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1 Introduction and summary

The class S theory, introduced by Gaiotto and Gaiotto-Moore-Neitzke in [1, 2], is a large

class of 4d N=2 superconformal field theory obtained by compactifying 6d N=(2, 0) the-

ory on a Riemann surface with punctures. This construction not only allowed a geometric

understanding of various S-dualities, but also provided a huge variety of new 4d N=2 theo-

ries. This variety comes from various sources: we have the choice of the initial 6d N=(2, 0)

theory, which comes with the ADE classification; then one can introduce punctures, which

come roughly in two varieties, called the regular ones and the irregular ones; then one can

further introduce twists by outer automorphisms.

The class S theories with regular punctures have been systematically explored by Cha-

caltana, Distler and their collaborators [3–15], for almost all possible types of 6d N=(2, 0)

theories with outer automorphism twists. The remaining two cases are the twisted punc-

tures of type Aeven theories, and the case where Z2-twisted and Z3-twisted punctures of

type D4 are combined. The aim of this paper is to make a small comment on the former

case, namely the twisted punctures of type Aeven theories. More specifically, we point out

that the flavor symmetry USp(2N) of the full twisted puncture of A2N theory has the global

anomaly associated to π4(USp(2N)) = Z2.

This point can be seen most succinctly as follows. Consider splitting a Riemann surface

on which the 6d N=(2, 0) theory of type A2N is compactified along a long tube around

which we have Z2 outer-automorphism twist. This results in two twisted full punctures

coupled by the 5d theory obtained by compactifying the A2N theory on S1 with Z2 outer-

automorphism twist. This is the maximally supersymmetric 5d USp(2N) theory with the

discrete theta angle θ = π [16, 17]. The 4d class S theory with a twisted full puncture, in

this viewpoint, lives on a boundary of this 5d USp(2N) theory.

– 1 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
3

First, this determines that the current algebra central charge of USp(2N) symmetry of

the twisted full puncture is k = 2N + 2 in the normalization where the half-hypermultiplet

in the fundamental has k = 1.1 More importantly for us, this means that the USp(2N)

symmetry of the twisted full puncture has the global anomaly. This is because of the

following. Note that the discrete theta angle is controlled by π4(USp(2N)) = Z2, which

also controls the global anomaly on the 4d USp(2N) symmetry, as originally discussed by

Witten [19]. Therefore, there is an anomaly inflow from the bulk to the boundary, and the

twisted full puncture needs to carry the global anomaly. This is analogous to the fact that

if the bulk 5d theory has SU(n) gauge symmetry with the level k Chern-Simons term, the

boundary 4d theory which is coupled to this bulk 5d theory should have ’t Hooft anomaly

corresponding to k chiral Weyl fermions in the fundamental representation of SU(n).

Note that the twisted full puncture of class S theory of type DN+1 also has the sym-

metry USp(2N), with the same current algebra central charge k = 2N + 2. The essential

difference here is that this puncture does not have the global anomaly.

In this paper, we discuss various manifestations of this fact, mainly using the 4d

N=2 superconformal field theory R2,2N introduced in [6, section 7.2] for N = 1 and

in [10] for general N . This theory is obtained by compactifying the 6d N=2 theory of

type A2N on a sphere with one simple puncture and two twisted full punctures. In [10],

it was shown that the symmetry USp(2N)2 apparent in this construction enhances to

USp(4N), but Witten’s anomaly could not be directly determined, since the diagonal

combination USp(2N)diag ⊂ USp(2N)2 ⊂ USp(4N) was gauged. Our main observation is

that by turning on the mass term associated to the simple puncture, the theory becomes an

SO(2N +1) theory with 2N hypermultiplets in the vector representation, which is infrared

free; the USp(4N) symmetry of this theory clearly has the global anomaly.

The rest of the paper consists of three sections, which can be read independently, and

are written using different techniques. Namely, the section 2 uses the class S construc-

tion, the section 3 uses the dimensional reduction from 5d, and the section 4 uses a very

traditional orientifold construction.

In section 2, after briefly reviewing the original construction of R2,2N , we provide a

different construction of the same R2,2N theory as a sphere of A4N theory with a full twisted

puncture and an irregular puncture, generalizing the construction of [20]. This allows us

to perform a consistency check of the global anomaly.

