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1 Introduction

Supersymmetric indices [1] are simple yet powerful tools for studying supersymmetric field

theories [2–7]. In this paper, we consider the twisted index of three-dimensional N = 2

supersymmetric theories with an R-symmetry on a closed orientable Riemann surface Σg

of genus g:

Ig (yi ; ni) = Tr[Σg ; ni]

(
(−1)F

∏

i

yQi
i

)
. (1.1)

The theory is topologically twisted along Σg by the U(1)R symmetry in order to preserve

two supercharges, and one can introduce complexified fugacities yi and quantized back-

ground fluxes ni for any continuous global symmetries with conserved charges Qi commut-

ing with supersymmetry. This index was recently computed by supersymmetric localization

for any N = 2 (ultraviolet-free) gauge theory in the g = 0 case [8]. In this paper, we discuss

the generalization to higher-genus Riemann surfaces. We also use the index, and similar

localization results for line operators, to study infrared dualities for theories with N = 2

and N = 4 supersymmetry.

Twisted index, localization and Bethe equations. The quantity (1.1) was first

computed in [9] in the context of the Bethe/gauge correspondence [10, 11], using slightly

different topological field theory methods. In this work, we recompute the twisted index

for generic N = 2 supersymmetric Yang-Mills-Chern-Simons (YM-CS) gauge theories with

matter, using supersymmetric localization on the classical Coulomb branch [8, 12]. The

index is equal to the supersymmetric partition function of the N = 2 theory on Σg × S1,

which can be computed as:

ZΣg×S1(y) =
∑

m

∮

JK

dx

2πix
Zm(x, y) , (1.2)

schematically. Here the sum is over GNO-quantized fluxes m for the gauge group G, and

the integral is a Jeffrey-Kirwan residue at the singularities of the classical Coulomb branch

M ∼= (C∗)rk(G)/Weyl(G), including singularities ‘at infinity’ associated to semi-classical

monopole operators. The integrand Zm(x, y) contains classical and one-loop contributions.

The derivation of (1.2) closely follows previous localization computations in related con-

texts [6–8, 12–16]. By summing over the fluxes m in (1.2), one recovers the result of [9]:

ZΣg×S1(y) =
∑

x̂∈SBE

H(x̂; y)g−1 , (1.3)

where H is the so-called handle-gluing operator.1 The sum in (1.3) is over solutions to the

Bethe equations of the N = 2 theory on R
2×S1, which are essentially the saddle equations

for the two-dimensional twisted superpotential W(x; y) of the theory compactified on a

finite-size circle. It is clear from (1.3) that much of the physics of the twisted indices is

encoded in the twisted superpotential.2 N = 2 theories on Σg have also been studied

recently in [20, 21].

1This is a slight simplification valid for vanishing background fluxes. The general case will be discussed

in the main text.
2For the same reason, the twisted superpotential W plays an important role in the study of holographic

black holes at large N in 3d N = 2 quiver theories with an holographic dual [17–19].
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The 3d Witten index. In the special case g = 1 and ni = 0, the index (1.1) specializes

to the Witten index on the torus:

Ig=1 (yi ; 0) = TrT 2 (−1)F . (1.4)

Note that no twisting is necessary in this case. While the standard Witten index is generally

not defined for the theories of interest, which have interesting vacuum moduli spaces in flat

space, it turns out to be well-defined in the presence of general real masses mi [22], which

enter the index through the complexified fugacities yi with |yi| = e−2πβmi . For any generic-

enough choice of mi so that all the vacua are isolated, the index counts the total number of

massive and topological vacua, which does not change as we cross codimension-one walls

in parameter space. We will compute the Witten index of a large class of abelian and

non-abelian theories, generalizing previous results [2, 22, 23]. Note that the localization

computation is an ultraviolet computation, complementary to the infrared analysis of [22].

Whenever it is well-defined, the Witten index of an N = 2 YM-CS-matter theory is the

number of gauge-invariant solutions to the Bethe equations [9, 10], as we can see from (1.3).

The Witten index can also be computed from (1.2) truncated to m = 0, because the terms

with m 6= 0 do not contribute to (1.4).

Dualities and Wilson loop algebras. The twisted index on Σg×S1 is a powerful tool

to study infrared dualities, since the twisted indices of dual theories must agree.3 One of the

most interesting such dualities is the Aharony duality between a U(Nc) Yang-Mills theory

with Nf flavor and a dual U(Nf −Nc) gauge theory [24]. More generally, we will consider

a general three-dimensional U(Nc)k YM-CS-matter theories with Nf fundamental and Na

antifundamental chiral multiplets, which we can call SQCD[k,Nc, Nf , Na]. This three-

dimensional N = 2 SQCD enjoys an intricate pattern of Seiberg dualities [25] depending

on k and kc =
1
2(Nf −Na) [26–28], which can be precisely recovered by manipulating the

twisted index. This provides a new powerful check of all of these dualities.

We will also study half-BPS Wilson loop operators wrapped on the S1 for any N = 2

YM-CS-matter theory. The quantum algebra of Wilson loops is encoded in the twisted

superpotential W and corresponds to the S1 uplift of the two-dimensional twisted chiral

ring [29, 30]. In particular, we will give an explicit description of the quantum algebra of

supersymmetric Wilson loops in SQCD[k,Nc, Nf , Na], generalizing the results of [30].

N = 4 mirror symmetry Another useful application for the twisted index is to three-

dimensional N = 4 gauge theories and mirror symmetry. We consider the twisted index

with a topological twist by either factor of the SU(2)H × SU(2)C R-symmetry [31]. More

precisely, we shall consider the N = 2 subalgebra with either U(1)R = 2U(1)H or U(1)R =

2U(1)C . The correspondingN = 2 twists along Σg are called the A- orB-twist, respectively.

Let H and C denote the generators of U(1)H ⊂ SU(2)H and U(1)C ⊂ SU(2)C , respectively.

We define the A- and B-twist (integer-valued) R-charges:

RA = 2H , RB = 2C . (1.5)

3Up to a possible sign ambiguity that we will discuss below.
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Either twist on Σg preserves two supercharges commuting with H − C. We can introduce

a fugacity t for U(1)t ≡ 2 [U(1)H −U(1)C ], and consider the twisted index:

Ig,A/B (yi, t) = TrΣg

(
(−1)F t2(H−C)

∏

i

yQi
i

)
. (1.6)

for either choice (1.5) of U(1)R. Here all the background fluxes ni, nt are left implicit. The

fugacity t 6= 1 breaks N = 4 supersymmetry to N = 2∗, and is necessary in order to apply

the localization formula.

Three-dimensional N = 4 mirror symmetry [32] is an infrared duality of 3d N = 4

theories, composed with an exchange of SU(2)H and SU(2)C . The latter operation maps

any supermultiplet of N = 4 supersymmetry to the corresponding ‘twisted’ supermultiplet.

Consequently, the A-twisted index of a theory T must equal the B-twisted index of its

mirror Ť according to:

I
[T ]
g,A(y, t) = I

[Ť ]
g,B(y̌, t

−1) (1.7)

where y and y̌ are the flavor fugacities and their mirror — for instance, real masses are

exchanged with Fayet-Iliopoulos (FI) parameters. Similarly, we can study the mapping

of half-BPS line operators wrapped on the S1 under mirror symmetry. We will verify in

a simple but non-trivial example that half-BPS Wilson loops in the B-twisted theory are

mirror to half-BPS vortex loops in the A-twisted theory, as recently studied in [33].

Finally, we will argue that the genus-zero A- and B-twisted indices — the A- and

B-twisted S2 × S1 partition functions [8]— with vanishing background fluxes are equal

to the Coulomb and Higgs branch Hilbert series, respectively4 [35–40]. It is relatively

easy to show, for a large class of theories, that the B-twisted S2 × S1 partition function

only receives contribution from the m = 0 flux sector in (1.2) and is indeed equal to the

Higgs branch Hilbert series. Similarly, we conjecture that the A-twisted S2 × S1 partition

function, which generally receives contribution from an infinite number of flux sectors, is

equal to the Coulomb branch Hilbert series [38]. (Naturally, this would follow from mirror

symmetry (1.7) when a mirror theory exists.) We will show in some examples that the

A-twisted index reproduces the Coulomb branch monopole formula of [38]. It would be

very interesting to study this correspondence further.

Note added: during the final stage of writing, we became aware of another closely related

work by F. Benini and A. Zaffaroni [41]. We are grateful to them for giving us a few more

days to finish writing our paper, and for coordinating the arXiv submission.

This paper is organized as follows. In section 2, we study 3d N = 2 theories on Σg×S1

preserving two supercharges and we present the N = 2 localization formula (1.2) and

explain some of its key properties. We also discuss the quantum algebra of Wilson loops.

Much of the details of the derivation of (1.2) are relegated to appendix B. In sections 3

and 4 we consider the twisted index of some of the simplest U(1) and U(N) theories,

respectively. We also briefly discuss how (1.3) reproduces the SU(N) Verlinde formula. In

section 5 we discuss 3d N = 2 SQCD in great details, including an explicit description

4This was also observed by [34].
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of its Wilson loop algebra. In section 6, we study N = 4 theories and the index (1.6).

We also consider mirror symmetry for line operators, and the relation between the genus-

zero twisted index and Hilbert series. Various appendices summarize our conventions and

contain useful complementary material.

2 Three-dimensional N = 2 gauge theories on Σg × S1

In this section, we summarize some useful results about supersymmetric field theories on

Σg × S1, and we present the explicit formula for the twisted index and for correlation

functions of supersymmetric Wilson loops wrapped on S1 in the case of N = 2 Yang-Mills-

Chern-Simons-matter theories.

2.1 Supersymmetry with the topological twist

Consider any three-dimensional N = 2 supersymmetric gauge theories with an R-symmetry

U(1)R on Σg × S1, with Σg a closed orientable Riemann surface of genus g. Let us take

the product metric:

ds2 = β2dt2 + 2gzz̄(z, z̄)dzdz̄ = (e0)2 + e1e1̄ . (2.1)

with t ∼ t + 2π the circle coordinate, and z, z̄ the local complex coordinates on Σg with

Hermitian metric gzz̄. We also choose a canonical frame (e0, e1, e1̄). (See appendix A for

our conventions.) One can preserve two supercharges onM3 = Σg × S1, corresponding to

the uplift of the topological A-twist on Σg. In the formalism of [42], this corresponds to

choosing a transversely holomomorphic foliation (THF) ofM3 along the circle:

K = ηµ∂µ =
1

β
∂t . (2.2)

The full supergravity background is given by:

H = 0 , Vµ = 0 , ǫµνρ∂νA
(R)
ρ = −1

4
Rηµ . (2.3)

The last equation in (2.3) determines the R-symmetry gauge field A
(R)
µ up to flat con-

nections, which must vanish to preserve supersymmetry. In other words, A
(R)
µ is taken

to vanish along S1 and is equal to 1
2ω

(2d)
µ along Σg, with ω

(2d)
µ the two-dimensional spin

connection. Due to the A
(R)
µ flux:

1

2π

∫

Σg

dA(R) = (g − 1) , (2.4)

the R-charges are quantized in units of 1
g−1 . This background preserves two covariantly-

constant Killing spinors ζ and ζ̃ of R-charge ±1, respectively:
(∇µ − iA(R)

µ )ζ = 0 , (∇µ + iA(R)
µ )ζ̃ = 0 . (2.5)

In the canonical frame, the Killing spinors are given by:

ζ =

(
0

1

)
, ζ̃ =

(
1

0

)
, (2.6)

The real Killing vector K = ζ̃γµζ∂µ constructed out of (2.6) is equal to (2.2).

– 5 –
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2.1.1 Supersymmetry algebra and supersymmetry transformations

Let us denote by δ and δ̃ the action of the two supercharges on fields. We have the

supersymmetry algebra:

δ2 = 0 , δ̃2 = 0 , {δ, δ̃} = −2i (Z + LK) , (2.7)

with Z the real central charge of the N = 2 superalgebra in flat space, and LK the Lie

derivative along K. For a vector multiplet V in Wess-Zumino (WZ) gauge, the real scalar

component σ also enters (2.7) as Z = Z0 − σ, where Z0 is the actual central charge and

σ is valued in the appropriate gauge representation. All supersymmetry transformations

and supersymmetric Lagrangians are easily obtained by specializing the results of [42]. We

will use a convenient “A-twisted” notations for all the fields [12].

Let G and g = Lie(G) denote a compact Lie group and its Lie algebra, respectively.

In WZ gauge, a g-valued vector multiplet V has components:

V =
(
aµ , σ , Λµ , Λ̃µ , D

)
. (2.8)

The A-twisted fermions Λµ are holomorphic and anti-holomorphic one-forms with respect

to the THF (2.2),5 which means that:

Λµdx
µ = Λtdt+ Λzdz = Λ0e

0 + Λ1e
1 ,

Λ̃µdx
µ = Λ̃tdt+ Λ̃z̄dz̄ = Λ̃0e

0 + Λ̃1̄e
1̄ .

(2.9)

We mostly use the frame e0, e1, e1̄ in the following. Let us define the field strength

fµν = ∂µaν − ∂νaµ − i[aµ, aν ] . (2.10)

We denote by Dµ the covariant and gauge-covariant derivative. The supersymmetry trans-

formations of (2.8) are

δaµ = iΛ̃µ , δ̃aµ = − iΛµ

δσ = Λ̃0 , δ̃σ = − Λ0 ,

δΛ0 = i (D − 2if11̄) + iD0σ , δ̃Λ0 = 0 ,

δΛ1 = 2f01 + 2iD1σ , δ̃Λ1 = 0 ,

δΛ̃0 = 0 , δ̃Λ̃0 = i (D − 2if11̄)− iD0σ ,

δΛ̃1̄ = 0 , δ̃Λ̃1̄ = − 2f01̄ − 2iD1̄σ ,

δD = −D0Λ̃0 − 2D1Λ̃1̄ + [σ, Λ̃0] , δ̃D = −D0Λ0 −D1̄Λ1 + [σ,Λ0] .

(2.11)

The explicit form of the super-Yang-Mills Lagrangian LYM can be inferred from [42] and

will not be needed in the following. The important fact for our purposes is that the YM

action is Q-exact,

LYM = δ(· · · ) . (2.12)

5See appendix A and especially [43] for a general discussion.
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like all D-terms. The Chern-Simons (CS) term is given by:

LCS =
k

4π

(
iǫµνρ

(
aµ∂νaρ −

2i

3
aµaνaρ

)
− 2Dσ + 2iΛ̃0Λ0 + 2iΛ̃1̄Λ1

)
, (2.13)

for any gauge group G.6 In the presence of an abelian sector, we can also have mixed CS

terms between U(1)I and U(1)J , with I 6= J :

LCS =
kIJ
2π

(
iǫµνρa(I)µ ∂νa

(J)
ρ −D(I)σ(J) −D(J)σ(I) + iλ̃(I)λ(J) + iλ̃(J)λ(I)

)
, (2.14)

with λ̃(I)λ(J) = Λ̃
(I)
0 Λ

(J)
0 + Λ̃

(I)

1̄
Λ
(J)
1 .

Matter fields enter as chiral multiplets coupled to the vector multiplet V. Consider a

chiral multiplet Φ of R-charge r, transforming in a representation R of g. In A-twisted

notation [12], we denote the components of Φ by

Φ = (A , B , C , F) . (2.15)

The supersymmetry transformations are:

δA = B , δ̃A = 0 ,

δB = 0 , δ̃B = − 2i
(
− σ +D0

)
A ,

δC = F , δ̃C = 2iD1̄A ,
δF = 0 , δ̃F = − 2i

(
− σ +D0

)
C − 2iD1̄B − 2iΛ̃1̄A ,

(2.16)

where Dµ is appropriately gauge-covariant and σ and Λ̃z̄ act in the representation R.

Similarly, the charge-conjugate antichiral multiplet Φ̃ of R-charge −r in the representation

R̄ has components

Φ̃ =
(
Ã , B̃ , C̃ , F̃

)
, (2.17)

with
δÃ = 0 , δ̃Ã = B̃ ,
δB̃ = − 2i

(
σ +D0

)
Ã , δ̃B̃ = 0 ,

δC̃ = − 2iD1Ã , δ̃C̃ = F̃ ,
δF̃ = − 2i

(
σ +D0

)
C̃ + 2iD1B̃ + 2iΛ1Ã , δ̃F̃ = 0 .

(2.18)

Using the vector multiplet transformation rules (2.11), one can check that (2.16)–(2.18)

realize the supersymmetry algebra

δ2 = 0 , δ̃2 = 0 , {δ, δ̃} = −2i
(
−σ + L(a)K

)
, (2.19)

where L(a)K is the gauge-covariant Lie derivative, and σ acts in the appropriate representa-

tion of the gauge group. The standard kinetic term for the chiral multiplet reads:

L
Φ̃Φ

= Ã
(
−D0D0 − 4D1D1̄ + σ2 +D − 2if11̄

)
A− F̃F

− i

2
B̃(σ +D0)B + 2iC̃(σ −D0)C + 2iB̃D1C − 2iC̃D1̄B

− iB̃Λ̃0A+ iÃΛ0B − 2iÃΛ1C + 2iC̃Λ̃1̄A .

(2.20)

6In general, we have a distinct CS level for each simple factor and for each U(1) factor in G.
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The trace over gauge indices is implicit. This Lagrangian is δ-exact:

L
Φ̃Φ

= δδ̃

(
i

2
Ã(σ +D0)A− C̃C

)
. (2.21)

2.2 YM-CS-matter theories, twisted superpotential and localization

Consider a generic N = 2 YM-CS theory coupled to matter fields in chiral multiplets. The

theory contains a vector multiplet V for the gauge group G with Lie algebra g, and some

matter multiplets in chiral multiplets Φi transforming in representations Ri of g and with

R-charges ri. We can also have a superpotential W (Φ) of R-charge 2.

The UV description of the theory includes Yang-Mills terms with dimensionful

gauge couplings, as well as arbitrary Chern-Simons terms. For definiteness, consider a

gauge group

G ∼=
∏

γ

Gγ ×
∏

I

U(1)I (2.22)

possibly up to discrete identifications, where Gγ are simple Lie groups. For each Gγ ,

we have a Chern-Simons level kγ , while we can have arbitrary mixed CS levels kIJ =

kJI in the abelian sector. In addition to these CS interactions for the gauge fields, we

must also specify “global” CS levels for all the global symmetries of the theory, including

the R-symmetry [44]. This might include mixed CS terms between the abelian gauge

and global symmetries. All the CS levels are either integer or half-integer, depending on

parity anomalies.

For future reference, let us introduce the Cartan subgroup
∏rk(G)

a=1 U(1), and the cor-

responding symmetric matrix of CS levels kab, which is given by

kab
∣∣
γ
= kγh

ab
∣∣
γ
, a, b ∈ γ , (2.23)

on each semi-simple factor, with hab|γ the Killing form of gγ , and by kab = kIJ (a = I, b =

J) in the abelian sector. (Moreover, kab = 0 for a ∈ γ and b = I.)

