
Datum: 23 oct, 2007

Uitsluitend voor persoonlijk gebruik / for personal use only

Technische Universiteit Delft
Bibliotheek
Prometheusplein 1
Postbus 98
Tel: +31 (0) 15 27 846362600 MG Delft
Tel: +31 (0) 15 27 85678
Fax: +31 (0) 15 27 85706
Email: library@tudelft.nl
www.library.tudelft.nl

Aan: WAGENINGEN UR
BIBLIOTHEEK FORUM

POSTBUS 9100
6700 HA WAGENINGEN

NEDERLAND

Aanvraag nr: 1341481 Uw referentie(s): A086074024 20.26599

Artikelomschrijving: Aantal kopieën: 6
Artikel: COMMENTS ON THE PLS KERNEL ALGORITHM.
Auteur: JONG, S. DE, & C.J.F. TER BRAAK.
Titel: JOURNAL OF CHEMOMETRICS
Jaar: 1994 Vol. 8 Nr. 2 Pag. 169-174
Plaatsnummer:E-7183

JOURNAL OF CHEMOMETRICS, VOL. 8, 169-174 (1994)

SHORT COMMUNICATION

COMMENTS ON THE PLS KERNEL ALGORITHM

SIJMEN DE JONG
Unilever Research Laboratorium Vlaardingen, PO Box 114, NL-3130 AC Vlaardingen, Netherlands

AND

CAJO J. F. TER BRAAK
Agricultural Mathematics Group (GLW-DLO), PO Box 100, NL-6700 AC Wageningen, Netherlands

SUMMARY

Lindgren et al. (J. Chemometrics, 7, 45-59 (1993)) published a so-called kernel algorithm for PLS
regression of Y against X when the number of objects is very large. The algorithm is based solely on
deflation of the cross-product matrices XTX, yTy and XTY. The algorithm is now described in a shorter
and more transparent way and compared with a similar algorithm for the singular value decomposition
of XTY.

KEY WORDS Kernel algorithm PLS SVD

1. INTRODUCTION

Lindgren et a/. 1 recently published a so-called kernel algorithm for PLS regression that is
particularly efficient when the number of objects is very much larger than the number of
variables. In the standard NIPALS procedure2 the data matrices X (n x p) and Y (n x m) are
deflated by projecting out successive orthogonal component scores, ta, a= 1, 2, When the
number of objects becomes huge (n lil> p), it pays to invest in the once-only construction of
XTX (p Xp), XTY(p X m) and yTy (m x m) and to extract the PLS model from these small
cross-product (or 'kernel') matrices. This is the main idea behind the kernel approach. Under
favourable conditions it may be up to four times as fast as efficient PLS algorithms based on
a conjugate gradient approach such as BIDIAG2, 3•4 LSQR, 4 CGLS4 and SlMPLS 5 and orders
of magnitude faster than the standard NIPALS-PLS algorithm.

In this communication we propose a simplified estimation of the PLS model from the cross
products XTX and XTY (Section 2). It closely follows the decomposition of cross-product
matrices presented in Reference 6, leading to an elegant and concise reformulation of the
kernel algorithm. The main thrust of this communication is not so much to introduce a new
algorithm but rather to shed new light on the kernel approach and the PLS method as such.
In Section 3 we compare the modified and the original kernel PLS algorithm. For both
algorithms the results are identical to those obtained with standard NIPALS-PLS. The

CCC 0886-93 83/94/020169-06
© 1994 by John Wiley & Sons, Ltd.

Received 13 September 1993
Accepted 18 November 1993

170 SHORT COMMUNICATION

modified algorithm is consistently faster, but not much. The rate-determining step in the kernel
algorithm is the construction of the cross-product matrices XTX and XTY rather than their
decomposition.

The PLS decomposition of the X Ty cross-product presented here can be nicely contrasted
with the singular value decomposition (SVD) of xTy (Section 4). Comparing these two
decomposition algorithms reveals the similarities and differences between the two methods.
Again, the value lies in adding further insight to the PLS method.