In section 3, we point out that the mass deformation for the U(1) flavor symmetry

associated to the simple puncture gives rise to the SO(2N + 1) theory coupled to 2N

flavors. This will be done by constructing these theories by a twisted compactification of

5d N=1 theory, generalizing the work of [21].

In section 4, we revisit this mass deformation from the point of view of the old-fashioned

type IIA construction. We will see that the standard Seiberg-Witten curve of the SO(2N+

1) theory with 2N flavors, in the standard MQCD form, is literally equal to the Seiberg-

1We emphasize that the flavor central charge here of the twisted full puncture is valid for class S

constructions without irregular punctures. Adding an irregular puncture will modify the U(1)R symmetry

of the 4d theory and thus change the flavor central charge which is related to the U(1)R anomaly [18].
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Figure 1. The three-punctured sphere for the theory R2,2N .

Witten curve of the R2,2N theory, such that the dynamical scale Λ of the SO(2N + 1)

theory is simply the mass parameter of the R2,2N theory.

2 Class S constructions

2.1 Review of R2,2N

Let us first recall how the R2,2N non-Lagrangian SCFT was constructed in [10]. We start

with a class S theory of A2N type with the UV curve given by a torus with minimal

untwisted puncture decorated by an Z2 twist line along a handle of the torus. The theory

has two S-dual frames with gauge theory descriptions:

− SU(2N + 1) −
S−dual
� USp(2N)−R2,2N (2.1)

and the R2,2N SCFT emerges from the weak coupling limit of USp(2N) gauge coupling.

Motivated by the decoupling picture, one can engineer this SCFT directly using 3 regular

A2N punctures on a sphere: one minimal untwisted puncture, and two maximal twisted

punctures, see figure 1.

The decoupling picture above determines the Coulomb branch spectrum of R2,2N

SCFT to be

∆ ∈ {3, 5, 7, . . . , 2N + 1} (2.2)

and the conformal central charges are

a =
14N2 + 19N + 1

24
, c =

8N2 + 10N + 1

12
. (2.3)

The theory has enhanced U(1)×USp(4N)2N+2 flavor symmetry where the USp(4N) factor

has the flavor central charge kUSp(4N) = 2N + 2. Consequently, the 2d chiral algebra of

the SCFT in the sense of [22] naturally contains the affine Kac-Moody algebra of type

C2N with level k2d = −(N + 1) and a weight one current realizing the 4d U(1) symmetry.

Furthermore kUSp(4N) saturates a flavor central charge unitary bound of [22], which means

that the stress tensor in the 2d chiral algebra is given by the Sugawara construction [10].2

2We emphasize here that the full chiral algebra of the R2,2N SCFT contains additional Virasoro primaries

than those generated by the current algebra, as evident from the Hall-Littlewood index of the theory [10].
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Figure 2. The sphere with one twisted regular puncture and one twisted irregular puncture that

engineers a Class S SCFT of type A2N with Z2 twist.

The flavor symmetry USp(4N) is enhanced from its maximal subgroup USp(2N) ×
USp(2N) which is manifest from the twisted maximal punctures. In (2.1), diagonal sub-

group USp(2N) is conformally gauged.

As argued in the introduction, the twisted A2N maximal punctures which carry

USp(2N) flavor symmetries should have a Z2-valued global anomaly. This would be consis-

tent if the USp(4N) symmetry of R2,2N also carries the global anomaly; then the USp(2N)

diagonal gauging is non-anomalous. Thus if we have an alternative construction R2,2N

that makes the enhanced flavor symmetry manifest as a twisted puncture, this would offer

a nontrivial consistency check. We show this is indeed the case in the next section. Our

alternative construction involves irregular punctures.

2.2 Class S theories of type A2N with a twisted irregular puncture

Consider general 4d N = 2 SCFTs in class S of type A2N from one regular maximal twisted

puncture and one irregular twisted puncture, see figure 2.

The twisted punctures correspond to codimension-2 defects in the (2,0) theory of A2N

type and are specified by a local singularity of the Higgs field Φ at z = 0 on the UV curve.

For the Higgs field to be well-defined, we require

Φ(e2πiz) = g[o(Φ(z))]g−1 (2.4)

as one circles the singularity. Here o denotes the Z2 outer-automorphism associated to the

A2N Dynkin diagram and g generates an inner automorphism of A2N .