It is natural to couple the theory to an arbitrary supersymmetric background vector

multiplet for any global symmetry U(1)F . This includes a background flux nF over Σg as

well as the real mass σF = mF paired together with a background U(1)F flat connections

along S1 into a complex parameter νF . In particular, for any U(1)I gauge group there exists

a topological symmetry U(1)TI
. The corresponding background real mass corresponds to

a Fayet-Iliopoulos (FI) parameter for the abelian gauge group U(1)I , provided we turn on

a unit mixed CS level between U(1)I and U(1)TI
:

σT,I = ξI , kITI
= 1 , (2.24)

using a convenient normalization for the FI parameters:

LFI = −
ξI
2π

trI(D) . (2.25)
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2.2.1 Classical Coulomb branch

The ‘classical Coulomb branch’ of any YM-CS-matter theory on R
3 is spanned by the

constant expectation values of the real field σ, such that:

σ = diag(σa) , a = 1, · · · , rk(G) , (2.26)

and of the dual photons ϕa of the effective
∏

aU(1)a abelian theory, modulo the Weyl

group WG. The fields σa and ϕa are paired into chiral ‘bare’ monopole operators, which

take the form:

T±
a = e±φa , φa = −2π

e2
σa + iϕa , (2.27)

semi-classically, with e2 the Yang-Mills coupling and T+
a T

−
a = 1, ∀a. Here φa is the

lowest-component of a chiral multiplet Φa related to the field-strength linear multiplet by

Σa = − e2

4π (Φa + Φ̃a). In particular, the dual photon is defined by:

− e2

2π
∂µϕ =

i

2
ǫµ

νρfνρ + iηµD . (2.28)

Since the dual photons are periodic, the classical Coulomb branch has the topology of

(C∗)rk(G)/WG, a cylinder quotiented by the Weyl group.

Consider instead the same theory compactified on a circle S1 of radius β. In this case,

one can turn on flat connections a0 for the gauge field along S1, and the Coulomb branch

coordinates (2.26) have a natural complexification:

ua = iβ(σa + ia0,a) . (2.29)

Due to the periodicity a0,a ∼ a0,a + β−1 under large U(1)a gauge transformations around

S1, it is natural to define the complexified fugacities:

xa = e2πiua . (2.30)

Similarly, for any global symmetry U(1)F we can turn on some background flat connections

and background real field σF , and we denote the corresponding fugacity by yF = e2πiνF .

Under the supersymmetry (2.11), we have:

δu = 0 , δ̃u = 0

δū = 2iβΛ̃0 , δ̃ū = −2iβΛ0 .
(2.31)

Note that u transforms as the lowest component of a twisted chiral multiplet of two-

dimensional N = (2, 2) supersymmetry on Σg with the A-twist. Let us denote by

M̃ ∼= {(ua)} ∼= (C∗)rk(G) (2.32)

the covering space of the complexified classical Coulomb branch M ∼= M̃/WG, spanned

by the ua’s. This classical moduli space has the same topology as the one spanned by

the chiral monopole operators (2.27). This is no coincidence, as the two descriptions are

essentially related by a T-duality transformation [22, 45], mapping chiral multiplets (of
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lowest component φa) to twisted chiral multiplets (of lowest component ua) in the two-

dimensional description.

The ‘holomorphic’ properties of the low-energy theory on M are determined by the

effective twisted superpotential, which can be obtained by integrating out all the massive

fields at generic values of ua, including all the Kaluza-Klein (KK) modes on S1 [10, 46].

One finds:

W =
1

2
kabuaub + kaFg-f uaνF

+
∑

i

∑

ρi∈Ri

[
1

(2πi)2
Li2(x

ρiyi) +
1

4
(ρi(u) + νi)

2

]
+
∑

α>0

1

2
α(u) .

(2.33)

Here the last sum is over the positive roots of g, and we introduced fugacities for the flavor

symmetries, with νi = νF [Φi] and yi = e2πiνi . The mixed gauge-flavor CS levels are denoted

schematically by kaFg-f , which includes the FI terms according to (2.24). We also introduced

the convenient notation xρi =
∏

a x
ρai
a = e2πiρi(u). The physically meaningful quantities are

the first derivatives:

∂uaW = kabub + kaFg-f νF

− 1

2πi

∑

i

∑

ρi

ρai [log(1− xρiyi)− πi (ρi(u) + νi)] +
1

2

∑

α>0

αa .
(2.34)

Note that this is invariant under large gauge transformations ua ∼ ua+1 (and νF ∼ νF +1

for background gauge fields) if and only if the CS levels are properly quantized (that is,

integer or half-integer depending on the parity anomalies). We shall also need the Hessian

matrix of W:

∂ua∂ub
W = kab +

∑

i

∑

ρi

ρai ρ
b
i

1

2

(
1 + xρiyi
1− xρiyi

)
, (2.35)

whose determinant we denote by:

H(u) ≡ det
ab
∂ua∂ub

W . (2.36)

Much of physics of the supersymmetric indices, and of correlation functions of supersym-

metric Wilson loops, is encoded in this twisted superpotential.

2.2.2 Localization, fugacities and classical actions

The path integral of any N = 2 YM-CS-matter theory on Σg × S1 can be localized onto

the simplest supersymmetric configurations for the vector multiplet. Since the YMs action

is Q-exact, we can take the e→ 0 limit so that the vector multiplet localizes to [8, 14, 47]:

σ = constant , D = 2if11̄ , f01 = f01̄ = 0 . (2.37)

We can diagonalize the background field σ as in (2.26), which Higgses the gauge group

to the Cartan subgroup H ∼=
∏

aU(1)a at generic values of σa. As discussed in [48, 49],

there is an obstruction to diagonalizing the vector multiplet globally on Σg×S1 due to the

– 10 –
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presence of non-trivial principal H-bundles (even for a trivial G bundle, for instance if G

is simple), and we must therefore sum over all such non-trivial H-bundles. For G Abelian,

we just have a standard sum over topological sectors. As a result, the localization locus is

divided into topological sectors indexed by GNO-quantized fluxes over Σg:

m =
1

2π

∫

Σg

da =
1

2π

∫

Σg

d2x
√
g(−2if11̄) ∈ ΓG∨ . (2.38)

The fluxes take value in the magnetic lattice ΓG∨
∼= Z

rk(G), which can be obtained from

ΓG, the weight lattice of electric charges of G within ih∗ by [50, 51]

ΓG∨ = { k : ρ(k) ∈ Z ∀ρ ∈ ΓG } . (2.39)

We denote by (ma) the projection of m onto the magnetic flux lattice Z
rk(G) of the Cartan

subgroup
∏

aU(1)a.

Note that (2.37) implies that the dual photon appearing in (2.28) is constant. In

other words, we are localizing onto the classical Coulomb branch using the ‘T-dual’ vari-

ables (2.29), in every topological sector. The U(1)a flat connections along S1,

a0,a =
1

2πβ

∫

S1

aµdx
µ , (2.40)

are included into the complex variables (2.29). One must also sum over arbitrary flat

connections on Σg, but we will see that they have little impact on the final answer. (Sim-

ilarly, the final answer cannot depend on flat connections along Σg for background vector

multiplets [43], therefore we set these to zero from the start.)

For future reference, it is interesting to evaluate the classical action onto the super-

symmetric locus (2.37). We will also turn on general background fluxes, real masses and

Wilson lines for flavor symmetries. For any U(1)F global symmetry (which might be part

of the Cartan of a non-abelian group) with background vector multiplet VF , we have:

nF =
1

2π

∫

Σg

daF , νF = iβ(σF + ia0,F ) , yF = e2πiνF . (2.41)

The only terms in the action that contributes on the supersymmetric locus are the Chern-

Simons levels for gauge and global symmetries (including the FI terms), which are not

Q-exact. In a given topological sector,

Zclassical
m (u) = exp

(
−Sgauge

CS − Sgauge-flavor
CS − Sflavor

CS − Sgauge-R
CS − Sflavor-R

CS

)
. (2.42)

The gauge CS terms reads:

e−Sgauge
CS =

∏

a,b

(xa)
kabmb . (2.43)

Similarly, for the mixed flavor-gauged and flavor CS terms:

e−Sgauge-flavor
CS =

∏

a,m

(yma
m xnma )k

am
g-f , e−Sflavor

CS =
∏

m,n

(ym)k
mn
f-f nn (2.44)
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where the indices m,n run over the flavor group, including the topological symmetries. For

each topological symmetry U(1)TI
, we introduce the fluxes nTI

and the fugacities:

qI = e2πiτI , τI =
θI
2π

+ iβξI , (2.45)

where θI , the U(1)TI
Wilson line, is also a two-dimensional θ-angle. The last two terms

in (2.42) are mixed CS terms between abelian vector multiplets and the R-symmetry gauge

field in the new-minimal supergravity multiplet [42, 44], which is given by

L
R
CS =

kR
2π

(
iǫµνρaµ∂νA

(R)
ρ − 1

4
σR

)
(2.46)

on the background (2.3). This gives:

e−Sgauge-R
CS =

∏

I

x
(g−1)kIR
I , e−Sflavor-R

CS =
∏

M

y
(g−1)kMR
M , (2.47)

with g the genus of Σg, where I runs over the abelian part of G (2.22) andM runs over the

abelian part of the flavor group. Finally, we note that the purely gravitational CS terms

of [44] evaluate to zero on our Σg × S1 background. This implies that the overall phase

of the twisted index is unambiguous (except possibly for a sign ambiguity to be discussed

below), unlike for instance the phase of the S3 partition function [52].

2.3 Induced charges of the monopole operators

Consider the ‘bare’ monopole operators T±
a in the abelianized

∏
aU(1)a theory. Each

operator T±
a carries charges under any abelian (gauge or global) symmetry which can mix

with the gauge symmetry U(1)a, either classically through Chern-Simons interactions, or

at one-loop in the presence of matter fields [53–56]. These charges are:

Qb[T±
a ] ≡ Qa±

b = ± kab − 1

2

∑

i

∑

ρi∈Ri

|ρai | ρbi ,

QF [T±
a ] ≡ Qa±

F = ± kaFg-f −
1

2

∑

i

∑

ρi∈Ri

|ρai |QF
i ,

(2.48)

under the gauge and flavor symmetries, where QF
i is the charge of the chiral multiplet Φi

under a flavor symmetry U(1)F . The monopole operators also acquire an induced R-charge

(see e.g. [57–60]) given by:

R[T±
a ] ≡ ra± = ±kaR −

1

2

∑

i

∑

ρi∈Ri

|ρai | (ri − 1)− 1

2

∑

α∈g

|αa| , (2.49)

with ri the R-charge of Φi. The last term in (2.49) is the contribution from the gaugini

(which carry R-charge 1).

For a generic value of σa on the Coulomb branch, we can also compute the effective

CS levels by integrating out the massive fields:

kabeff(σ) = kab +
1

2

∑

i

∑

ρi∈Ri

sign(ρi(σ) +mi) ρ
a
i ρ

b
i ,

kaFg-f,eff(σ) = kaFg-f +
1

2

∑

i

∑

ρi∈Ri

sign(ρi(σ) +mi) ρ
a
iQ

F
i ,

(2.50)
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with mi = σF [Φi], and

kaR,eff(σ) = kaR +
1

2

∑

i

∑

ρi∈Ri

sign(ρi(σ) +mi) ρ
a
i (ri − 1) +

1

2

∑

α∈g

sign(α(σ))αa . (2.51)

We directly see that

Qa±
b = ± lim

σa→∓∞
kabeff(σ) , Qa±

F = ± lim
σa→∓∞

kaFg-f,eff(σ) , (2.52)

and similarly for the induced R-charge (2.49). Equivalently, the charges (2.52) can be

extracted from the twisted superpotential:

Qa±
b = ± lim

σa→∓∞
∂ua∂ub

W , Qa±
F = ± lim

σa→∓∞
∂νF ∂uaW . (2.53)

It is therefore natural to associate the asymptotics of the Coulomb branch with the

monopole operators T±
a [22, 53].

2.4 The algebra of Wilson loops

In any YM-CS-matter theory with N = 2 supersymmetry on R
2×S1, one can define half-

BPS Wilson loop operators wrapped over the circle. For a Wilson loop in the representation

R of G, we have7

WR = TrR Pexp

(
−i
∫

S1

dxµ (aµ − iηµσ)
)
, (2.54)

which preserves half of the supersymmetry. Such operators also preserve the A-twist su-

persymmetry on Σg × S1, as one can see using (2.11). When evaluated on the Coulomb

branch covering space M̃, the Wilson loop (2.54) becomes a Laurent polynomial in x,

corresponding to the character of the representation R:

WR = TrR (x) =
∑

ρ∈R

xρ . (2.55)

More generally, we can consider any insertion of Wilson loops wrapping S1 at distinct

points on Σg. Any such insertion corresponds to a Weyl-invariant Laurent polynomial

in x:

W (x) ∈ C[x1, x
−1
1 , · · · , xrk(G), x

−1
rk(G)]

WG . (2.56)

While the classical algebra of Wilson loops is infinite dimensional, corresponding to the

algebra of representations of G, the quantum algebra of supersymmetric Wilson loops of

an N = 2 YM-CS-matter theory is generally finite dimensional, with relations encoded in

the twisted superpotential (2.33). The quantum algebra relations are the relations satisfied

by the solutions to:

exp (2πi ∂uaW) = 1 , a = 1, · · · , rk(G) , xα 6= 1 , ∀α ∈ g , (2.57)

7Note that a Wilson loop is defined in terms of a representation R of the gauge group G instead of the

algebra g, although we will not discuss any of the interesting subtleties associated to this fact — see for

instance [51, 61].
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with the second condition imposing that we stay away from the Weyl chambers walls in M̃.

These equations are known as the Bethe equations of the theory compactified on S1 [10].

The quantum algebra takes the form:

AW = C[x1, x
−1
1 , · · · , xrk(G), x

−1
rk(G)]

WG/IW , (2.58)

with the ideal IW generated by the relations determined from (2.57). We will derive these

relations directly by localization on Σg × S1, and we will give an explicit presentation

of (2.58) in some interesting examples. Note that the quantum algebra generally depends

on all the fugacities for the global symmetries of the theory. Closely related discussions

have appeared previously in [29, 30].

Note that the Verlinde algebra [62, 63] of Wilson loops in pure Chern-Simons theory

with gauge group G at level k̂ is a special case of (2.58). It can be obtained by considering

an N = 2 supersymmetric Chern-Simons theory with gauge group G and CS level k, with

k̂ = k−h sign(k) and h the dual Coxeter number of G.8 In the absence of matter fields, the

ordinary Wilson loops are equivalent to the supersymmetric Wilson loops (2.54) because

σ = 0 on-shell.

2.5 The localization formula on Σg × S1

One can use supersymmetric localization to compute the Σg × S1 partition function of

a generic N = 2 YM-CM-matter theory. More generally, we can consider a correlation

function of Wilson loops along S1, collectively denoted by W as in (2.56). The localization

formula reads:

〈W 〉g =
1

|WG|
∑

m∈Γ
G∨

∑

u∗∈M̃m

sing

JK-Res
u=u∗

[Q(u∗), η] Im(W ) ,
(2.59)

in terms of a Jeffrey-Kirwan (JK) residue on the differential form:

Im(W ) = (−2πi)rk(G) Zclassical
m (u)

×
(
∏

i

ZΦi
m (u)

)
Zvector
m (u) H(u)g W (x) du1 ∧ · · · ∧ durk(G) ,

(2.60)

on M̃ ∼= (C∗)rk(G), in each topological sector m. The first factor is the classical contribution

Zclassical(u) given by (2.42). The second factor is the product of the one-loop determinants

ZΦi
m (u) =

∏

ρi∈Ri


 x

1
2
ρiy

1
2
i

1− xρiyi




ρi(m)+ni+(g−1)(ri−1)

, (2.61)

for chiral multiplets Φi in the representation Ri of g, of R-charge ri, and with the appro-

priate fugacities yi and background fluxes ni for the global symmetries. The third factor

8More generally, the matrix of CS levels kab shifts to k̂ab = kab−sign (kab) 1
2

∑
α∈g

αaαb after integrating

out the gaugini. For G semi-simple, we have kab = habk and 1
2

∑
α∈g

αaαb = habh, with hab the Killing

form.
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is the one-loop determinant for the W -bosons and their superpartners,

Zvector
m (u) = (−1)

∑
α>0 α(m)

∏

α∈g

(1− xα)1−g , (2.62)

with α the simple roots of g. These one-loop determinants were computed in [8]. Finally,

the function H(u) appearing in (2.60) is the Hessian of the effective twisted superpotential

W as defined in (2.36), that is:

H(u) = det
ab

(
kab +

∑

i

∑

ρi

ρai ρ
b
i

1

2

(
1 + xρiyi
1− xρiyi

))
, (2.63)

whileW (x) is a Laurent polynomial in x corresponding to the Wilson loop insertion (2.56).

The contribution H(u)g in (2.60), which arises because of additional gaugino zero-modes

on Σg, is the main new ingredient with respect to the S2 × S1 computation of [8].

2.5.1 Singular hyperplanes and JK residue

There are three types of singularities of the integrand (2.60) on the classical Coulomb

branch covering space M̃:

Matter field singularities. Whenever xρiyi = 1, the one-loop determinant (2.61) may

develop a pole (depending on the flux sector m). For any field component ρi of a chiral

multiplet Φi, we define the hyperplanes:

Hρi,n = {u ∈ M̃ | ρi(u) + νi = n , n ∈ Z } . (2.64)

These singularities signal the presence of massless modes associated to vortices, which can

appear at these loci. See for instance [22] for a detailed discussion of BPS vortices.

Monopole operator singularities. The singularities of the second type are located at

xa =∞ and xa = 0 (that is, at σa = ∓∞) and correspond to the monopole operators T+
a

and T−
a , respectively, which can condense in those limits:

Ha± = {u ∈ M̃ | ua = ∓i∞} . (2.65)

It is useful to think of M̃ as a (CP 1)rk(G) by including these hyperplanes at infinity. The

integrand (2.60) has singularities of the form

Im ∼ x±(Qa±(m)+Qa±nF+(g−1)ra±)
a dua as σa → ∓∞ , (2.66)

which are determined in terms of the induced charges (2.48)–(2.49) of T±
a .

W-boson singularities. The singularities of the third type are the zeros of the vector

multiplet one-loop determinant (2.62) (if g > 1). They are located at:

Hα,n = {u ∈ M̃ | α(u) = n , n ∈ Z } , (2.67)

for any simple root α. These hyperplanes are the walls of the Weyl chambers in the

covering space M̃, where part of the non-abelian symmetry is restored. Poles including

– 15 –



J
H
E
P
0
8
(
2
0
1
6
)
0
5
9

this hyperplane need a special treatment in the path integral. Indeed one can easily check

that singularities involving Hα are always non-projective (see below for a definition) so that

the JK-residue operation is ill-defined. We claim that we should simply exclude these poles

from the residue integral. We checked in many examples that this prescription gives the

expected answer. This is consistent with discussions in previous literature, in particular

with the study of CS theory [20, 64, 65] and two-dimensional theories [66].

Consider the Coulomb branch covering space compactified as M̃ ∼=
(
CP 1

)rk(G)
, with

the hyperplanes at infinity included as the poles of each (CP 1)a. In each topological sector,

we denote by M̃m
sing the set of codimension-rk(G) singularities coming from the intersection

of s ≥ rk(G) hyperplanes (2.64) and/or (2.65), and such that they are not located on the

hyperplanes (2.67).

The localization formula in (2.59) is given by a contour integral on M̃ in each topo-

logical sector. The contour of integration is determined by the Jeffrey-Kirwan residue

prescription [67–69] around each singularity u∗ ∈ M̃m
sing. Consider any singular point u∗ at

the intersection of s singular hyperplanes HQ1 , · · · , HQs , whose directions and orientations

are determined by the charge vectors

Q(u∗) = {Q1, · · · , Qs} ∈ ΓG ⊂ ih∗ (2.68)

in the electric weight lattice. These charge vectors Qj are either weights ρi from matter

field singularities, or induced charges Qa± from monopole operator singularities. For the

JK residue to exist, we assume that all the relevant singularities are projective. This means

that, for any u∗, the s charges (2.68) are contained within a half-space of ih∗. A singularity

with s = rk(G) is said to be non-degenerate.

