore, we consider the following Hamiltonian;z’

H= 2 SkCLMCkM—(]/ 2N) 2 CLM,Ck’M’(ﬂM’TaM—baMM’)‘FZEMaM*aM . (3)
M ’ Ag%' ) . M

This Hamiltonian describes the crystal potential, Eu, in addition to the exchange term
given by Coqblin and Schrieffer,” M being an eigenstate under a crystal field. cex and aum
are annihilation operators in the partial wave representation with respect to M for
conduction electron with wave number % and localized electron, respectively. The energy
level, Eu, is defined so as to satisfy the following condition:

As we consider the trivalent Ce ion with one f-electron, we confine ourselves in the
subspace :

IZW}aM*aM=1,. : | (5)

- The second term in the bracket of the exchange term is added to make the exchange term
traceless.

In the next section, we discuss the binding energy of the bound state under a crystal
field on the basis of Yosida theory,” following OY.? Then, we consider the Kondo
temperature on the basis of scaling theory,®® with emphasis on the crystal field depen-
dence of Tx. Finally, we discuss the reason why the RKKY interaction is weak in

our system.

<§ 2. Binding energy of bound state under crystél field

Now, we consider the ground state energy of Hamiltonian (3), which has been
discussed by Ogawa and Yoshimori.? In the absence of crystal field, the blndmg energy
of the bound state, Eo, is similar to (1) and is given by

Ey=— Doexo{—2N/ [ol7I(27 + D)1}, - (6)

where 27+1=6 for j=5/2. Thus, we can see that the degeneracy of f-level plays an

~ important role in increasing the binding energy,”®

corresponding to the orbital degenerate
case in 3-d transition metals.” ‘
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However, a crystal field lifts the degeneracy. In usual case, crystal field splitting is
larger than binding energy. Therefore, higher states seem not to give any essential effect
in this system at low temperatures, and it seems to be a good approximation to take only
the lowest state into account. However, this is not true for a ‘moderately strong crystal

field. It is the main purpose of this note to show an important role played by higher levels
under crystal field.

The wave-function for the ground state of Hamiltonian (3) is written as®*

o= [IZA:JFIMCIMQMT ‘|‘Eplﬂzl:sM'CfMCzMCsM’dM’t

+2PI%A{;M"CIMCZMC;M’C:;M’CSM”(ZIYW"_’_"':”0) (7) ’

where '™, I'/$3"’---are the amplitudes to be determmed and 1, 2,:*- represent wave number
ki, k2. 0> is the Fermi state.

Up to moderately strong crystal field, the integral equation for I''™ is given by
(—er+Eu— E)F1M=‘[(21+1) P — 2 ]+ N 2" K (—e1—€2). (8)
| The ground staté energy E is given by E=FE + AE, where 4
aE=—(LLY 1j(i+1)(2+1)2Ddlog 2+ 9)

and E is determined by (8). The energy shift 4F has Ex-dependent terms in addition to
(9), but these terms can be neglected for the case with
A_Emax Enink — Eo/ lfp/ ZNIW"/(ZJ-H) B » ' (10)

where 4 is the total SPIitting due to the crystal field. vn is the degree of degeneracy of
the lowest level and E, is given by (6).

The kernel of the integral equation has also Eu-dependence, but if »
logl4/ |Edl<2N[(2j+1)olJ 17", (11)
it can be approximated by

Kuae()= (57 =125 +1) a1+ 25+ 1) 2025 +1)7], 12)
z=1— (2;+1)< >log[(e E)/Do).

By retaining the most divergent terms for Eu- -independent terms and also for Eu- depen
dent terms, we obtain the eigenvalue equation,?

Slog{(BEu—E) (~E}=0. - (13)

The energy E determined by (13) contains a contribution from crystal field. An essential-

ly anomalous part of the binding energy, E., is obtained by subtractmg the average crystal
field energy E. from E,

Eo=3Euflu, | | | o 4)
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Eo=E—Eo=—(2j+1)/ 3(En—E)*, (15)

where Au is a weight factor defined by <@|an'auld>/<s|$>.

- The eigenvalue equation (13) has been derived on the assumptions (10) and (11).
However, this equatlon gives a correct limit of strong crystal ﬁeld in the most divergent
approx1matlon

E= ——Doexp[ 2N/ |]p|Vm]+Emin . : ‘ (16)

As shown later, strong crystal- field means 42D, After the general discussion
mentioned above, Ogawa and Yoshimori calculated the binding energy E. for the case
with a uniaxial anisotropy, :