Among the twisted punctures, regular punctures are associated with simple poles for

Φ and are classified in [5], while the irregular punctures involve higher order poles and

a detailed classification will appear in [23]. For our purpose here, we list two distin-

guished classes of twisted irregular punctures of A2N type and the relevant physical data

from [23] below.

Class I. has the Higgs field of the form

Φ =
T

z2+
κ

4N+2

+ · · · (2.5)

for κ odd, where

T = diag(1, ω2, ω4, . . . , ω4N ), ω4N+2 = 1. (2.6)
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We have the conjectural flavor central charge formula

kUSp(2N) = 2N + 2− 1

2

4N + 2

4N + 2 + κ
. (2.7)

Class II. has the Higgs field of the form

Φ =
T

z2+
κ
2N

+ · · · (2.8)

where

T = diag(0, 1, ω, . . . , ω2N−1), ω2N = 1. (2.9)

We have the conjectural flavor central charge formula

kUSp(2N) = 2N + 2− 1

2

2N

2N + κ
. (2.10)

The conformal central charges for the corresponding 4d SCFTs are determined by

2a− c =
1

4

∑
(2[ui]− 1), c =

1

24

kG dim(G)

−kG/2 + h∨
− f

12
. (2.11)

Here f is the number of mass parameters coming from the irregular singularity which equals

one for the Class II case and zero for the Class I case. kG is the flavor symmetry central

charge in (2.7) and (2.10).

The conjectured central charge formulae are for the two parameter family of theories

labelled by (N,κ) either in Class I or II. We provide extensive nontrivial pieces of evidence

for the above conjectures in [23].

2.3 R2,2N from twisted irregular punctures

Given the general construction of 4d N = 2 SCFTs from twisted irregular punctures in

the last section, we now construct R2,2N from 6d (2, 0) A4N type theory on a sphere with

two twisted punctures: one regular maximal puncture, and one irregular puncture of class

II with κ = 1 − 4N in (2.8). The irregular twisted puncture is described by the following

local singularity for the Higgs field Φ,

Φ =
T

z2+
1−4N
4N

+ · · · (2.12)

where

T = diag(0, 1, ω, . . . , ω4N−1), ω4N = 1. (2.13)

This is chosen such that under z → ze2πi, the Higgs field transform by an automorphism of

order 4N that is a product of the Z2 outer-automorphism o associated to the A4N Dynkin

diagram and an inner automorphism of A4N as in (2.4).

The singular Seiberg-Witten curve is

x4N+1 + xz1−4N = 0 (2.14)
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and the Seiberg-Witten 1-form is λ = xdz. The scaling dimensions of the coordinates are

[x] = 1− 4N, [z] = 4N. (2.15)

Under the Z2 twist, the differentials φ` transform as

φ`(z)→ (−1)`φ`(z). (2.16)

Therefore φ` for ` even (odd) involves integral (half-integral) powers of z. We can imme-

diately read off the spectrum of Coulomb branch operators to be

∆ = {3, 5, 7, . . . , 2N + 1} (2.17)

which all come from the odd-degree differentials φ` with ` = 2N + 3, 2N + 5, . . . , 4N + 1.

The USp(4N) flavor symmetry comes from the regular twisted puncture and its flavor

central charge is determined by (2.10) to be 2N + 2. The differential φ2N+1 contributes

the additional mass parameter responsible for the U(1) factor in the flavor symmetry.

It is also easy to check that the central charges computed from (2.11) and (2.10) are

consistent with the results in the previous section. Moreover we can directly see that the

Seiberg-Witten curves from the two descriptions agree. For example let us look at the

N = 1 case which is a rank-1 theory with a Coulomb branch operator u of dimension 3.