For completeness, we briefly review the definition of the JK residue. (We refer to [6–

8, 12] for further discussions.) We consider the case u∗ = 0, while the general case can

be obtained by translation. Let us denote by QS any subset of rk(G) distinct charges in

Q(σ̂∗), and let us define:

ωS =
∏

Qj∈QS

1

Qj(u)
du1 ∧ · · · ∧ durk(G) , (2.69)

the corresponding singular holomorphic rk(G)-form. The JK residue on ωS is defined by

JK-Res
u=u∗

[Q(u∗), η] ωS =





1

| det(QS)|
if η ∈ Cone(QS) ,

0 if η /∈ Cone(QS) ,

(2.70)

in terms of an auxilliary vector η ∈ h∗, which we can choose at our convenience as long

as it is not parallel to any of the charge vectors. For degenerate singularities where more

than rk(G) hyperplane meets, we refer to the prescription in [6, 68, 69] for an algorithmic

determination of the JK contour. The definition (2.70) is often sufficient to determine the

JK contour in practice.
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2.6 Relation to the Bethe equations and to the Wilson loop algebra

Note that all the factors in (2.60) that depend on the gauge flux m organize themselves

into the twisted superpotential:

e2πi ∂W(m) ≡ exp

(
2πi

∑

a

∂W
∂ua

ma

)
, (2.71)

reproducing (2.34). We can formally perform the sum over fluxes (see [12] for a similar

discussion) to obtain:

〈W 〉g =
∑

x̂∈SBE

∮

x=x̂

∏

a

[
dxa

2πi xa

1

e2πi∂uaW − 1

]
det
ab

(∂ua∂ub
W) CU(x)H(x)g−1W (x) ,

(2.72)

where we pick the Grothendieck residues at x = x̂ ∈ SBE, with SBE the set of distinct

solutions (up to Weyl equivalences) of the Bethe equations (2.57). Here we defined:

CU(x) = e−Sgauge
CS −Sgauge-flavor

CS −Sflavor
CS

∣∣∣
m=0

∏

ρi∈Ri


 x

1
2
ρiy

1
2
i

1− xρiyi




ni

(2.73)

and

H(x) = e−Sgauge-R
CS −Sflavor-R

CS

∣∣∣
g=2

∏

i

∏

ρi∈Ri


 x

1
2
ρiy

1
2
i

1− xρiyi




ri−1
∏

α∈g

1

1− xα H(u) . (2.74)

We assume that the two-dimensional theory is fully massive, such that H(x̂) 6= 0, ∀x̂ ∈ SBE.

This leads to:

〈W 〉g =
∑

x̂∈SBE

CU(x̂) H(x̂)g−1 W (x̂) . (2.75)

This result was first obtained in [9] in the case U = 1 —that is, for vanishing background

fluxes. The quantity H(x) is the three-dimensional handle-gluing operator [9], allowing us

to write down genus-g correlation functions in terms of the genus-zero result:

〈W 〉g = 〈WHg〉0 . (2.76)

According to (2.75), the Witten index (1.4) is given by the number of distinct solutions

to the Bethe equations:

TrT 2 (−1)F =
∑

x̂∈SBE

1 . (2.77)

As we will see in the examples, this directly reproduces the results of [2, 22, 23]. This simply

reflects the one-to-one correspondence between three-dimensional vacua in the presence of

generic real masses and two-dimensional vacua of the theory compactified on a circle of

finite size [22].
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The formula (2.72) directly implies the quantum algebra (2.58) of Wilson loops. By

definition of the ideal IW in (2.58), any insertion of an element Z of this ideal has vanishing

correlation function with any other Wilson loop:

〈WZ〉g = 0 , if Z(x) ∈ IW . (2.78)

Conversely, if 〈WZ〉g = 0 for every possible insertion W , it implies that Z(x)|x=x̂ = 0, ∀x̂,
so that Z(x) ∈ IW .

2.7 Sign ambiguities of the twisted index and dualities

We just explained how to compute the twisted index (1.1) as a path integral on Σg × S1:

Ig = TrΣg

(
(−1)F

∏

i

yQi
i

)
= ZΣg×S1 . (2.79)

The overall sign of the 3d partition function seems ambiguous, although we have chosen

it such that the Witten index (2.77) is a non-negative integer. Whenever the gauge group

G contains abelian factors U(1)I , the index suffers from a sign ambiguity in the sum over

topological sectors, corresponding to shifting the fugacities qI for the topological symme-

tries U(1)TI
by arbitrary signs [8, 70], qI → (−1)nI qI with nI ∈ Z. This can be thought of

as a shift of the two-dimensional θ-angles by multiples of π. These sign ambiguities lead to

a possible ambiguity when checking dualities, and generally we will find that, for any pair

of dual theories T and TD, we have9

Z
[T ]
Σg×S1(q, y) = (−1)(g−1)nr+

∑
i nini Z

[TD]
Σg×S1(qD, yD) (2.80)

for some theory-dependent integers nr, ni. In principle, any such ambiguity should be ac-

counted for by an appropriate supersymmetric counterterm [44, 52] but the precise mech-

anism in this case is unclear to us at this point.10 An interesting special case of (2.80)

is for a theory of two chiral multiplets Φ1, Φ2 with R-charges r and 2 − r, gauge charge

Q and −Q under a flavor U(1) with fugacity y and background flux n, and a superpo-

tential W = Φ1Φ2. This theory is infrared “dual” to an empty theory, but the partition

function reads:

Z
[Φ1Φ2]
Σg×S1(y) = (−1)Qn+(g−1)(r−1) . (2.81)

We leave a more precise understanding of these signs as an interesting question for fu-

ture work.

3 N = 2 U(1) theories and elementary dualities

In this section, we study N = 2 CS-matter theories with a gauge group G = U(1). These

theories were recently studied extensively in [22]. This will serve as an interesting warm-up

to the non-abelian theories of the next sections.
9Here the fugacities q, y are mapped to qD, yT in some way, which might involve some convenient choice

of sign for q, qD.
10Potentially related issues have been discussed in [71].
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U(1)G U(1)A U(1)T U(1)R

Qi ni ni 0 ri

Q̃j −ñj ñj 0 r̃j

Table 1. Gauge, axial, topological and R-charges of the matter fields in the U(1)k CS-matter

theory.

3.1 U(1)k CS-matter theory

Consider a U(1) theory with CS level k > 0 and charged chiral multiplets Qi and Q̃j , of

gauge charge ni and −ñj , respectively, with ni > 0 and ñj > 0.11 It is useful to define:

kc =
1

2

∑

i

n2i −
1

2

∑

j

ñ2j . (3.1)

Without loss of generality, we assume that kc ≥ 0. The theory has a large flavor symmetry,

depending the choice of ni, ñj , but we can focus on the axial symmetry U(1)A defined in

table 1. Let us denote by y−1
i and ỹj the flavor fugacities for Qi and Q̃j , respectively. If

we are only interested in U(1)A, then yi = y−ni
A and ỹj = y

ñj

A . To cancel a potential parity

anomaly for U(1)A, we also turn on the mixed flavor-CS term kgA = −kc. We also redefine

q → (−1)
∑

i n
2
i q for convenience. The Bethe equation (2.57) for this theory reads:

P (x) =
∏

i

(xni − yi)ni − qy−
∑

i n
2
i

A xk+kc
∏

j

(xñj − ỹj)ñj = 0 . (3.2)

The twisted index is easily evaluated using the general results of the previous section. In

particular, it follows from (2.77) that the Witten index of this theory is equal to the degree

of the polynomial P (x):

TrT 2 (−1)F = deg (P ) =





k +
1

2

∑

i

n2i +
1

2

∑

j

ñ2j if k ≥ kc ,
∑

i

n2i if kc ≥ k .
(3.3)

This reproduces the Witten index computed in [22] by a careful analysis of the vacuum

structure of the theory.

3.2 SQED/XY Z-model duality

As an interesting special case, consider three-dimensional SQED, a U(1) gauge theory

without CS interaction and with two charged scalar multiplets Q, Q̃ of charges ±1 and

R-charge r. The theory has an axial symmetry U(1)A and a topological symmetry U(1)T ,

with associated fugacities yA and q (and background fluxes nA and nT ), respectively, and

we have an FI parameter turned on according to (2.24).

11The gauge charges ni, ñj should not be confused with the background fluxes ni, ñj . Moreover, here and

in later sections we often use Φ̃ to denote chiral multiplets of negative charges and not anti-chiral multiplets

like in the last section. This should cause no confusion.
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The twisted index (2.59) for SQED reads:

ZSQED
Σg×S1 = −

∑

m∈Z

∮

JK

dx

2πx
(−q)mxnT


 x

1
2 y

1
2
A

1− xyA




m+nA+(g−1)(r−1)

×


 x

1
2 y

1
2
A

x− yA




−m+nA+(g−1)(r−1) [
1

2

(
1 + xyA
1− xyA

)
+

1

2

(
x+ yA
x− yA

)]g
.

(3.4)

Note that we introduced a convenient sign in front of q. With η > 0, the JK residue picks

the pole at x = y−1
A for m ≥ −nA − r(g − 1). There is no contribution from infinity on M

because the monopole operators T± are gauge invariant. Following [8], we can perform the

sum over m first, which gives:

ZSQED
Σg×S1 =

∮

x=x̂

dx

2πx

P ′(x)

P (x)
xnT

(
xyA

(1− xyA)(x− yA)

)nA+(g−1)(r−1)

×
[
1

2

(
1 + xyA
1− xyA

)
+

1

2

(
x+ yA
x− yA

)]g−1

,

(3.5)

where x̂ ≡ (1− qyA)/(yA − q) is the solution to the Bethe equation:

P (x) = x− y−1
A − qy−1

A (x− yA) = 0 . (3.6)

The expression (3.5) gives:

ZSQED
Σg×S1 = (−1)nT

(
yA

1− y2A

)2nA+(g−1)(2r−1)

×


 q

1
2 y

− 1
2

A

1− qy−1
A




nT−nA+(g−1)(rT−1)
 q−

1
2 y

− 1
2

A

1− q−1y−1
A




−nT−nA+(g−1)(rT−1)

,

(3.7)

with rT = −r + 1. Up to a sign (−1)nT , this is simply the twisted index of three chiral

multiplets (X,Y, Z) = (M,T+, T−) with charges:

U(1)A U(1)T U(1)R

M 2 0 2r

T+ −1 1 −r + 1

T− −1 −1 −r + 1

(3.8)

These charges are compatible with the cubic superpotential W = MT+T−. This is ex-

pected since 3d N = 2 SQED is dual to the XY Z model [53].

3.3 U(1)1

2

with a single chiral multiplet

Consider a U(1) theory with a Chern-Simons level k = 1
2 and a single chiral multiplet Q

of gauge charge 1. We also choose Q to have R-charge r, and we turn on a mixed gauge-R
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CS level kgR = −1
2(r − 1), although the R-charge can be set to any value by mixing with

the gauge symmetry. This theory has a flavor symmetry U(1)T , the topological symmetry

of the U(1) gauge group. It is dual to a single free chiral multiplet T+ of U(1)T charge

1, corresponding to the lowest gauge-invariant monopole operator for the ‘half’ Coulomb

branch of the gauge theory [28, 72]. Importantly, the dual free theory also contains the

flavor CS terms:

∆kTT = −1

2
, ∆kTR = −r

2
. (3.9)

This is a special case of a more general Seiberg duality [28], that we shall discuss in

more details in section 5.6 below (and in appendix C). The twisted index of the U(1) 1
2

theory reads:

Z
U(1) 1

2
,Q

Σg×S1 = −
∑

m∈Z

∮

JK

dx

2πx
(−q)mx 1

2
m+nT− 1

2
(g−1)(r−1)

(
x

1
2

1− x

)m+(g−1)(r−1)

×
[
1

2
+

1

2

(
1 + x

1− x

)]g
,

(3.10)

where we redefined q → −q for convenience. Note that the monopole operators T± of this

theory have gauge charges 0 and −1, respectively. If we take η > 0, the JK residue has

contributions from Q only, at x = 1. If we take η < 0 instead, we pick the poles at x = 0.

Either way, we can perform the sum over the fluxes as above, to obtain:

Z
U(1) 1

2
,Q

Σg×S1 = (−1)(g−1)r qnT∆kTT+(g−1)∆kTR

(
q

1
2

1− q

)nT+(g−1)(r−1)

, (3.11)

with the CS levels ∆kTT ,∆kTR given in (3.9), in perfect agreement with the duality.

4 Chern-Simons theories and the Verlinde formula

In this section, we consider a supersymmetric Chern-Simons theory without matter. Con-

sider the N = 2 Chern-Simons theory with gauge group G at level k > 0. As we recalled

at the end of section 2.4, that theory is IR-equivalent to an ordinary CS theory at level:

k̂ = k − h , (4.1)

with h the dual Coxeter number of G. The genus-g supersymmetric index should give the

dimension of the Hilbert space of a Gk̂ CS theory on Σg:

Z
[G,k]
Σg×S1 = dimH (Σg;Gk−h) , (4.2)

which is famously given by the Verlinde formula [62, 64]. This provides an nice consistency

check of our localization formula at higher genus. Here we shall focus on G = U(N) and

G = SU(N), for simplicity.
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4.1 U(N) N = 2 supersymmetric CS theory

Consider the N = 2 U(N) vector multiplet with Chern-Simons interaction at level k > 0.

Due to the U(1) factor, the theory has a topological symmetry U(1)T , and we can turn on

the associated fugacity q and background flux nT . The twisted index reads:12

Z
[N,k]
Σg×S1(q) =

(−1)N
N !

∑

m∈ZN

qm
∮

JK

N∏

a=1

[
dxa
2πixa

xkma+nT
a

] N∏

a,b=1
a 6=b

(
xa

xb − xa

)g−1

kgN . (4.3)

The factor of kgN is the contribution from H = kN for a U(N) CS theory. The monopole

operators T±
a have gauge charges Qa±

b = ±δab k. If we take η = (1, · · · , 1) in the JK

residue, we only have contributions from xa =∞. After performing the sum over the fluxes

explicitly, the pole at xa =∞ are all relocated to the solutions of the Bethe equations:

P (xa) = 0 , a = 1, · · · , N , xa 6= xb , if a 6= b , P (x) ≡ 1− qxk . (4.4)

(One can check that the solutions to the Bethe equations go to xa →∞ as q → 0.) Using

the fact that:
∞∑

ma=M

(
qxka

)m
=

(xkaq)
M

P (x)
, (4.5)

for any fixed integer M , we find:

Z
[N,k]
Σg×S1(q) =

1

N !

∮ N∏

a=1

[
dxa
2πi

P ′(xa)

P (xa)
xnTa

] N∏

a,b=1
a 6=b

(
xa

xb − xa

)g−1

k(g−1)N , (4.6)

where the integral becomes a sum of iterated residues at xa = x̂α with

x̂α = q−
1
k ωα , α = 1, · · · , k ωα ≡ e

2πiα
k , (4.7)

the roots of P (x). The partition function thus reduces to a sum over choices of N distinct

integers among {α} = {1, · · · , k}. Let CkN denotes the set of all choices of N distinct

integers among {α}, and let I = {α1, · · · , αN} be any element of CkN . We have:

Z
[N,k]
Σg×S1(q) = k(g−1)N q−nT

∑

I∈Ck
N

(
∏

α∈I

ωα

)nT ∏

α,β∈I
α 6=β

(
1− ωα

ωβ

)1−g

. (4.8)

In particular, Z
[N,k]
Σg×S1(q) = 0 if N > k. As a small consistency check, we note that (4.8)

implies the Witten index:

TrT 2(−1)F =

(
k

N

)
, (4.9)

12Here we used the freedom to shift q to (−1)N−1q, for convenience. This cancels the sign factor in front

of (2.62).
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in agreement with [23]. In the case nT = 0, the dependence on q drops out from (4.8) and

it turns out that the resulting numbers Z
[N,k]
Σg×S1 for k ≥ N are positive integers, consistent

with the interpretation (4.2).

The U(N)k supersymmetric CS theory enjoys level rank duality:

U(N)k ←→ U(k −N)−k . (4.10)

The duality also exchanges the sign of the topological current. We can show that:

Z
[N,k]
Σg×S1(q) = (−1)(k−1)nT+(k−N)(g−1)q−nT Z

[k−N,−k]
Σg×S1 (q−1) . (4.11)

The factor q−nT is interpreted as a relative CS level ∆kTT = −1 for the U(1)T background

gauge field. This duality is a special case of a more general three-dimensional Seiberg

duality [26, 28], which we shall study thoroughly in section 5. To prove (4.11), we write

down the twisted index as:

Z
[N,k]
Σg×S1(q) =

∑

x̂∈SBE

CU(x̂)H(x̂)g−1 , (4.12)

with

CU(x) =
N∏

a=1

xnTa , H(x) = kN
N∏

a,b=1
a 6=b

(
xa

xb − xa

)
, (4.13)

following the notation of section 2.6. We can easily show that, for x̂ = {x̂a}Na=1 ⊂ {x̂α}kα=1

a set of N distinct roots of P (x), and x̂D = {x̂ā}k−N
ā=1 its complement, we have:

CU(x̂) = (−1)(k−1)nT q−nTUD(x̂D) , H(x̂) = (−1)k−NHD(x̂D) , (4.14)

where

UD(xD) =
k−N∏

ā=1

x−nT
ā , HD(xD) = (−k)k−N

k−N∏

ā,b̄=1
ā 6=b̄

(
xā

xb̄ − xā

)
, (4.15)

are the quantities (4.13) in the dual U(k−N)−k theory. The duality relation (4.11) follows

by exchanging any set I ∈ CkN with its complement Ic in {α}. One can similarly study

Wilson loop correlation functions and verify that they satisfy the Verlinde algebra [8, 30].

(See section 5.7 below for a general discussion in 3d N = 2 SQCD.)

4.2 The SU(N) Verlinde formula

It was noted in [8] that the S2 × S1 twisted index for an U(N) theory with matter fields

neutral under its center is equivalent to the S2 × S1 twisted index for the corresponding

SU(N) theory (if nT = 0). On Σg × S1, we can similarly show that:

Z
SU(N)k
Σg×S1 =

(
N

k

)g

Z
[N,k]
Σg×S1(q)

∣∣∣
nT=0

. (4.16)
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From (4.8), we directly find:

Z
SU(N)k
Σg×S1 =

(
N

k

)g

k(g−1)N
∏

α,β∈I
α 6=β

(
1− e

2πi(α−β)
k

)1−g
. (4.17)

In particular, this reproduces the correct Witten index [2, 23]:

TrT 2(−1)F =

(
k − 1

N − 1

)
. (4.18)

One can check that (4.17) agrees precisely with the Verlinde formula for SU(N)k−N pure

CS theory on Σg. In particular, it is easy to show that

Z
SU(2)k
Σg×S1 = V

SU(2)

g,k̂
=

(
k̂ + 2

2

)g−1 k̂∑

j=0

(
sin

(j + 1)π

k̂ + 2

)2−2g

. (4.19)

in the special case N = 2, with k̂ = k−2. One can also check level-rank duality like in [73].

4.3 The equivariant Verlinde formula

Another interesting theory is the N = 2 Chern-Simons theory at level k with an adjoint

chiral multiplet Φ of real mass m > 0 and R-charge r. For r = 2, the Σg×S1 twisted index

computes the “equivariant Verlinde formula” introduced in [20]. That formula was also

computed in [20] using the results of [9], therefore it is obvious from the general discussion

in section 2.6 that we should reproduce this result as well. We briefly show this here.

Consider G = U(N) at CS level k > 0. Let U(1)t be the symmetry that rotates the

chiral multiplet Φ with charge 1, and let us introduce the corresponding fugacity t and

background flux nt. (We have |t| = e−2πβm with m the real mass.) To make contact

with [20], we choose to turn on a mixed U(1)t-R CS level:

ktR = −1

2
N2(r − 1) . (4.20)

We also allow for an arbitary gauge-R CS level kgR for the U(1) ⊂ U(N) gauge group. The

twisted index reads:

Z
[U(N)k,Φ]
Σg×S1 (q, t) =

t(g−1)ktR(−1)N
N !