=A[M*—(35/12)]/6, (17)
5 3 1 : .
M=t +5, £5. ; (18)
Ee/Eo . The numerical, result is shown in their
1.0 P paper.?
In the present paper, we assume a
F ‘ cubic crystal field and define crystal
' potential Ep=—24/3 for I'; doublet and
057/ Eo=4/3 for Is quartet. Hereafter, we
consider two cases depending on the sign
of A4=Eq—Enb. '
. T - = V%l Case 1. Eo>E» ,(4>0).
Fig. 1. The essential binding energy is shown as a By inserting E¢ and E» into (13) and
function of the splitting, 4=Eq—E»>0, due to (15), we obtain the binding energy. It is
the cubic crystal field. Here, we assumed that I shown as a function of 4 in Fig. 1, together

doublet is lower than I's quartet. The full line with the weight factor of the I in the

shows the blnd.lng energy E. and the dotte‘d line groun. d state. For a moderat ely strong

shows the weight factor of I doublet in the ~ .

ground state, crystal field (Do> 4> —E.), the essential
binding energy E. is given by

Eel_Eo(ﬁj’) . | (19)

For a \?ery strong crystal field (Do~ 4), the binding energy is given by

~ _ [ FE\2 ’
Eux=—Duexol— NjolT11=Eo( )’ (20)
The blndlng energy, Ee: of (19), in the mtermedlate case is rewritten by the use of Ee of
(20) as
~ 2 .
Ba=(5)Ee. | (21)

Thus, we can see-that higher states under a crystal field should not be neglecfed in
order to obtain correct order of the binding energy, as far as 4< D, even if 4>|E,|.
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Case 2. EQ<ED, (A<0) .
Eo=—|41/3, E»=24|/3. ' (22)

In a similar way to the case 1, FE. is obtained from (13) and (15). Fora moderately strong
crystal field, (Do>|41>|E)), ‘

Eeleo(lEo'/ |4]) = ' 7 - (23)
For a very strong crystal field (|4]|~ Do),

5 B _v~ IEOI 12 |
Eez=— Doexp[— N/ 2(o|J)]=E, Do) - : : (24)
E.: given by (23) is rewritten as -

Eer=E.(Do/ IAI)I’?: —y/ —I%’I-DoexD[—N/ 201711 (25)

§3. Scaling theory in the presence of crystal field

In the previous section, we have discussed the binding energy of the bound state.
Here, we consider the Kondo temperature by using scaling theory.®®

To make the scaling equation more general, we generalize the exchange part of

Hamiltonian (3) as

- 1 0 '
—%!W ng CITzMCk’M’aIYW’ClM'—mzm’ﬁczmck’m’a;n’am
kE

L(ciMck'mam’ au~+ClnCrmuan’ an). (26)

Capital M represents a higher level state in a cubic crystal field, and m stands for a
lower level state. The exchange interactions Jo and J, work in the subspace of lower and
higher levels, respectively and J; is that between two subspaces. ‘

Following the poorman’ s derivation, ® we obtain the following scaling equations:

dfo_z foz Tz fz

dD % D¥En—% % DVTEn—2" (27)
dj. _ Ji? I
dD ~ % D¥Eu—% S DTE.—%" g (28)

dfz JiJe JoJ> '
2D+EM z TZD+Em (29)

z is the total energy of the impurity in the crystalline field and the interacting electron.?
Hereafter, we assume a cubic crystal field; En= *24’/ 3and Ex=4/3 for 4>0, and En
=4/3 and Ex=—24/3 for 4<0.

Case 1. A4>0, z=~—24/3.

djo__zfozl 4f22 ’
iD~"D "D+ . (30)

220z ¥snbny |z uo1senb Aq £8/1681/0S¥/€/) /2101 e/did/woo dnoolwapeoe//:sdyy wol pepeojumoq



Comments on the Dense Kondo State . 455

df_ 4T 22 v
i~ D¥a T D (31)

dJs_4NiJ.  2]o]
b~ D+da T D - - 32)

If we assume Jo=/1=J.=] and Jo=J1=7J=7, Eqs. (30) ~(32) are reduced to the
following equatlon

dj _2j* 4] |

=D TDrg - (33)
This isotropic case is realized, when the localized f-level &, is low enough from the Fermi
level,” Er, and 4 satisfies U >|Er—&7|>|4|, U being the intra-Coulomb repulsion between
f-electrons. The solution of (33) is given by
D+4

1 2N D
—— =2 log——+4logDo+A , _ (34)

J oJ Do

where Do, and pJ/ 2N are given by an initial condition. For the case with Do>>A Jis
given by

J= ][1+p|]|log(D/Do)+2%”‘ 247, ~ (35)

Since the Kondo temperature is defined as D giving rise to infinite coupling constant, Tx
is determined by the following equation (in this paper we put ks=1):

1Yl D260 g Tt (36)
= Do~ Nel (%)2 (37)
Ifb Tx< 4, we obtain |
T Doe'_mpm(%)z_ , (38) -

This is the same expression as (21).

Table I. Kondo temperature Tx for typical values of 4 and Jo.

Tk (K) (4] (K) Jo Jo?