In this case [x] = −3 and [z] = 4. The full Seiberg-Witten curve in the A4 description is

x5 + x3
ε2
z2

+ x2
m

z
5
2

+ x
ε4 + z

z4
+

u

z
9
2

= 0. (2.18)

On the other hand, the full Seiberg-Witten curve in the A2 description is

x3 + x
ξ2 +m2z + ξ′2z

2

z2(z − 1)2
− iu

z
5
2 (z − 1)

= 0 (2.19)

with [x] = 1 and [z] = 0. In both cases the Seiberg-Witten differential is taken to be

λ = xdz. Here ε2, ε4 label Casimirs of the USp(4) flavor symmetries and ξ2, ξ
′
2 label

Casimirs of the SU(2) × SU(2) subgroup. The additional U(1) mass is labelled by m. For

simplicity, let us look at the curves with the mass parameters turned off:

A4 : x5 +
x

z3
+

u

z
9
2

= 0, A2 : x3 − iu

z
5
2 (z − 1)

= 0. (2.20)

Starting from the A4 curve, we perform a coordinate redefinition z → −z3x4, x → 1
x3z2

which only changes the Seiberg-Witten differential by an exact 1-form, and then the A4

curve becomes identical to the A2 curve, after throwing out irrelevant overall factors.

2.4 Half-hypermultiplet from irregular twisted puncture

Since we expect Witten’s global anomaly to be a local property of the twisted full puncture,

which is eventually a boundary condition for the 5d super Yang-Mills theory, it should not

depend on the types of other punctures that are involved in a given Class S setup. In

– 6 –
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other words, if we can tune the choice of the irregular puncture in figure 2 such that

the 4d theory has a free/weakly-coupled description that clearly exhibits the anomaly, it

strongly indicates that the twisted full puncture carries the global anomaly. Below we see

this is indeed the case for a free half-hyper multiplet in the fundamental representation

of USp(2N).

The half-hyper can be constructed using A2N twisted punctures: a Class I twisted

irregular puncture with κ = 1− (4N + 2) in (2.5)

Φ =
T

z1+
1

4N+2

+ · · · (2.21)

and one twisted full regular puncture with USp(2N) flavor symmetry. The spectral curve is

x2N+1 +
N∑
i=1

z2iε2i + z−
1
2
−2N = 0. (2.22)

Here the scaling dimensions are determined by [x] = −1− 4N and [z] = 4N + 2. Thus ε2i
with dimension 2i is a degree 2i Casimir for the USp(2N) flavor symmetry. The above is

also consistent with (2.7) which gives

kUSp(2N) = 1 (2.23)

as expected for a half-hyper.

3 5d constructions

In the previous section we relied on class S methods to argue that the R2,2N SCFT has

a global anomaly for the USp(4N) group. Here we shall show further evidence for this

by using a different realization of the R2,2N SCFT. The realization we employ is the

compactification of 5d SCFTs with a global symmetry twist. In this manner, 4d N = 2

SCFTs can be engineered by the compactification of 5d SCFTs. This method can be used

to engineer many 4d N = 2 SCFTs including non-Lagrangian theories appearing in class

S constructions [24].

Many 5d SCFTs possess discrete global symmetries. It is then possible to consider a

compactification with a twist under said discrete symmetry. In other words the compact-

ification is done such that upon traversing the circle one comes back to the theory acted

by the discrete symmetry element. To try to understand the results of such compactifica-

tions it is useful to consider 5d SCFTs with a string theory construction that exhibits the

global symmetry.

A convenient way to realize 5d SCFTs in string theory is using brane webs [25, 26].

Discrete symmetries of the SCFTs are then manifested by discrete symmetries of the brane

system. A particular interesting case is when the symmetry is manifested on the web as

a combination of spacetime reflections and an SL(2,Z) transformation. The cases where

the discrete symmetry is Z2 and Z3 were analyzed in [21] where it was argued that such a

construction can realize the R2,2N SCFT. We next review some aspects of this construction

that will be important for us.

– 7 –
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Figure 3. (a) The brane web for a 5d SCFT with global symmetry SU(4N)×U(1)2. (b) The same

web after moving some of the 7-branes. This corresponds to a mass deformation of the 5d SCFT.

As can be seen from the web, this mass deformation sends the 5d SCFT to an SU(2N + 1) gauge

theory with 4N flavors in the fundamental representation.

Consider the bane web shown in figure 3(a). This describes a 5d SCFT which lives at

the intersection of all the 5-branes. This SCFT can be defined in field theory as the UV

fixed point of an SU(2N + 1) gauge theory with 4N flavors in the fundamental represen-

tation. This can be seen from figure 3(b) which shows the web after a mass deformation

corresponding to the SU(2N + 1) coupling constant.