∑

m∈ZN

qm
∮

JK

N∏

a=1

[
dxa
2πixa

x
kma+nT+(g−1)kgR
a

]

×
N∏

a,b=1
a 6=b

(
xa

xb−xa

)g−1 N∏

a,b=1
a 6=b


x

1
2
a x

1
2
b t

1
2

xb−xat




ma−mb+nt+(g−1)(r−1)(
det
ab
Ĥab(x)

)g

,

(4.21)

where we defined:

Ĥab(x) = kδab +
1

2

N∑

c,d=1
c 6=d

(δabδac − δacδbd)
xcxd(1− t2)

(xc − xdt)(xd − xct)
. (4.22)
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The Bethe equations of this theory are:

Pa(x) ≡
N∏

c=1

(xc − xat)− qxka
N∏

c=1

(xa − xct) = 0 , a = 1, · · · , N , (4.23)

and xa 6= xb if a 6= b. By resumming the fluxes and using the property:

∂xb
Pa

∣∣∣
x=x̂

= − 1

xb

N∏

c=1

(xc − xat) Ĥab

∣∣∣
x=x̂

, (4.24)

satisfied by the solutions to the Bethe equations, we indeed find:

Z
[U(N)k,Φ]
Σg×S1 (q, t) =

∑

x̂∈SBE

∮

x=x̂

N∏

a=1

[
dxa
2πi

x
nT+(g−1)kgR
a

Pa(x)

]
det
ab

(∂xb
Pa)

N∏

a,b=1
a 6=b

(
xa

xb − xa

)g−1

× t(g−1)ktR

N∏

a,b=1
a 6=b


 x

1
2
a x

1
2
b t

1
2

xb − xat




nt+(g−1)(r−1) (
det
ab
Ĥab(x)

)g−1

. (4.25)

The sum is over the distinct solutions x̂ to the Bethe equations (4.23), and each residue

is taken at the isolated singularity x = x̂. (More precisely, at each x = x̂ we have a local

Grothendieck residue for the ideal {Pa}Nc
a=1 in C[xa].) This gives:

Z
[U(N)k,Φ]
Σg×S1 (q, t) =

∑

x̂∈SBE

CU(x̂) H(x̂)g−1 , (4.26)

with:

CU(x) =
N∏

a=1

xnTa

N∏

a,b=1

(
xat

1
2

xb − xat

)nt

,

H(x) = (1− t)−N(r−1)
N∏

a=1

x
kgR
a

N∏

a,b=1
a 6=b

[
xa

xb − xa

(
xa

xb − xat

)r−1
]
.

(4.27)

This formula precisely agrees13 with [20] in the case nT = nt = 0 and q = 1, provided that

we choose kgR = −(N − 1)r.

5 N = 2 U(Nc)k YM-CS-matter theories and Seiberg dualities

In this section, we study the three-dimensional N = 2 supersymmetric version of SQCD on

Σg × S1. This theory consists of a U(Nc) vector multiplet with a Yang-Mills kinetic term

and an overall Chern-Simons level k, coupled to Nf chiral multiplets Qi (i = 1, · · · , Nf )

13Note that, following [7, 8], we have slightly different one-loop contributions from the ones in [9, 20]. In

the present case, this difference was accounted for by turning on the mixed CS levels ktR and kgR.
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U(Nc) SU(Nf ) SU(Na) U(1)A U(1)T U(1)R

Qi Nc Nf 1 1 0 r

Q̃j Nc 1 Na 1 0 r

T± (Nc)
±k−kc 1 1 QA

± ±1 r±

Table 2. Charges of the chiral multiplets of 3d N = 2 SQCD. We also indicated the charges of the

bare monopole operators T±.

in the fundamental representation of the gauge group and to Na chiral multiplets Q̃j

(j = 1, · · · , Na) in the antifundamental representation. The global symmetry group is:

SU(Nf )× SU(Na)×U(1)A ×U(1)T ×U(1)R . (5.1)

Here U(1)A is the axial symmetry (which becomes trivial if Nf = 0 or Na = 0), U(1)T
is the topological symmetry of U(Nc), and U(1)R is the R-symmetry. Both Qi and Q̃j

are taken to have R-charge r ∈ Z, and the superpotential vanishes. To cancel the parity

anomaly for the gauge symmetry, we must have:

k + kc ∈ Z , kc ≡
1

2
(Nf −Na) . (5.2)

In order to cancel potential parity anomalies for the flavor symmetry, we turn on some

mixed CS terms:

kgA , kgR , (5.3)

between the U(1) ⊂ U(Nc) factor of the gauge group and the U(1)A and U(1)R symmetry,

respectively. Note that the choice of mixed CS levels (5.3) is an important part of the

definition of the theory. In particular, it affects the quantum numbers of the monopole

operators. We will make a convenient choice in the next subsection. Finally, we also need

to specify the global CS levels for (5.1).14

As we will show momentarily, the Witten index of three-dimensional N = 2 SQCD is

given by:

TrT 2(−1)F =

(
n

Nc

)
, with n =





|k|+ Nf +Na

2
if |k| ≥ |kc| ,

max(Nf , Na) if |k| ≤ |kc| .
(5.4)

For Nc = 1, this was computed in [22]. When n > Nc, there exists a Seiberg-dual descrip-

tion of the theory [24, 26, 28] with dual gauge group U(n − Nc) at CS level −k, leaving
the Witten index invariant. The details of the Seiberg dual theory depend on the relative

values of k and kc in an interesting way. The matching of the twisted indices on Σg be-

tween dual theories provides a powerful and intricate test of these dualities, including the

matching of contact terms for the global symmetries, which necessitates turning on certain

background CS terms [8, 28, 44, 74].

14See appendix C and especially [44] for a detailed discussion.
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For future reference, let us comment on the monopole operators of the U(Nc) theory.

We denote by T± the bare monopole operators of charge ±1 under U(1)T . Their induced

charges under U(1)A and U(1)R are:

QA
± = ±kgA −

1

2
(Nf +Na) , r± = ±kgR −

1

2
(Nf +Na)(r − 1)−Nc + 1 . (5.5)

The monopole operators also have induced gauge charges, as indicated in table 2. In

particular, T± is gauge invariant if and only if k = ±kc. In that case, the Seiberg-dual

theory contains one extra singlet (or two extra singlets if k = 0) with the same quantum

numbers as T±, which couples to a monopole operator of the dual gauge group through

the superpotential [24, 28].

5.1 The Σg × S1 index of 3d N = 2 SQCD

Consider N = 2 SQCD as defined above. Let us introduce generic fugacities yi, ỹj (with

i = 1, · · · , Nf and j = 1, · · · , Na) for the SU(Nf ) × SU(Nf ) × U(1)A flavor symmetry,

such that:
Nf∏

i=1

yi = y
−Nf

A ,

Na∏

j=1

ỹj = yNa
A , (5.6)

with yA the U(1)A fugacity. We also introduce background fluxes ni, ñj subject to
∑

i

ni = −NfnA ,
∑

j

ñj = NanA , (5.7)

with nA the U(1)A flux. We denote by q and nT the fugacity and background flux for the

topological symmetry U(1)T . The twisted index of N = 2 SQCD reads:

Z
SQCD [k,Nc,Nf ,Na]

Σg×S1 (q, y, ỹ) =
(−1)Nc

Nc!

∑

m

∮

JK

Nc∏

a=1

dxa
2πixa

Zcl(x)Z1-loop
matter(x)Z

1-loop
gauge (x)H(x)g ,

(5.8)

where the sum is over the fluxes ma ∈ Z, a = 1, · · · , Nc. The integrand contains the

classical piece:

Zcl(x) =

Nc∏

a=1

[
(−1)(Nf+Nc−1)maqmaxnTa xkma

a x
(g−1)kgR
a x

kgAnA
a y

kgAma

A

]
, (5.9)

which includes the mixed gauge-U(1)A and gauge-R Chern-Simons terms (5.3). Any other

flavor CS term factorizes out of the index and can be ignored for our purposes. Note that

we introduced a sign (−1)(Nf+Nc−1)
∑

a ma in (5.9) for later convenience. The other factors

in the integrand are the one-loop determinants:

Z1-loop
matter(x) =

Nc∏

a=1




Nf∏

i=1


 x

1
2
a y

1
2
i

yi − xa




ma−ni+(g−1)(r−1)
Na∏

j=1


 x

1
2
a ỹ

1
2
j

xa − ỹj




−ma+ñj+(g−1)(r−1)

 ,

Z1-loop
gauge (x) = (−1)(Nc−1)

∑
a ma

Nc∏

a,b=1
a 6=b

(
xa

xb − xa

)g−1

, (5.10)
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and the Hessian of the twisted superpotential W:

H(x) =

Nc∏

a=1

Ĥ(xa) , Ĥ(x) ≡ k + 1

2

Nf∑

i=1

(
x+ yi
yi − x

)
+

1

2

Na∑

j=1

(
x+ ỹj
x− ỹj

)
. (5.11)

Note that the index (5.8) depends on the choice of R-charge r through the combination

nA+(g−1)(r−1) only, therefore we could set r = 1 without loss of generality. Nonetheless,

we find it instructive to present the final formulas for an arbitrary r.

Since the gauge charges of the monopole operators T±
a are given by:

Qb
a± = δba (±k − kc) , (5.12)

different singularities contribute to the JK residue (5.8) depending on the relative values

of k and kc. Without loss of generality, we can consider k ≥ 0, kc ≥ 0. There are four

distinct cases:

• If k = kc = 0, we have a U(Nc) gauge theory with Nf = Nc and no Chern-Simons

term. The theory has a quantum Coulomb branch spanned by the gauge-invariant

monopole operators T±. Aharony duality [24] provides a dual description with a

U(Nf −Nc) gauge group.

• If k > kc ≥ 0, the CS interactions lifts the Coulomb branch. The dual theory with

gauge group U(k+Nf−kc−Nc) is known as Giveon-Kutasov duality when kc = 0 [26].

• If kc > k ≥ 0, there is no quantum Coulomb branch and the dual theory has a

U(Nf −Nc) gauge group [28].

• If k = kc > 0, the theory has “half” a quantum Coulomb branch, spanned by T+.

The dualities with kc 6= 0 were introduced in [28]. All the dualities of [26, 28] for YM-CS-

matter theories with unitary gauge groups can be derived from the Aharony duality through

real mass deformations. Nonetheless, it will be instructive to compute the twisted index

in every case, especially because it is rather subtle to take the necessary decoupling limits

between different values of [k,Nc, Nf , Na] at the level of the index. For completeness,

we consider those real mass deformations — in flat space — in appendix C, where we

also re-derive the relative global CS levels that are crucial for precise checks of these

dualities [28, 44].

For definiteness, we choose the mixed CS levels (5.3) to be:

kgA =

{
−kc if k ≥ kc ,
−k if k ≤ kc ,

kgR =

{
−kc (r − 1) if k ≥ kc ,
−k (r − 1) if k ≤ kc .

(5.13)

There are the levels obtained by real mass deformations from SQCD[0, Nc, nf , nf ] at kgA =

kgR = 0 (see appendix C).
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5.2 The Bethe equations of 3d N = 2 SQCD and Seiberg duality

Assuming kc ≥ 0, k ≥ 0, let us define the ‘characteristic polynomial’:

P (x) =

Nf∏

i=1

(x− yi)− q y
QA

+

A xk+kc

Na∏

j=1

(x− ỹj) , (5.14)

of degree:

n ≡ deg(P ) =




k +

Nf +Na

2
if k ≥ kc ,

Nf if k ≤ kc .
(5.15)

It is easy to verify that the Bethe equations of SQCD[k,Nc, Nf , Na] are given by:

P (xa) = 0 , a = 1, · · · , Nc , xa 6= xb if a 6= b . (5.16)

Let {x̂α}nα=1 be the set of roots of (5.14), which are distinct for generic values of the

parameters. The set SBE of distinct solutions to the Bethe equations is the set of all

unordered subsets {x̂a}Nc
a=1 ⊂ {x̂α} of Nc elements.

We can easily perform the sum over gauge fluxes in (5.8). For definiteness, let us

choose η = (1, · · · , 1) in the JK residue. The contributing poles are at xa = yi and

xa =∞, where the latter singularities contribute only if k > kc. We first perform the sum

over the fluxes ma ≥ M , with M ∈ Z some fixed integer depending on the background

fluxes, which cancels out of the computation. The geometric series for each ma reproduces

the characteristic polynomial (5.14):

∞∑

ma=M

e2πi∂uaW ma = (e2πi∂uaW)M
∏Nf

i=1(xa − yi)
P (xa)

, (5.17)

and the resulting contour integral has contributions from the poles at the roots of P (x).

One can check that these roots go to x̂α → yi and x̂α →∞ in the limit q → 0. Using the

identity:

∂xP (x̂α) = −x̂−1
α

Nf∏

i=1

(x̂α − yi)Ĥ(x̂α) , (5.18)

for any root x̂α of P (x), we can rewrite the twisted index as:

Z
SQCD [k,Nc,Nf ,Na]

Σg×S1 (q, y, ỹ) =
∑

x̂∈SBE

CU(x̂)H(x̂)g−1 , (5.19)

as anticipated in section 2.6. This directly implies the formula (5.4) for the Witten index.

Here we have:

CU(x) =

Nc∏

a=1


x

nT−QA
−nA

a
∏Nf

i=1(yi − xa)ni
∏Nf

i=1 y
− 1

2
ni

i

∏Na
j=1 ỹ

1
2
ñj

j∏Na
j=1(xa − ỹj)ñj


 , (5.20)

H(x) =
Nc∏

a=1

[
x
−(r−−1)
a y

−kc(r−1)
A (−1)Nf−1 ∂xP (xa)

∏Nf

i=1(yi − xa)r
∏Na

j=1(xa − ỹj)r−1

]
Nc∏

a,b=1
a 6=b

1

xa − xb
, (5.21)

with QA
− and r− defined in (5.5). Note that we used (5.18) to massage H(x) in (5.21).
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U(n−Nc) SU(Nf ) SU(Na) U(1)A U(1)T U(1)R

qj n − Nc 1 Na −1 0 1− r
q̃i n − Nc Nf 1 −1 0 1− r
M j

i 1 Nf Na 2 0 2r

Table 3. Charges of the chiral multiplets for the Seiberg dual of 3d N = 2 SQCD. There is also

one extra singlet T± if k = ±kc (or both, if k = kc = 0), corresponding to the Coulomb branch

operator of the ‘electric’ theory.

The expression (5.19) is the most convenient to study Seiberg dualities. The dual

theory has a gauge group U(n−Nc) with dual matter fields as indicated in table 3. Let xā
(ā = 1, · · · , n−Nc) denote the gauge fugacities for the dual gauge group. The corresponding

Bethe equations take the form:

PD(xā) = 0 , ā = 1, · · · , n−Nc , xā 6= xb̄ if ā 6= b̄ . (5.22)

with15

PD(x) =

Na∏

j=1

(x− ỹi)− qD y
−QA

+

A x−(k+kc)

Nf∏

i=1

(x− yi) . (5.23)

We directly see that P (x) and PD(x) have the same roots {x̂α}nα=1 if qD = q−1. Indeed,

the duality identifies the topological currents of the U(Nc) and U(Nf −Nc) gauge groups,

with a relative sign. If we denote by U(1)TD
the topological current of U(Nf − Nc), we

have TD = −T , and therefore:

qD = q−1 , nTD
= −nT , (5.24)

for the fugacities and background fluxes, respectively. We denote by SDBE the set of distinct

solutions to the dual Bethe equations (5.22), which is the set of all unordered subsets

{x̂ā}n−Nc
ā=1 ⊂ {x̂α} of n−Nc elements.

The twisted index of the dual theory takes the form:

Zdual
Σg×S1(q, y, ỹ) = ZCS

Σg×S1Z
singlets
Σg×S1 Z

SQCD [−k,n−Nc,Na,Nf ]

Σg×S1 (q−1, ỹ, y) . (5.25)

The first factor is the contribution from the relative flavor CS terms, which are discussed in

more details below and in appendix C. The second factor Zsinglets
Σg×S1 is the contribution from

the gauge-singlet fields that are part of the dual theory. This includes the contribution

from the ‘mesonic’ gauge-singlet fields M j
i, which reads:

ZM
Σg×S1 = uM (hM )g−1 , (5.26)

15Note that we used the freedom to multiply q and qD by a sign. We chose q → (−1)Nf+Nc−1q in (5.9),

and similarly qD → (−1)Na+n−Nc−1qD in the dual theory.
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where we defined:

uM ≡
Nf∏

i=1

Na∏

j=1


 y

1
2
i ỹ

1
2
j

yi − ỹj




−ni+ñj

, hM ≡
Nf∏

i=1

Na∏

j=1

(
1

yi − ỹj

)2r−1

. (5.27)

We have Zsinglets
Σg×S1 = ZM

Σg×S1 if k 6= kc, while in the limiting case k = kc > 0 (or k = kc = 0)

we must also include the contribution from an extra singlet T+ (or two extra singlets

T±, respectively). The last factor in (5.25) is the contribution from the dual gauge group

U(n − Nc) with its charged matter fields. Note the exchange of the fugacities y and ỹ

in (5.25).

By a similar reasoning as above, we can show that the gauge contribution in (5.25)

can be expressed as a sum over the solutions to the dual Bethe equations:

Z
SQCD [−k,n−Nc,Na,Nf ]

Σg×S1 (q−1, ỹ, y) =
∑

x̂D ∈SD
BE

UD(x̂D)HD(x̂D)
g−1 , (5.28)

with

UD(xD) =
n−Nc∏

ā=1


x

−nT+QA
−nA

ā

∏Na
j=1(ỹj − xā)ñi

∏Nf

i=1 y
1
2
ni

i

∏Na
j=1 ỹ

− 1
2
ñj

j
∏Nf

i=1(xā − yi)ni


 , (5.29)

HD(xD) =

n−Nc∏

ā=1


 x

(r−−1)
ā y

kcr−QA
+

A q−1 (−1)Na ∂xP (xā)
∏Nf

i=1(xā − yi)−r
∏Na

j=1(ỹj − xā)−r+1




n−Nc∏

ā,b̄=1
ā 6=b̄

1

xā − xb̄
. (5.30)

This can be obtained from (5.20)–(5.21) by exchanging i and j indices together with the

substitutions:

k → −k , Nc → n−Nc , Na ↔ Nf , yi ↔ ỹj , r → 1− r , q → q−1 , (5.31)

and similarly for the background fluxes. The identity of twisted indices across Seiberg du-

ality can be shown by replacing the set of Nc roots x̂ = {x̂a}Nc
a=1 of P (x) by its complement

x̂D = {x̂ā}n−Nc
ā=1 ⊂ {x̂α}. In appendix D, we prove that:

CU(x̂) = u UD(x̂D) , H(x̂) = h HD(x̂D) , (5.32)

for any partition {x̂α} = x̂∪ x̂D of the roots of P (x). The quantities u and h only depend

on the fugacities (and fluxes) for the global symmetries, and are such that:

uhg−1 = ZCS
Σg×S1Z

singlets
Σg×S1 , (5.33)

with an extra (ambiguous) sign included in the definition of ZCS
Σg×S1 . The exact expression

for u and h are given in appendix D. The relations (5.32)–(5.33) directly imply the equality

of twisted indices for the dual theories:

Z
SQCD [k,Nc,Nf ,Na]

Σg×S1 (q, y, ỹ) = Zdual
Σg×S1(q

−1, y, ỹ) . (5.34)
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U(Nf −Nc) SU(Nf ) SU(Nf ) U(1)A U(1)T U(1)R

qi Nf −N 1 Nf −1 0 1− r
q̃j Nf − Nc Nf 1 −1 0 1− r
M j

i 1 Nf Nf 2 0 2r

T+ 1 1 1 −Nf 1 −Nf (r − 1)−Nc + 1

T− 1 1 1 −Nf −1 −Nf (r − 1)−Nc + 1

Table 4. Charges of the matter fields in the Aharony dual theory.