50 0 0.062 0.004

4>0 10 100 0.062 0.004
(Case 1) 0.001 oo 0.062 0.004
. 10 oo 0.145 0.021
20 0 . 0.054 0.003

4<0 - 10 100 0.054 0.003
(Case 2) - 1 R 0.054 - 0.003
: 10 o 0.072 0.005

Jo=lJol/N, Ds=10'K.
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Case 2. 4<0, z=~—|4|/3.

dj _ 4], 2]? ' .
DD tDam | , . (39)
_% %_4 1ogD/Do+2logg—fJ‘g”r, (40)
]~=éo]{/ 1420 olJl, ongldlizpm‘ogD ]_1_ (41)
Tk is given by ' ,
TK:(DO/(TK+|AI))1I2DOeXp[_N/ 29']” >(42)
z(%)llzDoexp[—N/ 201711 for Tu<ldl. » (43)

This expression for Tk is the same as IEelL in (25). The above results are shown in
Table I for typical values of 4 and poJ/N = J,, with Do=10*K.

§3. Conclusion and discussion -

- First, we assume that I doublet is the ground state (case 1) and discuss the contribu-
tion of higher levels to the Kondo temperature. If we put 4/ Tx=10, we can see from
Fig. 1 that the doublet state contributes to 94 % of the ground state and the quartet to only
6 %. If we use the same value for exchange coupling parameter and neglect mixing with
higher levels, Tx or |E.| decreases from 10K to 10-°K. This example shows that by
mixing with higher levels in a few percents, the Kondo temperature increases drastically.

For case 2, in which I's quartet is the ground state, the Kondo temperature is high
owing to the degeneracy of the ground state, similar to the case in the absence of crystal
field. ™" Even in this case, Tx increases by one order of magmtude by mixing with Iy
doublet state (see Table I).

The role played by the higher levels for the case with D¢>4> Tx can also be
explained on the basis of the scaling theory. The coupling constant J is scaled with D
decreasing from D, to |4] by

aj _.J*
D=5 (44)

This is the same equation in the absence of crystal field splitting and increases the
coupling constant rapidly. From (44) the coupling constant J = /J; at D=4 is givgn by

_ o] 3P|]|1 D,
Te=g3r| 1% A]

(45)

This couphng constant J; is finite but larger than that scaled by using only lower states.
Then, J is rescaled with D decreasing from 4 to Tk, starting from the enlarged initial
couphng constant J:. Thus, we have a large value of Kondo temperature.

The other magnetic rare earth metals than Ce and Yb have multiply occupied f-shell.
For f-shell with plural electrons or holes, Hund’s coupling is dominant and is of the same
order as Do. Thus, Hund’s coupling in f-shell reduces the degree of freedom of exchang-
ing angular momentum and spin, to reduce remarkably the Kondo temperature.” Thus,
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we have shown the reason why the metallic system with Ce has a high Kondo temperature,
although the exchange interaction is very weak.

Now, we discuss the reason why the RKKY interaction is weak in the Ce system.
Though the RKKY interaction depends on the band structure in general, its strength is
proportional to S? S being the magnitude of the localized spin. Therefore, the RKKY
interaction between cerium ions with a single f-electron is weak. For example, Gd metal
with localized spin S=7/2 orders in the ferromagnetic state below 300K. Assuming that
magnetic ordering temperature is scaled by S?, we obtain 6K as the critical temperature
for Ce. This result is confirmed also by the following consideration. If we scale the
paramagnetic Curie temperature by the de Genne factor (g;—1)?7(7+1), we obtain 3K for

that of Ce®*.  These values for magnetic ordering temperature of Ce system are reason-

able compared with observed ones. Moreover, if we take into account the Kondo effect,
it lowers further the ordering temperature estimated above. '

In conclusion, we have clarified the two reasons concerning the origin of dense Kondo
state. One is that for the high Kondo temperature in spite of weak exchange interaction.
The other is that for low ordering temperature due to weak RKKY interaction. By these

two effects, the dense Kondo state is realized in Ce system. Though we have discussed
the case of Ce, the same consideration can be applied to Yb with one hole in f-shell.

Finally, we would like to mention briefly the low temperature behavior of the dense
Kondo system on the same standpoint we have taken in this paper. This standpoint is
that the 4/ level ¢, is deep enough, intra-Coulomb repulsion U is very large and s-f

exchange model is well applied. This system shows the logarithmic increase of the .

resistivity with decreasing temperature, but since deep 4f levels are arranged on the
periodic lattice, they act as the periodic potential to the conduction electrons. The
periodicity makes scattering coherent. Therefore, the resistivity decreases through

maximum at low temperatures and vanishes at the absolute zero unless magnetic order

takes place.

In these low temperature regions, the conduction electrons will behave as heavy fermi
liquid because they must keep localized 4/ electrons in the Kondo states. This heavy
. fermion system can become superconducting if enough attraction exists between heavy
fermions to overcome repulsion arising from the s-f exchange. In this case, strong
repulsion U is ineffective since 4f-levels are singly occupied. Recently found supercon-
ductivity in the dense Kondo system, CeCu.Si.” could reasonably be understood in this
way although detailed calculations are needed for quantitative understanding.
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