This 5d SCFT has an SU(4N)×U(1)2 global symmetry. Additionally, it also has a Z2

discrete symmetry, which in the brane web is given by a π rotation in the plane of the web

combined with −I in the SL(2,Z) transformation. In the low-energy SU(2N + 1) gauge

theory it is manifested as charge conjugation which is a symmetry of the gauge theory.

We can now consider compactifying the 5d SCFT with a twist under this discrete

symmetry. It was argued in [21] that this should give the 4d R2,2N SCFT. There are

several reasons for this identification. One is that they have the same symmetries. Here

the SU(4N) part is projected to USp(4N) by the twist while one U(1) remains and another

is projected out. This is readily seen in the 5d gauge theory description by considering how

charge conjugation acts on these symmetries. Another reason is that one can argue from

the brane web that the resulting theory needs to participate in the same duality (2.1).

We can now use the brane construction to study various properties of the R2,2N SCFT.

The particular properties, that are of interest to us here, are mass deformations. We have

already encountered one such mass deformation, the one leading to the SU(2N + 1) gauge

theory. This deformation is invariant under the Z2 discrete symmetry as can be seen from

the low-energy gauge theory. We thus expect it to remain also in the R2,2N SCFT where

it should correspond to a deformation in the U(1) global symmetry.

We can infer the result of this deformation from the 5d construction, where it should

just be the twisted compactification of the 5d gauge theory. As the twist acts on it by

charge conjugation, we expect the SU(2N +1) to be projected to SO(2N +1) while the 4N

flavors should be split to two groups of 2N each mapping to the other. The end result is a

4d SO(2N + 1) gauge theory with 2N hypermultiplets in the vector representation. This

theory indeed has a USp(4N) global symmetry as required. Furthermore it is easy to see

– 8 –
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Figure 4. (a) The brane web for a 5d SCFT with global symmetry SU(4N + 2)× SU(2)2. (b) The

same web after moving some of the 7-branes. This corresponds to a mass deformation of the 5d

SCFT. As can be seen from the web, this mass deformation sends this 5d SCFT to the 5d SCFT

in figure 3(a).

that it has a global Witten’s anomaly. By anomaly matching arguments this implies that

the starting theory, the R2,2N SCFT, must also have the same anomaly.

We can also consider mass deformations leading to the R2,2N SCFT. For instances

consider the 5d SCFT shown in figure 4(a). This is a 5d SCFT that has the same discrete

symmetry and so we can also consider its compactification to 4d with a twist. The result of

such a compactification was considered in [21] where it was argued that it leads to a known

4d SCFT with SU(2)×USp(4N + 2) global symmetry. An interesting property of this 4d

SCFT is that it is dual to an SO(2N + 3) gauge theory with 2N + 1 hypermultiplets in the

vector representation upon gauging its SU(2) global symmetry. This duality in particular

implies that its USp(4N + 2) global symmetry has a global anomaly. This theory can also

be engineered by a Class S of A4N+2 type involving one twisted irregular puncture and

one twisted regular full puncture that realizes the USp(4N + 2) flavor symmetry with the

global anomaly [23].

As shown in figure 4(b) we can flow from this SCFT to the R2,2N SCFT via a mass

deformation. Then anomaly matching arguments again suggest that the USp(4N) global

symmetry of the R2,2N SCFT has a global anomaly.

4 IIA constructions

In this section we provide another way to see that the R2,2N SCFT can be mass deformed to

be the SO(2N+1) gauge theory with 2N flavors, using a traditional brane construction [27]

using orientifolds [16, 28]. Let us first recall the brane construction of 4d SO(2N+1) gauge

theories with hypermultiplets in the vector representation using O4, D4 and NS5 branes,

see figure 5(a).

As shown in the figure, this requires the use of Õ4
−

-plane to realize the SO(2N + 1)

gauge group. Then, across a half-NS5-brane, the type of the orientifold plane switches to

Õ4
+

-plane, and we have a half-hypermultiplet in the bifundamental of USp and SO(2N+1)

at the intersection of the D4-branes and the half-NS5-brane. Note that this bifundamental

half-hypermultiplet has the global anomaly for USp symmetry. From the anomaly inflow

– 9 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
3

O4−

½NS5 ½NS5

O4+ O4+

+ n D4 + N D4 + nʹ D4

USp(2n) SO(2N+1) USp(2nʹ)

~ ~ ~

full NS5

O4+ O4+

+ N D4 + N D4

USp(2N) USp(2N)

~ ~

(a) (b)

Figure 5. (a) The IIA brane setup to engineer SO(2N +1) gauge theories with n+n′ flavors. This

requires the use of two half-NS5-branes. (b) When we collapse the two half-NS5-branes, we obtain

the IIA reduction for the R2,2N theory.

argument, this implies that the 5d USp gauge symmetry on the Õ4
+

-plane has to have the

discrete theta angle θ = π. This is a much simpler argument for this theta angle than the

one given in [17].