2. CROSS-PRODUCT DECOMPOSITION PLS ALGORITHM

In PLS regression one seeks a decomposition of the centred predictor data X in terms of
component scores t1. h, ... and associated loadings p11 p2, We will choose the component
scores to be uncorrelated and of unit norm. The scores are collected in a column-orthonormal
matrix T, the loadings in a matrix P. The components are constructed as linear combinations
of the predictors using weights w1, w2, To ensure orthogonality of the scores, the weights
apply to progressively deflated X-matrices Xo (=X), X1, X2, ... , where Xa indicates the
residual matrix obtained by projecting out the first a score vectors. The (normed) weights Wa
are chosen such as to maximize a covariance criterion, i.e. they correspond to the first
eigenvector of X~-1Ya-1YJ-1Xa- 1 . Since the scores need to be normed, the weights Wa have
to be renormalized in the metric XJ-1Xa-1·

Note that X can be decomposed completely when T and P have the same rank (r) as X. For
Y this cannot be done generally, since Y will have a residual part F that is orthogonal to X
and hence to T. Thus we find

(1)

Y = TCT + F = t1c! + hci + .. · + t,cJ + F (2)

where P = XTT is the p x r matrix of X-Ioadings and C = YTT is the corresponding m x r
matrix of Y-loadings. Using the fact that we have chosen TTT =I,, we may develop the
following decompositions of the cross-product matrices XTX, XTY and yTy;

xTx = PTTTPT = ppT = P1P 7 + P2Pi + ... (3)

xTy = PTTTcT =peT= P1c! + P2cl + ...

yTy = CTTTcT + FTF = c1c! + c2ci + ... + FTF

(4)

(5)

These decompositions (see Reference 6, p. 228) suggest a PLS2 algorithm based on deflation
of the cross-product matrices. On noting that the deflation of Xa and Ya in the original PLS2
algorithm is a projection operation, we obtain

(XTX)a = XJXa =[(In- tatJ)Xa-1]T(In- tatJ)Xa-1 = XJ-1Cin- tatJ)Xa-1

= XJ-1Xa-1- XJ-ltatJXa-1 = (XTX)a-1- PaPd

(XTY)a = xJYa = [(In- tatJ)Xa- t] T (In- tatl) Ya-1 = XJ-1 (1/1- tatd)Ya-1

= XJ-1Ya-1- XJ-ltatJYa-1 = (XTY)a-1- PacJ

(6)

(7)

The loadings in (6) and (7) are obtainable from the preceding cross-product matrices and the
current weights

Pa = xi-1ta = xLIXa-tWa = (XTX)a-1Wa

Ca = YJ-1ta = YJ-tXa-tWa = (YTX)a-tWa

(8)

(9)

SHORT COMMUNICATION 171

The weights Wa follow from the eigenanalysis of (XTyyTX)a- 1 = (XTY)a- 1(XTY)I- 1 and
subsequent rescaling using (XTX)a-1:

(10)

The individual terms in the expansions (3) and (5) can be used to compute the amount of
variance accounted for by each PLS component:

tr(XTX)=tr(PTTTPT)=tr(PPT)=tr(E PaPJ')=E tr(papJ')=E pJ'pa (11)

tr(YTY) = tr(YTTTTY) = tr(CCT) = tr(E Cacti)= E tr(cacl) = E dca (12)

One may compute a matrix R of weight vectors (W* of Reference 1) which give T directly when
applied to the original X:

T=XoR

These weights can also be used to calculate new scores for new data. R is given by 7

R= W(PTW)- 1

(13)

(14)

and can be used to predict Y directly from X, Y = TTTY = X 0RCT, yielding a simple
expression for the PLS multivariate regression model

(15)

Given these relations, we now can present the simplified kernel algorithm (see Appendix).
In the algorithm we have computed the weights Wa indirectly via the eigenanalysis of
(YTXXTY)a- 1 = (XTY)~- 1 (XTY)a- 1 , which generally has much smaller dimension than
(XTyyTX)a-1· Here we use the relation Wa ex (XTY)qa, with Qa being the dominant
eigenvector of (YTXXTY)a-1· Alternatively, Wa can be calculated as the rescaled first left
singular vector of (XTY)a-1· Usually a predictive model can be built employing a few
components only (A) rather than the maximum possible number (r).

The algorithm can be similarly applied when the X data set is very wide (p lll> n). In that
case one first rotates the data to canonical space and then works with the matrix of principal
component scores, XV = UA, rather than X itself. Here U and diagonal A 2 follow from
eigenanalysis of XXT. At the end of the PLS analysis one should back-rotate the weights W
and R, loadings P and regression coefficients B by premultiplying these matrices by the
eigenvectors V = XTUA - 1. This procedure is allowed, as we have checked, since PLS is
invariant under orthogonal transformation of the X-variables and/or Y-variables.