These results also imply the equality of Wilson loop correlators. For any Wilson loop W

of the U(Nc) theory, there exists a dual Wilson loop WD such that:

W (x̂) =WD(x̂D) , (5.35)

where x̂ and x̂D of P (x) are complementary sets of roots defined as above. Using the

expression (2.75), we easily see that the dual correlation functions on Σg×S1 must coincide:

〈W 〉g = 〈WD〉dualg . (5.36)

We will discuss this duality map in more details in subsection 5.7 below.

5.3 Aharony duality (k = kc = 0)

Consider SQCD with k = kc = 0. This is a U(Nc) YM theory with Nf pairs of fundamental

and antifundamental chiral multiplets Qi, Q̃
j and a vanishing superpotential. We choose

the mixed gauge-flavor CS terms kgA = kgR = 0 according to (5.13). We also set all the

global (flavor and U(1)R) CS levels to zero.

The dual theory is a U(Nf−Nc) YM theory with Nf fundamental and antifundamental

chiral multiplets q̃j , q
i, N2

f singlets M j
i transforming under SU(Nf ) × SU(Na), and two

extra singlets T± charged under the topological symmetry U(1)T . These fields interact

through the superpotential (C.4) given in appendix C.1. All the gauge and global CS levels

vanish as well. The gauge and global charges of all the dual matter fields are summarized

in table 4. The singlets M j
i and T

± are identified with the gauge-invariant mesons Q̃jQi

and with the lowest gauge invariant monopole operators of U(Nc), respectively.

The Σg × S1 partition function of the electric theory is given by:

Z
SQCD [0,Nc,Nf ,Nf ]

Σg×S1 (q, y, ỹ) , (kgA = kgR = 0) , (5.37)

a special case of the SQCD index (5.8). The partition function of the magnetic theory is

given by:

Zdual
Σg×S1(q, y, ỹ) = (−1)nT+(g−1)(Nf−Nc) Zsinglets

Σg×S1 Z
SQCD [0,Nf−Nc,Nf ,Nf ]

Σg×S1 (q−1, ỹ, y) , (5.38)
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with the singlet contribution:

Zsinglets
Σg×S1 =

Nf∏

i=1

Nf∏

j=1


 y

1
2
i ỹ

1
2
j

yi − ỹj




−ni+ñj+(g−1)(2r−1)

×


 q

1
2 y

− 1
2
Nf

A

1−qy−Nf

A




nT−NfnA+(g−1)(r+−1)
 q−

1
2 y

− 1
2
Nf

A

1− q−1y
−Nf

A




−nT−NfnA+(g−1)(r−−1)

,

(5.39)

with r+ = r− = −Nf (r−1)−Nc+1 the R-charge of the gauge-singlet chiral multiplets T±.

The first line in (5.39) is the meson contribution (5.26)–(5.27) and the second line is the

contribution from T+ and T−, respectively. To complete the proof of the equality (5.34)

for the twisted indices, we need to show that:

uhg−1 = (−1)nT+(g−1)(Nf−Nc) Zsinglets
Σg×S1 . (5.40)

One can check that this follows from the formula (D.8) in appendix D when k = 0,

Nf = Na = n.

5.4 Duality for k > kc ≥ 0

Consider SQCD[k,Nc, Nf , Na] with CS level k > kc ≥ 0. We choose the mixed

CS levels kgA, kgR according to (5.13). The dual gauge theory has a gauge group

U(k + 1
2(Nf +Na)−Nc) at CS level −k, with mixed gauge-U(1)A and gauge-R CS levels:

kDgA = kc , kDgR = kcr . (5.41)

The dual matter sector consists of the dual charged chiral multiplets qj , q̃
i and the NfNa

gauge-singlet mesons M j
i, with the standard Seiberg dual superpotential W = q̃Mq. The

gauge and global charges are summarized in table 3 above.

To fully state the duality, we need to specify the relative CS levels for the global

symmetry group (5.1). In appendix C, we show that:

∆kSU(Nf ) =
1

2
(k + kc) , ∆kSU(Na) =

1

2
(k − kc) , (5.42)

and

∆kAA =
Nf +Na

2
n− 2NfNa , ∆kTT = −1

∆kAR =
Nf +Na

2
(n−Nc)−NfNa + (r − 1)∆kAA , ∆kAT = ∆kTR = 0 ,

(5.43)

with n = k + 1
2(Nf + Na). Here we omited ∆kRR because it does not enter the Σg × S1

partition function. Assembling all the pieces, the twisted index of the Seiberg dual theory

is given by:

Zdual
Σg×S1(q, y, ỹ) = ZCS

Σg×S1Z
M
Σg×S1 Z

SQCD [−k,n−Nc,Na,Nf ]

Σg×S1 (q−1, ỹ, y) , (5.44)
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with ZM
Σg×S1 defined in (5.26), and:

ZCS
Σg×S1 = (−1)n∗

Nf∏

i=1

y
si∆kSU(Nf )

i

Nf∏

j=1

y
s̃j∆kSU(Na)

i q∆kTTnT y
∆kAAnA+∆kAR(g−1)
A , (5.45)

with the relative CS levels (5.42)–(5.43). Here (−1)n∗ is an unimportant sign, and we

defined the SU(Nf ) × SU(Na) fluxes si = ni + nA and s̃j = nj − nA. Using the results of

appendix D, one can check that (5.33) holds, which completes the proof of the equality of

twisted indices in this case.

5.5 Duality for kc > k ≥ 0

Consider SQCD[k,Nc, Nf , Na] with non-negative CS level k < kc, with the mixed CS levels

kgA, kgR given in (5.13). The dual gauge theory has gauge group: U(N −Nc) at CS level

−k, and with mixed gauge-U(1)A and gauge-R CS levels:

kDgA = k , kDgR = kr . (5.46)

The dual matter sector is like in the last subsection, as summarized in table 3 above. The

relative CS levels for this duality are:

∆kSU(Nf ) = k , ∆kSU(Na) = 0 ,

∆kAA = 3kNf , ∆kTT = 0 ,

∆kAR = k(Nc +Nf ) + (r − 1)∆kAA , ∆kAT = −Nf ,

∆kTR = −Nc + (r − 1)∆kAT ,

(5.47)

as we explain in appendix C. The dual twisted index reads:

Zdual
Σg×S1(q, y, ỹ) = ZCS

Σg×S1Z
M
Σg×S1 Z

SQCD [−k,Nf−Nc,Na,Nf ]

Σg×S1 (q−1, ỹ, y) , (5.48)

with ZM
Σg×S1 defined in (5.26), and:

ZCS
Σg×S1 = (−1)n∗

Nf∏

i=1

y
si∆kSU(Nf )

i q∆kTTnT+∆kAT nA+∆kTR(g−1)

× y∆kAAnA+∆kATnT+∆kAR(g−1)
A ,

(5.49)

with the relative CS levels (5.47), while (−1)n∗ is another unimportant sign. One can check

that (5.33) holds in this case as well.

5.6 Duality for k = kc > 0

The final case to consider is SQCD[kc, Nc, Nf , Na] with CS level k = kc > 0, the limiting

case between subsections 5.4 and 5.5. The dual gauge group is a U(Nf −Nc) gauge group

at CS level −k and mixed CS levels (5.46). In addition to the dual charged multiplets and
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mesons M j
i, there is an extra singlet T+ and a superpotential (C.17). The relative CS

levels for this duality are:

∆kSU(Nf ) = k , ∆kSU(Na) = 0 ,

∆kAA = 3kNf −
1

2
N2

f , ∆kTT = − 1

2
,

∆kAR = k(Nc +Nf )−
1

2
NcNf + (r − 1)∆kAA , ∆kAT = − 1

2
Nf ,

∆kTR = − 1

2
Nc + (r − 1)∆kAT .

(5.50)

The dual twisted index reads:

Zdual
Σg×S1(q, y, ỹ) = ZCS

Σg×S1Z
singlets
Σg×S1 Z

SQCD [−k,n−Nc,Na,Nf ]

Σg×S1 (q−1, ỹ, y) . (5.51)

The singlet contribution includes the contribution from T+:

Zsinglets
Σg×S1 = ZM

Σg×S1


 q

1
2 y

− 1
2
Nf

A

1− qy−Nf

A




nT−NfnA+(g−1)(r+−1)

, (5.52)

with r+ = −
(
k + 1

2(Nf +Na)
)
−Nc+1 the R-charge of T+ in this case. The factor ZCS

Σg×S1

in (5.51) is given by (5.49) with relative CS levels (5.50). One can check that (5.33) holds

here as well, which completes the proof of (5.34).

5.7 Wilson loop algebra and the duality map

As an illustration of the general discussion of section 2.4, let us consider the quantum

algebra of Wilson loops in SQCD[k,Nc, Nf , Na]. A particularly interesting case is for

k = kc = 0, which we consider in some more details below. The Wilson loop algebra

for SQCD was studied previously in [30] by considering the theory on S3, and we follow

a similar logic on Σg × S1. As we emphasized in section 2.4, the Wilson loop algebra is

always encoded in the Bethe equations of the theory on R
2 × S1.

5.7.1 Wilson loops and Seiberg duality

Wilson loops in a U(Nc) theory are in one-to-one correspondence with symmetric Laurent

polynomials in the coordinates xa:

W (x) ∈ C[x1, x
−1
1 , · · · , xrk(G), x

−1
rk(G)]

SNc , (5.53)

which are in one-to-one correspondence with Young tableaux graded by the U(1) ⊂ U(Nc)

charge q ∈ Z. For instance, Wilson loops in the fundamental and antifundamental repre-

sentations correspond to:

W +1(x) =

Nc∑

a=1

xa , W
−1
(x) =

Nc∑

a=1

1

xa
. (5.54)

Products of Wilson loops are given by the corresponding tensor products of U(Nc) rep-

resentations. Consider first the representations R with q ≥ 0, corresponding to all the
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symmetric polynomials W (x) ∈ C[x1, · · · , xNc ]
SNc , which form a subalgebra. They are

generated by the elementary symmetric polynomials:

s
(Nc)
l (x) =

∑

1≤a1<···<al≤Nc

xa1xa2 · · ·xal , l = 0, · · · , Nc , (5.55)

which correspond to the Young tableaux with l vertical boxes:

s
(Nc)
0 (x) = 1 , s

(Nc)
1 (x) = , s

(Nc)
2 (x) = , · · · . (5.56)

Let us define the generating function:

Q(z) =

Nc∏

a=1

(z − xa) =
Nc∑

l=0

(−1)lzNc−l s
(Nc)
l (x)

= zNc − zNc−1 + zNc−2 − · · ·+ (−1)Ncx1 · · ·xNc ,

(5.57)

where we identify any irreducible Wilson loop W (x) with its corresponding Young tableau.

The quantum Wilson loop algebra is governed by the Bethe equations (5.16), which are

given in terms of the polynomial P (x) of degree n (5.14). The quantum algebra relations

f = 0 are the relations satisfied by any solution to the Bethe equations — that is, we have

f(x̂) = 0 for any set x̂ = {x̂a}Nc
a=1 of Nc distinct roots of P (x). These relations can be

conveniently written in a gauge-invariant form [75, 76] as:

P (z)− C(q)Q(z)QD(z) = 0 , (5.58)

where we defined:

C(q) =





1− q y−Nf

A if k = kc ≥ 0

−q y−Nf

A if k > kc ≥ 0

1 if kc > k ≥ 0

, (5.59)

so that P (z)/C(q) is monic in z. Here QD(z) is an auxilliary monic polynomial of degree

n−Nc in z. Recalling that the Bethe equations of the Seiberg dual theory with U(n−Nc)

gauge group are given in terms of the same polynomial P (x):

P (xā) = 0 , ā = 1, · · · , n−Nc , xā 6= xb̄ if ā 6= b̄ , (5.60)

we are led to identify QD(z) as the generating function for the dual Wilson loops WD(xD)

with non-negative U(1) charge:

QD(z) =

n−Nc∏

ā=1

(z − xā) =
n−Nc∑

p=0

(−1)pzn−Nc−p s(n−Nc)
p (xD) . (5.61)

We also use the notation:

s
(n−Nc)
0 (xD) = 1 , s

(n−Nc)
1 (xD) =

D , s
(n−Nc)
2 (xD) =

D
, · · · . (5.62)
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Expanding both sides of (5.58) in z, one finds n relations between the quantities (5.56)

and (5.62). Solving for s
(n−Nc)
p (xD) in terms of s

(Nc)
l (x), we are left with the relations

satisfied by the Wilson loops with q ≥ 0. To obtain the full quantum algebra of Wilson

loops (corresponding to Laurent polynomials instead of polynomials), we just need to adjoin

the elements x−1
a . Following [30], we can write P (x) as

P (x) = C(q)xn + cn−1x
n + · · ·+ c1x+ c0 , (5.63)

and we have
1

x̂a
= − 1

c0

(
C(q)x̂n−1

a + cn−1x̂
n−2
a + · · ·+ c1

)
(5.64)

for {x̂a} any solution to the Bethe equations. Therefore these elements x−1
a are not inde-

pendent in the quotient ring, and the quantum algebra (2.58) is the ring of U(Nc) repre-

sentations with q ≥ 0 —labelled by Young tableaux of maximum Nc rows — quotiented

by the relations encoded in (5.58). The quotient ring is finite-dimensional, consisting of

Young tableaux with a maximum of Nc rows and n−Nc columns.

The relations (5.58) also encode the duality map (5.35) between the Wilson loops W

of U(Nc) and the Wilson loops WD of the dual theory. Seiberg duality then acts as an

isomorphism of the quantum Wilson loop algebra [30], which is rendered manifest in (5.58).

5.7.2 Wilson loops in Aharony duality

To illustrate the above considerations, let us consider U(Nc) with k = 0 and Nf = Na in

more details. The characteristic polynomial in this case reads:

P (z) =

Nf∏

i=1

(z − yi)− q y−Nf

A

Nf∏

j=1

(z − ỹj) . (5.65)

We have the quantum relations (5.58) with C(q) = 1− qy−Nf

A . Note that we have:

P (z) =

Nf∑

m=0

(−1)mzNf−m
(
sFm − q y

−Nf

A s̃Fm

)
, (5.66)

where we defined:

sFm = s
(Nf )
m (y) , s̃Fm = s

(Nf )
m (ỹ) , m = 0, · · · , Nf . (5.67)

the elementary symmetric polynomials in the fugacities yi and ỹj for the SU(Nf )×SU(Nf )×
U(1)A flavor group. We can think of these quantities as ‘flavor Wilson loops’ for the

background gauge fields. It follows that the quantum ring relations are given explicitly by:

m∑

l=0

s
(Nc)
l (x) s

(Nf−Nc)
m−l (xD) =

1

1− qy−Nf

A

(
sFm − q y

−Nf

A s̃Fm

)
, m = 1, · · · , Nf . (5.68)

Here it is understood that sNc
l (x) = 0 for l > Nc and s

(Nf−Nc)
p (xD) = 0 for p > Nf −Nc.

For instance, the first relation reads:

+ D =
1

1− q y−Nf

A




Nf∑

i=1

yi − q y−Nf

A

Nf∑

j=1

ỹj


 . (5.69)
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This is the relation between the Wilson loop W in the fundamental representation of

U(Nc) and the dual Wilson loop in the fundamental representation of U(Nf −Nc).

The relations (5.68) have an interesting property in the limit yi = ỹj (i = j), when

we have:
m∑

l=0

s
(Nc)
l (x) s

(Nf−Nc)
m−l (xD) = sFm , m = 1, · · · , Nf . (5.70)

The number of summands in x, xD or y is equal on either side; if we set xa = xā = yi = 1,

we have a relation between dimensions of gauge and flavor representations.

Example: U(3) with Nf = 5. To illustrate the above, let us work out the case Nc = 3

and Nf = 5. We take yi = yj = 1 for simplicity. In that case, the equations (5.68) read:

D + = 5 ,

D
+ D ⊗ + = 10 ,

D ⊗ + D ⊗ + = 10 ,

D ⊗ + D ⊗ = 5 ,

D ⊗ = 1 .

(5.71)

The Aharony dual gauge theory has gauge group U(2). From the two first lines of (5.71)

we find the duality relations:

D = 5− ,
D
= 10 − 5 + , (5.72)

between Wilson loops in the dual theories. We also find the quantum Wilson loop algebra

relations:

= 10 − 10 + 5 ,

= 5 − 10 + 5 ,

= 1 − 10 + 5 .

(5.73)

Using these relations repeatedly, any U(3) Young tableaux with more than two columns

can be written as a linear combinations of Wilson loops of one or two columns. As a further

consistency check, we can verify that the total dimensions of the U(3) representations on

both sides of the relations (5.73) agree, as expected from (5.70).

5.7.3 Wilson loops in Giveon-Kutasov duality

As another example, consider the case k > 0 and kc = 0, corresponding to Giveon-Kutasov

duality [26]. The characteristic polynomial is given by:

P (z) =

Nf∏

i=1

(z − yi)− q y−Nf

A zk
Nf∏

j=1

(z − ỹj) . (5.74)
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From (5.58), we easily derive the k +Nf quantum algebra relations:

m∑

l=0

s
(Nc)
l (x) s

(k+Nf−Nc)
m−l (xD) = (−1)k+1q−1y

Nf

A sFm−k + s̃Fm , (5.75)

for m = 1, · · · , k + Nf , similarly to subsection 5.7.2. Here it is understood that sFm = 0

if m < 0. This case was studied previously in [30], where the Bethe equations P (xa) = 0

appeared as relations satisfied by BPS Wilson loops on S3.

Example: U(3) with k = 2 and Nf = 2. The dual theory is a U(1) theory with CS

level −2. If we consider yi = ỹj = 1 for simplicity, the relations (5.75) give:

D = 2− , = q−1 − 1 + 2 , = −2q−1 . (5.76)

6 N = 4 gauge theories and mirror symmetry

Three-dimensional N = 4 supersymmetric gauge theories are particularly interesting be-

cause they admit different choices of topological twisting [21, 31, 77], which are often related

to each other by three-dimensional mirror symmetry [32]. In this section, we define the A-

and B-twists of N = 4 theories on S1 × Σg —and a certain N = 2∗ deformation thereof.

We study the corresponding twisted indices and their behavior under mirror symmetry.

We also briefly discuss the mirror map between Wilson loop and vortex loop operators

following [33].

6.1 The A- and B-twist of 3d N = 4 gauge theories

The 3d N = 4 supersymmetry algebra in flat Euclidean space-time reads:

{QAĀ
α , QBB̄

β } = 2ǫABǫĀB̄ Pαβ . (6.1)

The eight supercharges QAĀ
α transform as (2,2) under the R-symmetry group SU(2)H ×

SU(2)C , and we introduced the indices A,B = 1, 2 for SU(2)H and Ā, B̄ = 1̄, 2̄ for SU(2)C .

We can preserve half of the supercharges on any three-manifold by twisting the SU(2)L
Lorentz group with either SU(2)H or SU(2)C [31]. Let us denote by U(1)H × U(1)C the

Cartan subgroup of SU(2)H × SU(2)C , and by H and C the corresponding charges. We

define the integer-valued R-charges:

RA = 2H , RB = 2C . (6.2)

For a theory on Σg × S1, we can identify either RA or RB as the U(1)R symmetry of an

N = 2 subalgebra, and proceed as in section 2.