Instead, consider reducing the three-punctured sphere defining the R2,2N theory given

in figure 1 from M-theory to type IIA. A twisted full puncture corresponds to a semi-infinite

segment of N D4-branes on the Õ4
+

-plane, and the untwisted simple puncture corresponds

to a full NS5 brane, see figure 5(b). Clearly, the two setups shown in figure 5(a) and 5(b)

are related by the motion of the two half-NS5-branes, when n = n′ = N . Since the

distance between the two half-NS5-branes specify the squared inverse gauge coupling of

the SO(2N + 1) gauge theory at the string scale, this clearly means that the R2,2N theory

is at the infinite coupling limit of the SO(2N + 1) gauge theory with 2N flavors.

What remains is to show that how the gauge coupling looks like from the point of view

of the R2,2N theory. Here we encounter a mild surprise: the Seiberg-Witten curve of the

SO(2N +1) theory with 2N flavors is the same with the Seiberg-Witten curve of the R2,2N

theory, without making any approximation.

To see this, recall the Seiberg-Witten curve of SO(2N + 1) theory with n+ n′ flavors,

as determined by lifting the brane setup shown in figure 5(a) to M-theory:

x

[
Λ2N−1−2n 1

z1/2

n∏
i=1

(x2 −m2
i ) + Λ2N−1−2n′z1/2

n′∏
i=1

(x2 − m̃2
i′)

]

= x2N + u2x
2N−2 + · · ·+ u2N . (4.1)

with the Seiberg-Witten differential λ = xdz/z. This becomes, for n = n′ = N ,

x

[
1

Λz1/2

N∏
i=1

(x2 −m2
i ) +

z1/2

Λ

N∏
i=1

(x2 − m̃2
i′)

]
= x2N + u2x

2N−2 + · · ·+ u2N . (4.2)

We now compare this to the Seiberg-Witten curve of the R2,2N theory. We put two

full twisted punctures at z = 0 and z = ∞, and the untwisted simple puncture at z = 1.

The Seiberg-Witten curve is given by

x2N+1 + φ1(z)x2N + φ2(z)x2N−1 + · · ·+ φ2N+1(z) = 0, (4.3)

– 10 –
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with the Seiberg-Witten differential λ = xdz/z. Note that we allow φ1(z) to be nonzero

to simplify the description of the mass-deformed untwisted simple puncture, where the

conditions just become that for all k, φk(z) have at most a simple pole at z = 1. Combining

with the conditions from the twisted full punctures, we see that the Seiberg-Witten curve

of the R2,2N theory to be

x2N+1 +
mz1/2

z − 1
x2N +

µ2z + µ′2
z − 1

x2N−1

+
û3z

1/2

z − 1
x2N−2 + · · ·+

µ2Nz + µ′2N
z − 1

x+
û2N+1z

1/2

z − 1
= 0, (4.4)

where m is the mass parameter for the untwisted simple puncture, µ2, . . . , µ2N and

µ′2, · · · , µ′2N are the mass parameters for the two twisted full punctures, and û3, · · · , û2N+1

are the Coulomb branch parameters of the R2,2N theory.

We see that the curve (4.2) for the SO(2N + 1) theory with 2N flavors and the

curve (4.4) for the R2,2N theory are the same up to a minor relabeling of the parame-

ters as one can see by dividing (4.2) by (z1/2 + z−1/2)/Λ to make the coefficient of x2N+1

to be one. In particular, we see that the scale Λ of the Landau pole of the infrared gauge

theory can simply be equated to the mass deformation parameter m of the R2,2N theory.

It might be interesting to look for similar phenomena in other 4d N=2 gauge theories with

infrared-free matter content, such that its Seiberg-Witten curve is the same as that of some

other SCFT.
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