3. COMPARISON AND EVALUATION

We have tested the performance of the new algorithm in comparison with that of the published
algorithm. Both kernel algorithms give the same results as standard NIPALS-PLS using
UNSCRAMBLER software. The speed of computation has been compared using the same
factorial design as described by Lindgren et al. 1 Here the number of objects (n), the number
of X-variables (p), the number of Y-variables (m) and the number of dimensions (A) have
been varied according to a 24 design augmented with a centre point. The total number of
NIPALS iterations for five dimensions was 142, close to the value of Reference 1. As responses
we adopted the number of floating point operations (flops) consumed in constructing the cross
product matrices (stage A) and in deflating these matrices (stage B). The results for all design
points are shown in Figure I.

172

1000

..
g- 100
~

10

n 500

p s
m 5

A 1

500 500

5 5

s 25

s

SHORT COMMUNICATION

500 500 500 500 SOD 1500 2500 2.500

5 25 25 25 25 15 5

2S s 25 2S 15 s 5

5 s 1 5 3 5

A~

2500 2500

s 5

25 25

5

#.
:

I
• I

B

; I
; I
• I
:I
;t

'-. I • • ~ ~ :1" ~
' : I :

: I
•I
(

I•
I :

I ;
I ;

I :

2500 2500 2500 2500

25 25 25 25

5 5 25 25

5

Figure 1. Performance (in kflops) of original (--) and modified (---) kernel algorithms. The
contributions of the construction (A, thick lines) and decomposition (B, thin lines) stages are displayed

separately

The modified algorithm is consistently more economic. For stage A the advantage stems
from the fact that in the modified algorithm we only calculate the diagonal elements of yTy
rather than the full cross-product matrix. For a larger number of Y-variables this can make
a substantial difference. In the published kernel PLS algorithm 1 yTy is fully calculated though
only the diagonal is required. The results for stage B focus on the essential difference between
the two algorithms. Here the modified algorithm is at a clear advantage. However, the
advantage loses importance when the number of objects increases and stage A consumes the
larger part of the total flop count. When applying cross-validation, stage B may become more
important and the advantage of the modified algorithm more prominent.

Inspection of both kernel algorithms discloses the more important factors contributing to
the total number of floating point operations. These are the third-order terms np 2 (for
constructing XTX), npm (XTY), nm 2 or nm(YTY) and, in stage B, Ap2

, Apm and Am 2
•

Regression analysis using these six high-order terms accounts for more than 99 · 990/o of the
variance for both algorithms. This six-factor model has a residual variance (1 - R 2 < 0· 01 %)
that is much smaller than the ingenuous ten-factor model (1- R 2 = 1·9%) considered by
Lindgren et al. 1

A few more comments on the kernel algorithm are in order.

1. With the current modifications the kernel algorithm has become about as efficient as the
recently published SIMPLS algorithm. 5 The average performance in the above
comparative evaluation was 1974 kflops for the original kernel algorithm, 1350 kflops for
the modified kernel algorithm and 1162 kflops for the SIMPLS algorithm.

I

~
l

1
j

I

1

j

1
i

SHORT COMMUNICATION 173

2. The modified algorithm requires less storage space since it does without then x n matrices
yTy, (lp- WaPJ) and (XTyyTX)a.

3. The deflation of XTX in equation (6) preserves symmetry exactly, also when computed
with limited precision. For the original kernel PLS algorithm symmetry is preserved in
theory. With the published code exact symmetry is lost.

4. MATLAB has no special built-in function to extract the first eigenvector only. One
therefore needs to extract all eigenvectors after each deflation step and retain the
dominant one only. For matrices of order less than 20 this appears just as efficient as
using the power method. If programmed in FORTRAN or C, it is efficient to use
specialized routines to extract the first eigenvector. 8•

9

5. For the calculation of mean-corrected sum-of-squares and product matrices it is
numerically unstable 10 to follow equation (38) of Lindgren et at. 1 A more stable routine
is given by Clarke. 11

4. PLS2 AND THE SINGULAR VALUE DECOMPOSITION OF XTY

The novice to PLS2 often asks about the relation between PLS and the more familiar singular
value decomposition 6•

12 of XTY. The easy answer is of course that SVD is symmetric in X and
Y whereas PLS2 is asymmetric. We make this answer more precise by comparing their
respective decomposition algorithms.