The SU(2)C twist is known as the Rozansky-Witten twist [31]. It preserves four scalar

supercharges on any three-manifold:

Q11̄
+ , Q21̄

+ , Q12̄
− , Q22̄

− . (6.3)
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On Σg × S1, we preserve the supersymmetry algebra:

{QA1̄
+ , QB2̄

− } = 2ǫABE , (6.4)

where E is the generator of translation along S1. This is the algebra of an N = 4 super-

symmetric quantum mechanics (QM) with U(1)C × SU(2)H R-symmetry [7]. We call this

Σg × S1 background the B-twist. It corresponds to a topological twist along Σg by the

R-charge RB in (6.2). Similarly, the SU(2)H twist preserves the four scalar supercharges:

Q11̄
+ , Q22̄

− , Q12̄
+ , Q21̄

− , (6.5)

and preserves the algebra:

{Q1Ā
+ , Q2B̄

− } = 2ǫĀB̄ E , (6.6)

on Σg × S1, which is the algebra of an N = 4 supersymmetric quantum mechanics with

U(1)H ×SU(2)C R-symmetry. We call this Σg×S1 background the A-twist, corresponding

to a topological twist along Σg by RA in (6.2).

Both twists preserve the two supercharges Q11̄
+ and Q22̄

− , which satisfy the N = 2

supersymmetric quantum mechanics algebra:

{Q11̄
+ , Q

22̄
− } = 2E . (6.7)

These are the two supercharges that we use for supersymmetric localization. Importantly,

they commute with the flavor symmetry U(1)t ≡ 2 [U(1)H −U(1)C ], with conserved charge:

Qt ≡ RA −RB . (6.8)

We can therefore turn on a fugacity t for U(1)t, which breaks N = 4 supersymmetry to

N = 2∗. Let us define the A-twisted index:

Ig,A (yi, t) = TrΣA
g

(
(−1)F tQt

∏

i

yQi
i

)
(6.9)

with the U(1)R charge R = RA, and the B-twisted index:

Ig,B (yi, t) = TrΣB
g

(
(−1)F tQt

∏

i

yQi
i

)
, (6.10)

with R = RB. The fugacity t will play a crucial role in our computation, since we generally

need t 6= 1 for the localization formula of section 2 to be well-defined.16

16Technically, this is so that all the singularities entering the JK residue be projective. The fugacity t

regulates non-projective singularities by splitting N = 4 multiplet masses.
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U(1)L U(1)C U(1)H SA = L+H SB = L+ C Qt

Aµ 1 0 0 1 1 0

σ 0 0 0 0 0 0

D0 0 0 0 0 0 0

λ11̄α , λ
22̄
α ∓1

2 ±1
2 ±1

2 0, 1,−1, 0 0, 1,−1, 0 0

φ, φ̄ 0 ±1 0 0 ±1 ∓2
D∓ 0 0 ±1 ∓1 0 ∓2

λ12̄α , λ
21̄
α ∓1

2 ±1
2 ∓1

2 0, 1,−1, 0 −1, 0, 0, 1 ∓2

Table 5. Charges of the components fields of an N = 4 vector multiplet. Here U(1)L is the spin

along Σg, and the combinations SA = L+H and SB = L+C are the A-twisted and B-twisted spins,

respectively. Here we used the notation λAĀ
α for the gaugini, while the auxiliary fields (D0, D

∓) are

in the 3 of SU(2)H .

g U(1)L U(1)C U(1)H SA = L+H SB = L+ C Qt

q1, q̄1 R 0 0 ±1
2 ±1

2 0 ±1
ψ1
α, ψ̄

1
α R ∓1

2 ∓1
2 0 ∓1

2 −1, 0, 0, 1 ±1
q2, q̄2 R̄ 0 0 ±1

2 ±1
2 0 ±1

ψ2
α, ψ̄

2
α R̄ ∓1

2 ∓1
2 0 ∓1

2 −1, 0, 0, 1 ±1

Table 6. Charges of the components fields of an hypermultiplet. Here q1 and q2 are the lowest

components of the 3d N = 2 chiral multiplets Q1 and Q̃2, respectively, and q̄1, q̄2 are their charge

conjugates.

6.1.1 3d N = 4 supermultiplets and mirror symmetry

We considerN = 4 gauge theories built out ofN = 4 vector multiplets and hypermultiplets.

The N = 4 vector multiplet for a gauge group G with Lie algebra g consists of an N = 2

vector multiplet V and a chiral multiplet Φ, valued in the adjoint representation of g. An

N = 4 hypermultiplet charged under G consists of two N = 2 chiral multiplet (Q1, Q̃2) in

a representation (R, R̄) of g, together with the charge conjugate anti-chiral multiplets. In

N = 2 language, the coupling of the hypermultiplet to the vector multiplet includes the

superpotential:

W = Q1ΦQ̃2 . (6.11)

The non-abelian R-charges are assigned in the UV and do not change under RG flow. We

summarized the field content and the charges of a g-valued vector multiplet in table 5,

while the hypermultiplet field content is given in table 6. Under the B-twist, the fields

(A0, σ,D0, D
∓) (6.12)
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from the vector multiplet become scalars on Σg, which implies that the resulting one-

dimensional gauged quantum mechanics on S1 enjoys N = (0, 4) supersymmetry, with

(D0, D
∓) transforming as a triplet under SU(2)H . On the other hand, under the A-twist

the fields:

(A0, σ, φ, φ̄,D0) (6.13)

become scalars, with (σ, φ, φ̄) transforming as a triplet under SU(2)C . The resulting one-

dimensional gauge theory is an N = (2, 2) supersymmetric quantum mechanics.17

Some other useful representations of N = 4 supersymmetry are the twisted vector

multiplet and the twisted hypermultiplet.18 For any ‘ordinary’ N = 4 supermultiplet

one can construct a ‘twisted’ representation of supersymmetry by exchanging SU(2)H and

SU(2)C . This ‘mirror automorphism’ of the supersymmetry algebra is a trivial statement,

in the sense that a gauge theory containing only vector multiplets and hypermultiplets is

isomorphic to the same theory with twisted vector multiplets and twisted hypermultiplets,

by a simple relabelling of the R-symmetry representations. The mirror automorphism

naturally exchanges the A- and B-twists.

On the other hand, N = 4 mirror symmetry is a non-trivial infrared duality of two

distinct gauge theories (of vector and hypermultiplets) [32] composed with the mirror

automorphism of N = 4 representations. Mirror symmetry therefore implies that the

A-twisted index (6.9) of a theory T must agree with the B-twisted index (6.10) of its

mirror Ť :

I
[T ]
g,A (y, t) = I

[Ť ]
g,B

(
y̌, t−1

)
, (6.14)

and similarly with A- and B-twists exchanged. Here, yi are the fugacities for the flavor

symmetries of T and y̌i are the mirror fugacities of Ť —as we will review in the examples

below, mirror symmetry exchanges Coulomb branch parameters (FI parameters) with Higgs

branch parameters (real masses).

6.1.2 The Wilson loop and vortex loop operators

Three-dimensional N = 4 gauge theories contain very interesting half-BPS loop operators.

The half-BPS Wilson loop on a closed loop γ can be thought of as a 1d N = (0, 4) quantum

mechanics living on γ [33]. On Σg × S1, such Wilson loops can be studied by wrapping

them over S1. We have the Wilson loop WR given by (2.54) for any representation R of

G. This amounts to inserting a factor

W (x) = TrR (x) (6.15)

in the path integral localized on the classical Coulomb branch, as discussed in details in

section 2.4. Such Wilson loops preserve the four supercharges (6.3) of the B-twist on

ΣB
g ×S1, while they only preserve two supercharges in the A-twisted theory. Consequently,

17The supersymmetry multiplets of N = (0, 4) and N = (2, 2) quantum mechanics can be obtained by

dimensional reduction of the two-dimensional N = (0, 4) and N = (2, 2) multiplets, respectively.
18The use of the term ‘twisted’ for these representations of N = 4 supersymmetry is standard, and should

not be confused with the A- and B-twist terminology.
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we can study half-BPS Wilson loops in the B-twisted theory, or more generally quarter-

BPS Wilson loops in the A-twisted theory. In this work, we will focus on the half-BPS

loop Wilson loop operators in the B-twisted theory.

The half-BPS loop operator which preserves the full N = (2, 2) one-dimensional al-

gebra (6.6) of the A-twisted theory is the vortex loop V along S1. This loop operator

can be realized in the UV as a 1d N = (2, 2) supersymmetric quantum mechanics living

on the loop, coupled non-trivially to the bulk three-dimensional theory by gauging a 1d

global symmetry with 3d gauge fields [33]. The insertion of such a vortex loop amounts to

inserting an N = (2, 2) QM index inside the localized path integral on ΣA
g × S1. For any

one-dimensional GLSM coupled to the 3d gauge field, we insert:

V (x) ≡ ZQM
S1 (x, t, y) =

∮

JK(ξ1d)

∏

ui
1d

dui1d
2πiui1d

Z1d
1-loop(u1d, x, t, y) , (6.16)

into the ΣA
g × S1 localization formula. The quantum mechanical index (6.16) is written in

terms of a JK residue integral over u1d according to the results of [7]. Here the u1d’s are the

complexified flat connections of the 1d gauge theory, x stands for the 3d gauge fugacities,

and y stands for the other flavor fugacities. The fugacity t is a fugacity for the RA − RB

fugacity of the one-dimensional N = (2, 2) algebra. Since the vortex operator preserves

the full supersymmetry algebra of the A-twisted theory, this can be identified with the Qt

flavor symmetry (6.8) of the three-dimensional theory.

It is clear from symmetry considerations that half-BPS Wilson loops W should be

mapped to half-BPS vortex loops under mirror symmetry:

〈W 〉Tg,B = 〈V 〉Ťg,A . (6.17)

The precise mirror symmetry map between a Wilson loop W and a vortex loop V has

been thoroughly studied in [33], and we summarize some of these results in appendix E.

In section 6.5 below, we will verify the relation (6.17) for loop operators on Σg × S1 in an

interesting example. We leave a more systematic study of (6.17) using twisted indices for

future work.

6.2 The N = 4 localization formula on Σg × S1

We can easily compute the twisted indices (6.9) and (6.10), and the corresponding expecta-

tion values of half-BPS loop operators, as a special case of the N = 2 localization formula

of section 2.5. Consider an N = 4 gauge theory with gauge group G and charged hy-

permultiplets (Q1,i, Q̃2,i) in representations Ri of g, with fugacities and background fluxes

yi, ni.

6.2.1 The A-twisted index

The A-twisted index takes the form:

ZΣA
g ×S1 =

(−1)rk(G)

|WG|
∑

m∈Γ
G∨

qm
∮

JK

rk(G)∏

a=1

dxa
2πixa

Zhyper
m,A (x)Zvector

m,A (x)H(x)g . (6.18)
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The factor qm in (6.18) denotes the FI term contributions from the free subgroup
∏

I U(1)I
of G:

qm ≡
∏

I

qmI
I . (6.19)

We could also turn on a background flux nTI
for the topological symmetry U(1)TI

, which

would contribute an extra classical factor to (6.18) like in previous sections, but we will

mostly set nTI
= 0 in the following.19 The one-loop determinants are given by:

Zhyper
m,A =

∏

i

∏

ρi∈Ri

(
xρiyi − t
1− xρiyit

)ρi(m)+ni
[

xρiyit

(1− xρiyit)(xρiyi − t)

]nt
,

Zvector
m,A = (t− t−1)(2nt+(g−1))rk(G)

∏

α∈g

(
1− xα
t− xαt−1

)α(m)−g+1 (
t− xαt−1

)2nt
,

(6.20)

and the Hessian determinant H(x) reads:

H(x) = det
ab

[
Hvector

ab +Hhyper
ab

]
, (6.21)

with

Hvector
ab =

1

2

∑

α∈G

αaαb

(
t+ xαt−1

t− xαt−1

)
,

Hhyper
ab =

1

2

∑

i

∑

ρi∈Ri

ρai ρ
b
i

(
1 + xρiyit

1− xρiyit
+
xρiyi + t

xρiyi − t

)
.

(6.22)

For g = 0, an infinite number of flux sectors contribute to (6.18) in general. On the

other hand, in the case g > 0 and nt = 0, we can argue that only a finite number of

flux sectors contribute non-trivially. (A similar observation was first made in [80] for the

T 2 × S2 partition function of 4d N = 1 theories.) This follows from the fact that

lim
x→0

H(x) = lim
x→∞

H(x) = 0 , (6.23)

while the one-loop determinants (6.20) stay finite in that limit. It implies that the contri-

butions from the residue integral at x = 0 and x = ∞ must vanish, meaning that there

is no wall-crossing [7] as we vary the parameter η of the JK residue integral. This allows

us to choose a convenient η for each m. Consider the case G = U(1) for simplicity. For

non-zero flux m, we choose η = −m such that for m > 0, so we have to pick the contribu-

tions from negatively charged fields. These fields contribute poles only when 0 < m < g,

therefore there is no contribution for m ≥ g. Similarly, if m < 0 we have a contribution

from the positively-charged fields, which contribute only when −g < m. To summarize, for

G = U(1) the A-twisted index with g > 0 and nt = 0 receives contributions from a finite

number of flux sectors −g < m < g. Similar considerations apply for any G. In particular,

the Witten index (g = 1) only receives contributions from the vanishing flux sector on T 2.

19These terms preserve N = 4 supersymmetry. The correct mixed-CS term (also called BF term) involves

the N = 4 vector multiplet (V,Φ) and a background twisted vector multiplet (Vt,Φt) coupling to the

topological conserved current of V [78, 79]. In N = 2 language, this includes the superpotential W = ΦΦt.
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6.2.2 The B-twisted index

The B-twisted index reads:

ZΣB
g ×S1 =

(−1)rk(G)

|WG|
∑

m∈Γ
G∨

qm
∮

JK

rk(G)∏

a=1

dxa
2πixa

Zhyper
m,B (x)Zvector

m,B (x)H(x)g , (6.24)

where H(x) is the same as in (6.21), and the one-loop determinants are:

Zhyper
m,B =

∏

i

∏

ρi∈Ri

(
xρiyi − t
1− xρiyit

)ρi(m)+ni
[

xρiyit

(1− xρiyit)(xρiyi − t)

]nt−g+1

,

Zvector
m,B = (t− t−1)(2nt−(g−1))rk(G)

×
∏

α∈g

(
1− xα
t− xαt−1

)α(m) [ 1

(1− xα)(t− xαt−1)

]g−1 (
t− xαt−1

)2nt
.

(6.25)

In contrast to the A-twisted index, the B-twisted theory with nt = 0 at g = 0 or g = 1

gets contribution from the m = 0 sector only, because the residue at infinity vanishes. (See

section 6.6.1.) This implies that those indices are independent of the fugacities qI associated

to the FI parameters. On the other hand, when g > 1 the one-loop determinants (6.25) in

general have poles with non-vanishing residue at infinity on the classical Coulomb branch,

and an infinite number of flux sectors generally contribute.

6.3 The simplest abelian mirror symmetry

The simplest 3d mirror symmetry is between N = 4 SQED with one flavor and a free

hypermultiplet. Consider first a free hypermultiplet with fugacities y, t and background

fluxes n, nt for the U(1)×U(1)t flavor symmetry. Its A-twisted index is given by:

Zhyper
g,A (y, t) ≡

(
y − t
1− yt

)n( yt

(1− yt)(y − t)

)nt

, (6.26)

and its B-twisted index reads:

Zhyper
g,B (y, t) ≡

(
y − t
1− yt

)n( yt

(1− yt)(y − t)

)nt−(g−1)

. (6.27)

Consider next N = 4 SQED1, a U(1) theory with a single hypermultiplet. In N = 2

notation, the field content can be summarized by:

U(1)gauge U(1)H U(1)C U(1)t U(1)T

Q 1 1
2 0 1 0

Q̃ −1 1
2 0 1 0

Φ 0 0 1 −2 0

T+ 0 0 1
2 −1 1

T− 0 0 1
2 −1 −1

(6.28)
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Here U(1)T is the topological symmetry. The two last lines in (6.28) stand for the two

gauge-invariant monopoles operators of the theory. We see that (T+, T−) sits in the twisted

hypermultiplet representation of N = 4 supersymmetry. In fact, N = 4 SQED1 is infrared

dual to this free twisted hypermultiplet, or equivalently, it is mirror to a free hypermulti-

plet [32].

The twisted index provides a nice check of this duality. Let us introduce the quantities:

ZΦ
g,A(t) =

(
t− t−1

)2nt+(g−1)
, ZΦ

g,B(t) =
(
t− t−1

)2nt−(g−1)
, (6.29)

and

H(x) =
xt(t− t−1)

(1− xt)(t− x) . (6.30)

We also introduce the fugacity q and background flux nT for U(1)T . The A-twisted index

of SQED1 reads:

ZSQED1
g,A (q, t) = −

∑

m∈Z

∮

JK

dx

2πix
(−q)mxnT ZΦ

g,A(t)Z
hyper
g,A (x, t)H(x)g , (6.31)

with Zhyper
g,A defined in (6.26), and similarly for the B-twist. We also introduced a convenient

sign for q → −q. Using the same methods as in previous sections, it is easy to show that:

ZA
SQED1(q, t) = (−1)g−1+nT ZB

hyper(q, t
−1) ,

ZB
SQED1(q, t) = (−1)g−1+nT ZA

hyper(q, t
−1) .

(6.32)

It was shown in [32] that this mirror symmetry is formally a Fourier transform of the free

hypermultiplet path integral [32]. The relation (6.32) is the concrete realization of this fact

on Σg × S1. A similar computation was done on S3 in [81].

6.4 Other examples

In this subsection, we evaluate the A- and B-twisted indices of several interesting examples.

For simplicity, we will set all background fluxes to zero, ni = nT = nt = 0, in the remainder

of this section.

6.4.1 The free hypermultiplet

Consider the free hypermultiplet. We see from (6.26) that

Zhyper
g,A (y, t) = 1 , (6.33)

in the absence of background fluxes. On the other hand, the hypermultiplet B-twisted

index reads:

Zhyper
g,B (y, t) =

(
t+ t−1 − y − y−1

)g−1
. (6.34)

6.4.2 G = U(1) with Nf flavors

Let us consider N = 4 SQED — a U(1) vector multiplet coupled to Nf hypermultiplets

(Qi, Q̃i) (i = 1, · · · , Nf ) of charge 1. We introduce the fugacities y−1
i such that

∏
i yi = 1

for the SU(Nf ) flavor group.
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A-twisted N = 4 SQED. The A-twisted index reads:

Z
SQED[Nf ]
g,A = −(t− t−1)g−1

∑

m∈Z

(
(−1)Nf q

)m ∮

JK

dx

2πix

Nf∏

i=1

(
x− tyi
yi − xt

)m

H(x)g , (6.35)

with

H(x) =

Nf∑

i=1

1

2

(
xt+ yi
yi − xt

+
x+ tyi
x− tyi

)
. (6.36)

We also introduced a sign q → (−1)Nf q for convenience, similarly to the N = 2 case in

section 5. For η > 0, the JK residue picks the poles at x = yit
−1. The sum over fluxes m

can be performed like in previous examples. The Bethe equation for this theory is given by:

P (x) =

Nf∏

i=1

(xt− yi)− q
Nf∏

i=1

(x− tyi) = 0 . (6.37)

We can then rewrite the index (6.35) as:

Z
SQED[Nf ]
g,A =

∑

x̂∈SBE

HA(x̂)
g−1 , HA(x) = (t− t−1)H(x) , (6.38)

where SBE is the set of Nf roots of P (x), and HA is the A-twist handle-gluing operator.

Let us evaluate ZSQED
g,A explicitly in a few examples. For Nf = 1, we have:

Z
SQED[1]
g,A (q, t) = (−1)g−1

(
t+ t−1 − q − q−1

)g−1
, (6.39)

which is identified with the B-twisted hypermultiplet (6.34) according to (6.32). At genus

zero, we can evaluate (6.35) for any Nf as we shall explain in subsection 6.6.2 below.