The SVD of X Ty is given by

(16)

where G and H are orthonormal matrices (GTG == HTH = Ir') of order p x r' and m x r'
respectively, with r' == min(p, m) containing the left and right singular vectors (ga) and (ha)
(a= 1, ... , r') respectively, and A is a diagonal matrix with the singular values on the diagonal
arranged in decreasing order (o, ~ 02 ~ ... ~Or' ~ 0). The SVD can be obtained by
progressive deflation of So (= XTY) into matrices St, s2, ... by the formula 8•

12

(17)

For comparison with PLS2 (equations (6)-(10)) we express ga and ha in terms of X and Y.
Because G and Hare orthonormal, XTYH == G AHTH = G A and analogously YTXG = H A,
so that

ga = o; 1XTYha = XTiia (18)

ha == o; 1YTXga = yTfa (19)

with

Ua = /.i; 1Yha (20)

ta = o; 1Xga (21)

The deflation in SVD uses g1 and h 1• Equation (18) shows that g1 is a (normalized) loading
vector of the X-variables with respect to fir, the score vector that belongs to the Y-variables
(equation (20)). Likewise, equation (19) shows that h, is a (normalized) loading vector of the
Y-variables with respect to 'it, the score vector that belongs to the X-variables (equation (21)).
Thus the SVD deflation is symmetric. The decomposition of xry in PLS2 uses Pt and Ct

(equation (7)). These are also loading vectors of the X-variables and Y-variables respectively.
However, both these loading vectors pertain to the same X-component score vector t 1
(equations (8) and (9)). Thus the deflation in PLS2 is asymmetric. From the PLS2 algorithm

174 SHORT COMMUNICATION

in the Appendix it follows that g1 ex: W1, so that it ex: t1 and ht = Q1 ex: Ct. Further, notice 6 that
II Stll 2 ~ II (XTY) 1 11 2

• In other words, SVD is geared to the least-squares approximation 13 of
xTy by lower-rank matrices, whereas PLS2 is geared to the prediction of Y.

APPENDIX: SIMPLIFIED KERNEL ALGORITHM FOR PLS2 REGRESSION

The following MATLAB* code starts from the cross-product matrices XtX (= XTX) and XtY
(= XTY) and finds the first 'dim' components.

ssqX = sum(diag(XtX))
for a= 1 :dim

[Q,D] = eig(XtY' * XtY)
q = Q(:,find(diag(D) = = max(diag(O))))
w = XtY * q
w = wjsqrt(w' * XtX * w)
p = XtX * w
c=XtY'* w
XtX = XtX- p * p'
XtY = XtY- p * c'
W= [W,w]
p = [P,p]
C= [C,c]

end
R = W * inv(P' * W)
8 = R * C'
R2X = sum(P." 2)jssqX
R2Y =(ones (1,m) *C.~ 2)/sum(sum(Y.ft 2))

REFERENCES

% total X-variance
o/o dim = # components
% Y-weights
% dominant eigenvector
% X-weights
% rescale weights
% X-loadings
% Y -loadings
% X 'X deflation
% X 'Y deflation
% store weights
% and
% loadings

% modified X-weights
% regression coefficients
% coeff. of determin. (X)
%ibid (Y)

1. F. Lindgren, P. Geladi and S. Wold, J. Chemometrics, 1, 45-59 (1993).
2. H. Martens and T. Nres, Multivariate Calibration, Wiley, Chichester (1989).
3. C. Paige and M. A. Saunders, ACM Trans. Math. Sojtw. 8, 43-47, 195-209 (1982).
4. R. Manne, Chemometrics Intel/. Lab. Syst. 2, 283-290 (1987).
5. S. de Jong, Chemometrics Intel!. Lab. Syst. 18, 251-263 (1993).
6. A. Haskuldsson, J. Chemometrics, 2, 211-228 (1988).
7. I. S. Helland, Commun. Stat.-Simul. Comput. 17, 581-607 (1988).
8. A. R. Gourlay and G. A. Watson, Computational Methods for Matrix Eigenproblems, Wiley,

London (1973).
9. M. 0. Hill, DECORANA, Microcomputer Power, Ithaca, NY (1979).

10. R. F. Ling, J. Am. Stat. Assoc. 69, 859-866 (1974).
11. M. R. B. Clarke, Appl. Stat. 20, 206-209 (1971).
12. K. V. Mardia, J. T. Kent and J. M. Bibby, Multivariate Analysis, Academic, London (1979).
13. C. Eckart and G. Young, Psychometrika, 1, 211-218 (1936).

* MATLAB syntax: sum, summation of columns (matrix) or sum of elements (vector); diag, main diagonal of matrix;
*• matrix multiplication; [X,x], add a column x to matrix X;: 2, elementwise square; ones(l,m), row of m ones.

1
I

1

I