We find:

Z
SQED[Nf ]
g=0,A (t, y, q) = − t−1(1− t−2Nf )

(1− t−2)(1− qt−Nf )(1− q−1t−Nf )
, (6.40)

which is independent of yi. This happens to coincide with the Coulomb branch Hilbert

series (HS) of N = 4 SQCD [38].20

At genus one, we have the Witten index:

Z
SQED[Nf ]
g=1,A (t, y, q) = TrT 2(−1)F = Nf . (6.41)

The N = 4 SQED with Nf = 2 case is particularly interesting, since it realizes the

self-mirror T [SU(2)] theory of Gaiotto-Witten [82]. For g = 2 we can write down an explicit

formula:

Z
T [SU(2)]
g=2,A (q, a, t) = −(1 + t2)[t2(a+ a−1 − 2)(q + q−1 − 2) + 4(1− t2)2]

t(t2 − a)(t2 − a−1)
, (6.42)

where we defined a = y1
y2
. In the limit t→ 1, we find a simple result at any genus:

lim
t→1

Z
T [SU(2)]
g,A (q, a, t) = 2

(
q

1
2 − q− 1

2

)2g−2
. (6.43)

20More precisely, we have that Z
SQED[Nf ]

g=0,A (t, q) = −t
1

2

HS HS(tHS, zHS) with t = t
− 1

2

HS and q = zHS in the

notation of [38]—see equation (3.2) of that paper. The factor t
1

2

HS could be cancelled by turning on an

N = 2 mixed CS level between U(1)R and the U(1)t flavor symmetry.
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B-twisted N = 4 SQED. The B-twisted index reads:

Z
SQED[Nf ]
g,B = − (t− t−1)−g+1

∑

m∈Z

(
(−1)Nf q

)m

×
∮

JK

dx

2πix

Nf∏

i=1

(
x− tyi
yi − xt

)m [(yi − xt)(x− tyi)
xyit

]g−1

H(x)g ,

(6.44)

with H(x) given in (6.36). By the same reasoning as above, this can be massaged into:

Z
SQED[Nf ]
g,B =

∑

x̂∈SBE

HB(x̂)
g−1 , (6.45)

with

HB(x) =


 1

t− t−1

Nf∏

i=1

(yi − xt)(x− tyi)
xyit


 H(x) . (6.46)

For Nf = 1, this gives:

Z
SQED[1]
g,B = (−1)g−1 , (6.47)

as expected from the mirror symmetry relation (6.32). For Nf = 2 and g = 0, we find:

Z
T [SU(2)]
g=0,B = − t−1(1− t−4)

(1− t−2)(1− at−2)(1− a−1t−2)
, (6.48)

which can be identified with the Higgs branch HS of T [SU(2)] up to a factor of −t−1. This

is a special case of a general relation that we discuss in section 6.6.1 below. For g = 2,

we have:

Z
T [SU(2)]
g=2,B (q, a, t) = −(1 + t2)[t2(a+ a−1 − 2)(q + q−1 − 2) + 4(1− t2)2]

t(t2 − q)(t2 − q−1)
, (6.49)

and in the limit t→ 1:

lim
t→1

Z
T [SU(2)]
g,B (q, a, t) = 2

(
a

1
2 − a− 1

2

)2g−2
. (6.50)

These expressions provide nice checks of the self-mirror property of T [SU(2)]. Mirror

symmetry exchanges q and a, and sends t to t−1, so that:

Z
T [SU(2)]
g,B (q, a, t) = Z

T [SU(2)]
g,A (a, q, t−1) . (6.51)

This is indeed satisfied by the formulas above, and can be checked for any t at higher genus

as well.

6.4.3 Linear quiver gauge theory

We can generalize the computation of the last subsection to the more general linear quiver

theory in figure 1, with gauge group

G =
L∏

s=1

U(Ns) . (6.52)

The mirror properties of this class of theories are well understood from D-brane construc-

tions [82, 83].
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Figure 1. A generic AL-type linear quiver with N = 4 supersymmetry. The circles and squares

stand for U(Ns) gauge groups and SU(Ms) flavor groups (s = 1, · · · , L), respectively.

A-twisted AL quiver. Following (6.18), the integral expression of the A-twisted index

reads:

Z
[AL]

ΣA
g ×S1 =

L∏

s=1

(−1)Ns

Ns!

∑

m
(s)
a

qm
(s)

s

∮

JK

L∏

s=1

Ns∏

a=1

dx
(s)
a

2πix
(s)
a

Zhyper
m,A (x)Zvector

m,A (x)H(x)g , (6.53)

with:

Zhyper
m,A =

L∏

s=1

Ms∏

i=1

Ns∏

a=1

[
x
(s)
a − y(s)i t

y
(s)
i − x

(s)
a t

]m(s)
a L−1∏

s=1

Ns∏

a=1

Ns+1∏

b=1

[
x
(s)
a − x(s+1)

b t

x
(s+1)
b − x(s)a t

]m(s)
a −m

(s+1)
b

,

Zvector
m,A = (t− t−1)(g−1)

∑
s Ns

L∏

s=1

Ns∏

a,b=1
a 6=b

[
x
(s)
b − x

(s)
a

x
(s)
b t− x(s)a t−1

]m(s)
a −m

(s)
b −g+1

,

(6.54)

and

H(x) = det
RS

HRS(x) ,

HRS =
1

2
(δr,s+1 + δr,s−1)

[
x
(s)
a t+ x

(r)
b

x
(r)
b − x

(s)
a t

+
x
(s)
a + tx

(r)
b

x
(s)
a − tx(r)b

]

+
δrs
2


δab

Ms∑

i=1

[
x
(s)
a t+ y

(s)
i

y
(s)
i − x

(s)
a t

+
x
(s)
a + ty

(s)
i

x
(s)
a − ty(s)i

]
+

Ns∑

c,d=1
c 6=d

δad(δab − δbc)xcxd(t2 − t−2)

(xct− xdt−1)(xdt− xct−1)


 ,

where R = (r, a) with a = 1, · · · , Nr and S = (s, b) with b = 1, · · · , Ns (and s, r = 1, · · · , L).
Let us first consider the abelian AL quiver theory with (N1, · · · , NL) = (1, · · · , 1) and

(M1, · · · ,ML) = (1, 0, · · · , 0, 1), for which rk(G) = L. This theory is mirror to N = 4

SQED with Nf = L+ 1 flavors. In this case, the one-loop determinants (6.54) simplify to:

Zhyper
m,A =

L∏

s=0

[
x(s) − x(s+1)t

x(s+1) − x(s)t

]m(s)−m(s+1)

, Zvector
m,A = (t− t−1)(g−1)L , (6.55)

with the understanding that x(0) = x(L+1) = y1 and m(0) = m(L+1) = 0. As we will explain

momentarily, we can choose η = (1, · · · , 1) and sum over the flux sectors m(s) > M for all
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s, for some integer M . This gives

Z
[AL] abel

ΣA
g ×S1 = (t− t−1)(g−1)L

∮ L∏

s=1

dx(s)

2πi

det
rs

(
∂x(r)P(s)

)

∏L
s=1 P(s)(x)

H(x)g−1 , (6.56)

with

P(s) = (x(s+1) − x(s)t)(x(s−1) − x(s)t)− qs(x(s) − x(s+1)t)(x(s) − x(s−1)t) . (6.57)

The Bethe equations of the abelian quiver are:

P(s)(x) = 0 , s = 1, · · ·L . (6.58)

Since the original JK residue selects only a subset of poles of the integrand, we need to

show that all the selected poles are mapped to the solutions of (6.58).21 In order to show

this, we note that, in the large FI parameter limit (qs → 0), the solution to the equations

P(s) = 0 is continuously mapped to a particular pole of the original integrand before the flux

summation, which enables us to track the displacement of the poles. (The trivial solutions

which involve x(s) = x(s+1) = 0 should be excluded since they are always located outside

of the contour.) Taking this limit, one can see that non-trivial solutions of the equations

limqs→0 P(s) = 0 for all s = 1, · · · , L are simply classified by the L-tuple of charge sets such

that, for every component s, there exists at least one charge vector whose s-th component

is positive. This is nothing but the charge sets selected by the JK residue prescription.

Hence we can write the A-twisted index in terms of the sum over the Bethe roots:

Z
[AL] abel

ΣA
g ×S1 =

∑

x̂∈SBE

HA(x̂)
g−1 , HA(x) = (t− t−1)L H(x) . (6.59)

These considerations can be straightforwardly generalized to the non-abelian AL quiver.

We obtain:

Z
[AL]

ΣA
g ×S1 =

∑

x̂∈SBE

HA(x̂)
g−1 ,

HA(x) = (t− t−1)
∑

s Ns

L∏

s=1

Ns∏

a,b=1
a 6=b

[
x
(s)
b t− x(s)a t−1

x
(s)
b − x

(s)
a

]
H(x) ,

(6.60)

with the Bethe equations:

P(s),a(x) = 0 , s = 1, · · · , L, a = 1, · · · , Ns ,

P(s),a(x) ≡
Ms∏

i=1

(y
(s)
i − x(s)a t)

Ns+1∏

b=1

(x
(s+1)
b − x(s)a t)

Ns−1∏

c=1

(x(s−1)
c − x(s)a t)

Ns∏

d 6=a

(x
(s)
d t− x(s)a t−1)

−q
Ms∏

i=1

(x(s)a −y(s)i t)

Ns+1∏

b=1

(x(s)a −x(s+1)
b t)

Ns−1∏

c=1

(x(s)a −x(s−1)
c t)

Ns∏

d 6=a

(x(s)a t−x(s)d t−1) .

21Unlike the quiver with single U(1) node, there can exist a rank L singularity in (6.56) such that only

a subset of the equations P(s) = 0 are satisfied. These singularities correspond to the poles of the original

integrand (before summation over m) that does not satisfy the JK condition.
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Note that we should exclude the solutions with x
(s)
a = x

(s)
b for a 6= b, as well as the trivial

solutions of P(s),a(x) = 0. These equations are the Bethe equations of the XXZ SU(L)

spin chain. The correspondence between quantum integrable models and 3d N = 4 gauge

theories has been studied extensively in the literature [9, 70].

For this theory, the Witten index is most easily computed by considering the flux zero

sector of (6.53), which also gives the number of gauge-inequivalent solutions to the Bethe

equations.22 We have:

Z
[AL]
T 3 =

L∏

s=1

(−1)Ns

Ns!

∑

m
(s)
a

qm
(s)

s

∮

JK

L∏

s=1

Ns∏

a=1

dx
(s)
a

2πi
det
RS

(
1

x
(s)
a

HRS(x)

)
. (6.61)

with R = (r, a) and S = (s, b). Since HRS/x
(s)
a is a sum over simple poles with residue

±1 (for ‘negatively’ and ‘positively’ charged field components, respectively), this quantity

counts the number of poles that passe the JK condition (including the exclusion of poles

on the Weyl chamber walls), and the final answer is independent of the fugacities. For

instance, for U(Nc) gauge theory with Nf hypermultiplets (that is, L = 1, N1 = Nc and

M1 = Nf ), one can explicitly check that only the charge sets consisting of the positively

charged part of the hypermultiplets only (for η > 0) contribute non-trivially to the JK

residue. Hence we have

I
U(Nc),Nf

g=1 =

(
Nf

Nc

)
, (6.62)

which is the number of massive vacua of that theory.

B-twisted AL quiver. The B-twisted index can be described similarly to (6.53) using

the general expression (6.24). By the same reasoning as above, we find:

Z
[AL]

ΣB
g ×S1 =

∑

x̂∈SBE

HB(x̂)
g−1 , HB(x) =

(
Z

[AL]
(0,4)

)−1
H(x) , (6.63)

where Z
[AL]
(0,4) can be written as:

Z
[AL]
(0,4) = (t− t−1)

∑
s Ns

L∏

s=1

Ns∏

a,b=1
a 6=b

(
x
(s)
b − x(s)a

)(
x
(s)
b t− x(s)a t−1

)

×
L∏

s=1

Ms∏

i=1

Ns∏

a=1

(
(y

(s)
i x

(s)
a t)

1
2

x
(s)
a − y(s)i t

)(
(y

(s)
i x

(s)
a t)

1
2

y
(s)
i − x

(s)
a t

)

×
L−1∏

s=1

Ns∏

a=1

Ns+1∏

b=1

(
(x

(s)
a x

(s+1)
b t)

1
2

x
(s)
a − x(s+1)

b t

)(
(x

(s)
a x

(s+1)
b t)

1
2

x
(s+1)
b − x(s)a t

)
.

(6.64)

22Due to the presence of solutions that trivially solve the equations (for instance x
(s)
a = x

(s′)
b = 0), it is

not straightforward to read off the number of non-trivial solutions from the order of the polynomials, unlike

in the U(1) example of the previous section.
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This quantity coincides with the one-loop determinant of a one-dimensional N = (0, 4)

supersymmetric theory for the same quiver [7].

The mirror symmetry relation (6.14) for twisted indices implies:

∑

x̂T∈S
[T ]
BE

H[T ]
A (x̂T )

g−1 =
∑

x̂Ť∈S
[Ť ]
BE

H[Ť ]
B (x̂Ť )

g−1 , (6.65)

possibly up to a sign, and similarly for A- and B-twists exchanged. From the perspective

of the Bethe-gauge correspondence [9], mirror symmetry between a pair of 3d N = 2∗

theories is equivalent to a so-called bispectral duality between the corresponding integrable

models [70]. It was argued in [70] that the solutions of the Bethe equations P(s),a(x) = 0

of two mirror quivers are in one-to-one correspondence. The relation (6.65) further implies

that the handle-gluing operators H[T ]
A and H[Ť ]

B coincide when evaluated on pairs of mirror

solutions (x̂T , x̂Ť ) to the Bethe equations. This can be checked explicitly for T [SU(2)],

that we consider in the next subsection.

6.5 Half-BPS line operators for T [SU(2)]

In this subsection we briefly discuss the matching between half-BPS Wilson loops and

vortex loops in the case of the T [SU(2)] self-mirror theory. As in other cases, much of this

theory is governed by the Bethe equation. In the description in terms of N = 4 SQED[2]

of section 6.4.2, we have:

P (x) ≡ (xt− a 1
2 )(xt− a− 1

2 )− q(x− ta 1
2 )(x− ta− 1

2 ) = 0 . (6.66)

The mirror Bethe equation P̌ (x) = 0 is obtained from (6.66) by the substitution a ↔ q

and t→ t−1.

6.5.1 Wilson loops on ΣB
g × S1

As discussed in section 6.1.2, the B-twisted theory admits half-BPS Wilson line operators.

The expectation value of the Wilson line operator W (x) can be written as:

〈W 〉T [SU(2)]
g,B =

∑

x̂|P (x̂)=0

HB(x̂)
g−1W (x̂) , (6.67)

with

HB(x) = (a
1
2 + a−

1
2 )(x+ x−1)− 2(t+ t−1) . (6.68)

The quantum algebra of Wilson loops is therefore given by

AT [SU(2)] = C[x,x
−1]/{P (x) = 0} . (6.69)

In particular,W1(x) = x is the only independent Wilson loop. All other operatorsWk(x) =

xk, k 6= 0, 1, can be written in terms W1 using the relation P (x) = 0. For instance, we

find:

〈x〉T [SU(2)]
g=0,B = − t2(a1/2 + a−1/2)

(t2 − a)(t2 − a−1)
(6.70)

at genus zero.
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Figure 2. The vortex operator Vk dual to the Wilson loop Wk in T [SU(2)] theory. The quiver in

the dotted box is a one-dimensional N = (2, 2) GLSM consisting of a gauge group G = U(k) with

one fundamental, one anti-fundamental and one adjoint multiplet.

6.5.2 Vortex loops on ΣA
g × S1

The expectation value of an half-BPS vortex loop in the A-twisted T [SU(2)] is given by:

〈V 〉T [SU(2)]
g,A =

∑

x̂|P (x̂)=0

HA(x̂)
g−1 V (x̂) , (6.71)

with

HA(x) =
(
t− t−1

)2
(

xt

a
1
2 t− (1 + t2)x+ a−

1
2x2

+
xt

a−
1
2 t− (1 + t2)x+ a

1
2x2

)
. (6.72)

The vortex loop V (x) mirror to the B-twisted Wilson loop of charge k, Wk(x) = xk, can

be realized by coupling a certain one-dimensional N = (2, 2) supersymmetric QM to the

A-twisted theory [33]. In the UV, the coupling of a 1d GLSM defines a singularity for the

3d gauge field as

Fzz̄ = e2µ1d δ
2(x) , (6.73)

where e is 3d gauge coupling and µ1d is a moment map for 1d flavor symmetry. The

precise field contents of the 1d GLSM dual to a given Wilson loop was studied in [33] by

realizing the mirror symmetry as an S-duality on a system of D-branes. We briefly review

the relevant results in appendix E. The one-dimensional quiver theory mirror to the Wk

Wilson loop is summarized in figure 2. It consists of a 1d U(k) theory with N = (2, 2)

supersymmetry coupled to one fundamental, one anti-fundamental and one adjoint chiral

multiplet. Due to the presence of a cubic superpotential coupling the 1d fundamental,

anti-fundamental and the 3d fundamental multiplets, we assign the Qt ≡ 2(H −C) charge
to be Qt = 0 for the 1d fundamental and Qt = 1 to the anti-fundamental. Since the 1d

adjoint field is not charged under any of the global symmetry in this case, is has Qadj
t = 0.23

23However, we will keep Q
adj
t turned on in the integrand and take the limit Q

adj
t → 0 at the very end of

the calculation. This is to avoid a non-projective singularity in the JK residue.
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The vortex loop of figure 2 contributes:

Vk(x, a, t) =
1

k!

q−
k
2

(t− t−1)k

×
∫

JK(ξ1d)

k∏

i=1

dui
2πi ui

k∏

i 6=j

ui − uj
uit−1 − ujt

k∏

i 6=j

uit
1
2
Qadj

t −1 − ujt−
1
2
Qadj

t +1

uit
1
2
Qadj

t − ujt−
1
2
Qadj

t

×
k∏

i=1

(−uit−1 + xt

ui − x

) k∏

i=1

(
−a 1

2 t−
1
2 + uit

1
2

a
1
2 t

1
2 − uit−

1
2

)
.

(6.74)

Note that we added a factor q−
k
2 in front of the integral, which takes into account the flavor

Wilson line associated to the ‘left NS5 branes’ of [33]. Among the poles selected by the JK

residue for ξ1d > 0, only one of the rank-k singularities gives a non-vanishing residue (up

to the Weyl symmetry Sk). The residue integral yields

Vk(x, a, t) = q−
k
2

(
xt− a 1

2

x− a 1
2 t

)k

, (6.75)

which can be inserted in the formula (6.71) for the vortex loop expectation value. One can

check by direct computation that V1(x̂) gives a solution of the dual Bethe equation. In

other words, if x̂ is a root of the polynomial P (x) defined in (6.66), then

x̂M = V1(x̂) = q−
1
2
x̂t− a 1

2

x̂− a 1
2 t

(6.76)

is a root of the mirror polynomial obtained by substituting a↔ q, t→ t−1. Therefore, the

mirror symmetry relations:

〈Wk〉T [SU(2)]
g,B (q, a, t) = 〈Vk〉T [SU(2)]

g,A (a, q, t−1) (6.77)

directly follow from the statement of the mirror symmetry (at each vacuum) without the

defects.

The vortex loop defined as above is known to be invariant under the so-called hopping

duality [5, 33] described in figure 3. In the A-twisted index, this follows directly from the

Bethe equation. We have

q−
1
2
x̂t− a 1

2

x̂− a 1
2 t

= q
1
2
x̂− a− 1

2 t

x̂t− a− 1
2

(6.78)

when x̂’s are solutions of the Bethe equation. This leads to

〈V left
k 〉g,A = 〈V right

k 〉g,A , (6.79)

as expected.
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Figure 3. The 1d vortex loops in 3d N = 4 theories are invariant under the so-called hopping

duality, as shown here for T [SU(2)]. This follows from the fact that the D1-brane can freely move

along the D3-brane. The figure on the left corresponds to the D1-brane attached to the left NS5-

brane, and the figure on the right corresponds to the D1-brane attached to the right NS5-brane.

See appendix E.

6.6 Genus-zero twisted indices and Hilbert series

We observed in a few examples in section 6.4 that the genus-zero A- and B-twisted in-

dices reproduce the Coulomb branch Hilbert series and the Higgs branch Hilbert series,

respectively. This is not a coincidence, but can be shown to be true for more general good

and ugly N = 4 theories, in the sense of [82]. In this section, we trade the the N = 2∗

deformation parameter t with

y = t−2 . (6.80)

to match with more usual conventions in the HS literature [35–40]. Since the Hilbert

series can also be obtained from certain limits of the superconformal index [84], it follows

that the twisted partition function on S2
A × S1 or S2

B × S1 can be obtained from the

“untwisted” S2 × S1 partition function in the same limit. It would be worthwile to study

this correspondence more thoroughly.

6.6.1 The B-twisted index and the Higgs branch Hilbert series

The equivalence of the B-twisted index (6.24) with the Higgs branch Hilbert series can be

easily shown whenever the contribution from infinity vanishes in the B-twisted index. In

such cases, only the zero flux sector contributes. We then have:

ZS2
B×S1 = (−1)rk(G)y

1
2 [
∑

i dim(Ri)−dim(g)] (1− y)rk(G)

× 1

|WG|

∮

JK

∏

a

[
dxa
2πixa

] ∏

α∈g

(1− xα)(1− xαy) Imatter(x) ,
(6.81)

with

Imatter(x) =
∏

i

∏

ρi∈Ri

1

(1− xρiyiy
1
2 )(1− x−ρiy−1

i y
1
2 )

. (6.82)

The result of the JK residue integral can be shown to be equivalent to a ‘unit contour’

integral |xa| = 1 for a large class of theories (for conveniently chosen fugacities such that

all the poles from ‘positive’ charged field components, and no ‘negative’ pole, lie inside the
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unit circle). If that is the case, the twisted index (6.81) becomes the ‘Molien formula’ for

the Higgs branch HS [35, 84]:

ZS2
B×S1(yi,y) = (−1)rk(G)y

1
2 [
∑

i dim(Ri)−dim(g)] HSHiggs(yi,y) . (6.83)

up to a power of y that could be cancelled by turning on a bare CS level

ktR = dim(g)−
∑

i

dim(Ri) (6.84)

for the N = 2∗ flavor symmetry U(1)t.

As an example, consider the AL quiver theory of subsection 6.4.3. In order to show

that only the m = 0 flux sector contributes to the g = 0 B-twisted index, we need to prove

that the residues at x
(s)
a = 0 and x

(s)
a =∞ vanish for every flux sector. Let us first examine

the limit x
(s)
a → 0. The integrand scales as:

(x(s)a )−2(Ns−1)−1(x(s)a )Ms+Ns+1+Ns−1 (6.85)

in that limit, which converges when

Ms +Ns+1 +Ns−1 − 2Ns + 1 ≥ 0 . (6.86)

This is precisely the condition for the quiver to be ‘good’ or ‘ugly’ in the classification

of [82]. In these cases, there is no singularity at x
(s)
a = 0, nor at x

(s)
a → ∞ by a similar

argument. Then, one can choose η = −m so that all m 6= 0 flux sectors contribute trivially

to the JK residue. We are then left with the expression (6.81) for the AL quiver.

For the T [SU(N)] theory (the case N = (1, 2, · · · , N − 1) and M = (0, · · · , 0, N)), we

can show that the unit circle integral defined by |xa| = 1 is indeed equivalent to the JK

residue integral. First of all, we choose η = (1, · · · , 1) and fix y > 1. Let us start with the

condition for the first node. From the JK condition, the charge set should contain one of

the poles defined by

1− x(1)(x(2)i )−1y1/2 = 0 (6.87)

for i = 1, 2. If it contains another pole of the form 1 − (x(1))−1x
(2)
j y1/2 = 0 with j 6= i,

then these relations impose a equation x
(2)
j y1/2−x(2)i y−1/2 = 0 which is the position of the

zero in the vector multiplet of the second node. Hence only the chiral multiplet which are

positively charged under the first node contributes. When |x(s)i | = 1 for s 6= 1, these are all

the singularities inside the unit circle |x1| = 1. The same argument holds for the second

node. We need at least one positively charged chiral fields in a form 1−x(2)i (x
(3)
j )−1y1/2 = 0

for each i. If there are charges in a form 1 − (x
(2)
i )−1x

(3)
j y1/2 = 0, by the same reasoning

as above, the residues are zero due to the vector multiplet. This continues to the (n− 1)-

th node of the quiver, which completes the proof of the equivalence between the two

prescriptions.
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6.6.2 The A-twisted index and the Coulomb branch Hilbert series

The relation (6.83) combined with mirror symmetry implies that the ZS2
B×S1 parition

function is similarly related to the Coulomb branch Hilbert series first constructed in [38].

Since the genus-zero A-twisted index receives contributions from an infinite number of flux

sectors, a direct proof of this equivalence is expected to be rather more complicated. Here

and in appendix F, we check that relation in some of the simplest examples. We leave a

more general study for future work.

For N = 4 SQED with Nf hypermultiplets, the genus-zero A-twisted index (6.35)

can be evaluated by trading the residues over the fundamental chiral multiplets, which are

picked by the JK residue prescription for η > 0, with the residues at infinity on M ∼= C
∗.

For η > 0, only the flux sectors m > 0 contribute. The poles of the integrand of (6.35) (for

g = 0) are located at x = 0, x =∞, and x = yiy
1
2 , using the notation (6.80). We have:

Z
SQED[Nf ]
g=0,A = − y

1
2

1− y

∞∑

m=1

(
(−1)Nf q

)m ∮

JK

dx

2πix

Nf∏

i=1

(
xy

1
2 − yi

yiy
1
2 − x

)m

=
y

1
2

1− y

∞∑

m=1

qm
[
y− 1

2
Nfm − y

1
2
Nfm

]

= − y
1
2

1− y

1− yNf

(1− qy 1
2
Nf )(1− q−1y

1
2
Nf )

(6.88)

This reproduces (6.40) and the Coulomb branch series of [38] as advertised. Similar ma-

nipulations can be performed for higher-rank gauge groups, as demonstrated for U(2) in

appendix F.
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A Conventions: geometry and quasi-topological twisting

We follow the conventions of [12, 42, 43] for geometry, spinors and supersymmetry multi-

plets. We consider a compact Euclidean space-timeM3 = Σg×S1 with Riemannian metric:

ds2 = βdt2 + 2gzz̄(z, z̄)dzdz̄ . (A.1)
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Here t ∼ t + 2π is the coordinate on S1 and z, z̄ are local complex coordinates on the

Riemann surface Σg. We have the standard spin connection:

ωµa
b = ebν∇µea

ν , (A.2)

in terms of the Levi-Civita connection ∇µ. We generally denote by Dµ the covariant

derivatives on spinors and tensors in the frame basis. The Riemann tensor is defined in

the standard way.24

We use the canonical frame ea = eaµdx
µ with:

e0 = dt , e1 =
√

2gzz̄dz , e1̄ =
√

2gzz̄dz , (A.3)

Here a = 0, 1, 1̄ are the frame indices in complex coordinates; they are lowered using δab
with δ00 = 1 and δ11̄ = 1

2 . We also chose the orientation such that ǫ011̄ = −2i. The

γ-matrices in this frame are:

{
(γµ)α

β
}
=
{
γ0, γ1, γ1̄

}
=

{(
1 0

0 −1

)
,

(
0 −2
0 0

)
,

(
0 0

−2 0

)}
. (A.4)

Three-dimensional Dirac spinors are denoted by:

ψα =

(
ψ−

ψ+

)
. (A.5)

Dirac indices can be raised and lowered with ǫαβ , ǫαβ with ǫ−+ = ǫ+− = 1. When reducing

to two dimensions along ∂t, the spinor components ψ∓ become kinematically independent

Weyl spinors of spin ±1
2 , respectively. The covariant derivative on a Dirac spinor is given by:

Dµψ =

(
∂µ −

i

4
ωµabǫ

abcγc

)
ψ . (A.6)

In section 2, we generally use explicit frame indices for all quantities including derivatives.

The coordinates (t, z, z̄) are adapted to a choice of transverse holomorphic foliation

(THF) onM3 as explained in [42, 43]. Let us define ηµ a nowhere-vanishing vector such that

ηµη
µ = 1 . (A.7)

We can define:

Φµ
ν = −ǫµνρηρ , (A.8)

which satisfies Φµ
νΦ

ν
ρ = −δµρ + ηµηρ. The THF can be characterized by such an ηµ,

25

satisfying the integrability condition:

Φµ
ν(LηΦ)νρ = 0 . (A.9)

The object Φµ
ν reduces to a complex structure on the normal bundle of the foliation (i.e.

for vectors orthogonal to ηµ). In our case, this is just the complex structure on the Riemann

surface Σg. We then have natural three-dimensional notions of holomorphic vectors and

one-forms [43].

24We follow the conventions of [42] except that we flip the sign of the Ricci scalar R. In our conventions,

R > 0 on the round S3 or on the round S1 × S2.
25We inverted the sign of ηµ with respect to [42, 43]—that is, ηµ = −ηthere

µ .
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A.1 Quasi-topological twisting

The quasi-topological twisting that we use in this paper is best understood in the context of

curved-space rigid supersymmetry [85, 86]. In section 2, we used a ‘twisted field’ notation

for all the fields. This corresponds to a field redefinition of the fermionic and bosonic

fields, where the “A-twisted fields” are obtained by various contractions with the Killing

spinors (2.6). On Σg × S1, we can label the fields by their U(1)L spin L on Σg. The

quasi-topological twisting is equivalent to the standard topological A-twist on Σg, which

assigns to all the fields a twisted spin:

S = L+
1

2
R , (A.10)

with R the U(1)R N = 2 R-charge. We refer to the appendix of [12] for a more thorough

discussion in two-dimensions. As an example, consider the N = 2 vector multiplet V. In

the standard notation of [42], it has components:

V =
(
aµ , σ , λα , λ̃α , D

)
. (A.11)

Using the Killing spinors ζ, ζ̃ on Σg × S1, we defined the ‘twisted’ gaugini:

Λµ ≡ ζ̃γµλ , Λ̃µ ≡ −ζγµλ̃ . (A.12)

They are holomorphic and anti-holomorphic one-forms with respect to the THF, as can

be shown from the Killing spinor equations or by explicit computation in components.

This gives (2.9). The A-twist of the chiral multiplets discussed in [12] can also be given a

three-dimensional uplift along the lines of [86].

B Localization of N = 2 YM-CS-matter theories

In this appendix, we derive the main localization formula (2.59) for the twisted index ofN =

2 gauge theories. The main technical difficulty lies in the treatment of the fermionic zero

modes, and we can mostly follow the previous literature on the subject [6–8, 12, 15]. The

new ingredient is the integration of the g additional one-forms gaugini and flat connections

present due to the non-trivial topology of Σg.

B.1 One-loop determinant: D̂ = 0

Consider a chiral multiplet of U(1) charge Q and R-charge r, coupled to a supersymmetric

background U(1) vector multiplet (2.37) with gauge flux m on Σg. By supersymmetry, all

the bosonic and fermionic modes cancel out, except for some unpaired ‘zero-modes’. The

bosonic zero-modes correspond to a pair of boson and fermions (A,B) (together with their

charge conjugates), related by supersymmetry, which satisfy:

Dz̄A = 0 , Dz̄B = 0 . (B.1)
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They correspond to holomorphic sections of K r
2 ⊗ LQ (of total degree d = r(g − 1) +Qm)

on Σg, with L the U(1) line bundle. The fermionic zero modes correspond to modes of the

fermionic field C such that:

DzC = 0 , (B.2)

corresponding to holomorphic sections of K 2−r
2 ⊗L−Q. Let nB and nC denote the number

of bosonic and fermionic zero-modes, respectively. By the Riemann-Roch theorem:

nB − nC = Qm+ (g − 1)(r − 1) . (B.3)

Resumming the KK tower from the S1, we find the one-loop determinant [8]:

ZΦ =

(
x

Q
2

1− xQ

)Qm+(g−1)(r−1)

, (B.4)

with x = e2πiu as defined in section 2.2.1. This leads to the contribution (2.61) in a general

theory. (The W -boson contribution (2.62) is also the same as for a chiral multiplet of

R-charge 2 and gauge charges given by the simple roots [8, 12].)

B.2 Localization for G = U(1)

Consider a U(1) YM-CS-matter theory with CS level k and chiral multiplets Φi of charges

Qi and R-charges ri. (More generally, we could consider any G with rank 1.) The path

integral can be localized onto the Coulomb branch by considering the localizing action:

Lloc =
1

e2
LYM +

1

g2
L

Φ̃Φ
. (B.5)

For a given flux m, the one-loop determinant (B.4) can have a pole at xQ = 1 on the

classical Coulomb branch, corresponding to additional massless modes. The natural way

to deal with this singularity is by keeping a constant mode of the auxiliary field D in

intermediate steps of the localization computation. We define the field D̂ by:

D = 2if11̄ + iD̂ , (B.6)

so that D̂ = 0 on the supersymmetric locus. A general supersymmetric configuration also

includes flat connections along Σg:

azdz =

g∑

I=1

αIω
I , ωI ∈ H1,0(Σg,Z) ,

az̄dz̄ =

g∑

I=1

α̃I ω̃
I , ω̃I ∈ H0,1(Σg,Z) .

(B.7)

There are also fermionic zero-modes:

Λ0 , Λ̃0 , Λ1 =

g∑

I=1

ΛIω
I
1 , Λ̃1̃ =

g∑

I=1

Λ̃I ω̃
I
1̄ . (B.8)
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Here Λ0, Λ̃0 are constant and the one-form-valued gaugini satisfy D1̄Λ1 = 0, D1Λ̃1̃ = 0.

All these constant modes organize themselves into supersymmetry multiplets:

V0 = (σ , a0 , λ , λ̃ , D̂) , VI = (αI , α̃I , ΛI , Λ̃I) , I = 1, · · · , g . (B.9)

Consider the chiral multiplet Φ with Q = 1, in the background (B.9). We have:

ZΦ(σ, aµ, D̂, · · · ) =
∫
[dΦ]e−S

Φ̃Φ = SDet−1(K) , (B.10)

in terms of the kinetic Lagrangian (2.20), which can be used for localization since it is

Q-exact:

L
Φ̃Φ

=
(
Ã , B̃ , C̃

)
K



A
B
C


− F̃F . (B.11)

Integrating out all the massive fields in the Coulomb branch background (B.9), we ob-

tain a complicated supersymmetric matrix model for the constant modes (B.9). Schemat-

ically, we find:

Zg = lim
ǫ,e2→0

∑

m∈Z

∫ g∏

I=1

dVI
∫

Γ
dD̂

∫

M̃

dudũ

β

∫
dΛ0dΛ̃0 Zm(V0,VI) , (B.12)

where the limit in front is a particular scaling that we will discuss in a moment. Here we

defined the measure:26

dVI ≡
1

βvol(Σg)
dαIdα̃I dΛIdΛ̃I . (B.13)

At this point, for future convenience, we perform a change of variable ũ→ ũ′ and Λ̃0 → Λ̃′
0,

according to the relation

ũ = ũ′/k2, Λ̃0 = Λ̃′
0/k

2 , (B.14)

for a small positive number k2, leaving u unchanged. Note that the measure in (B.12) is

invariant under this change of variable. The purpose of this rescaling will become clear

momentarily.

Since the one-loop determinant contributions to Zm potentially have singularities at

points where chiral multiplets become massless, let us examine these dangerous regions of

the integrand before performing the path integral, following [15]. Near a singular point

region u = 0 (any other singularity of the form u = u∗ in the bulk can be considered

similarly by translation) the bosonic part of the chiral multiplet reads:

I =

∫ N∏

i=1

dÃidAi exp

[
− 1

g2
Ã
(
uũ′/k2

)
A− e2

2

(
ÃA − ξFI

)2]
, (B.15)

where N is the number of chiral multiplets which become massless at u = 0. Note that the

point {u = 0} ∈ M̃ is singular when we take the localization limit e→ 0. This singularity

26We are being slightly careless about normalization. We fixed the overall normalization in the final

formula by comparing our result to known results for pure N = 2 Chern-Simons theory (see section 4).
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can be regularized by keeping e finite until we perform the u integrals. Then the integral

is bounded by

I ∼ C

e2N
, (B.16)

where C is a numerical factor which is independent of e. Given this, we divide the inte-

gral (B.12) into two pieces:
∫

M̃

dudũ′ Zm =

∫

M̃\∆ǫ

dudũ′ Zm +

∫

∆ǫ

dudũ′ Zm , (B.17)

where ∆ǫ is the epsilon neighborhood of the singular region defined by uũ′ ≤ ǫ2. When

e is small but finite, the second factor is bounded by Cπǫ2/e2N , which vanishes after we

take the limit ǫ→ 0 first. Then we are left with the contribution from the first term, given

that the condition ǫ≪ eN ≪ 1 is satisfied. This is the scaling limit implied in (B.12).

Now, let us first perform the integral over the scalar gaugino zero-modes Λ0, Λ̃
′
0. Due

to the residual supersymmetry, the integrand of (B.12) satisfies:

δZm =
(
−2iβΛ̃′

0∂ū′ − D̂∂Λ0 + iΛ̃I∂α̃I

)
Zm = 0 . (B.18)

We can use this relations to perform the integral over Λ0, since:

∂Λ0∂Λ̃′
0
Zm

∣∣∣
Λ0=Λ̃′

0=0
=

1

D̂

(
2iβ∂ū′ + iΛ̃I∂α̃I

∂
Λ̃′
0

)
Zm

∣∣∣
Λ0=Λ̃′

0=0
. (B.19)

We have the sum of two total derivatives. The integration over the Σg flat connections αI

is a compact domain and the integrand has no singularities as long as ǫ > 0, therefore the

total derivatives ∂α̃ in (B.19) do not contribute to the path integral. We are left with:

Zg = lim
ǫ,e2→0

∑

m∈Z

∫ g∏

I=1

dVI
∫

Γ

dD̂

D̂

∫

M̃\∆ǫ

dudū′ ∂ū′Zm

∣∣∣
Λ0=Λ̃0=0

, (B.20)

which reduces the integral over M̃ to an integral over the boundary ∂∆ǫ, by Stokes theorem.

Next, let us evaluate Zm. In addition to the classical contribution, the important

contributions are the one-loop superdeterminant (B.10) at Λ0 = Λ̃0 = 0, for every chiral

multiplets in the theory. To compute (B.10), we first expand any three-dimensional field

in Fourier modes on S1:

Φ =
∑

n∈Z

Φne
int . (B.21)

It is convenient to define the two-dimensional variables:

Qσn =
1

iβ
(Qu+ n) , Qσ̃′n = − 1

iβ

(
Qũ′/k2 + n

)
. (B.22)

Note that we are using the rescaled variable ũ′. Let us also denote by {λ} the spectrum of

the twisted Laplacian on Σg:

− 4D1D1̄φ = λφ . (B.23)

We then have:

ZΦ
∣∣∣
Λ0=Λ̃0=0

= ZΦ
zero Z

Φ
massive . (B.24)
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The first factor in (B.24) is the contribution from the chiral multiplet zero-modes at

Λ0 = Λ̃0 = 0:

ZΦ
zero =

∏

n∈Z

(Qσn)
nC

(
Qσ̃′n

Q2σ̃′nσn + iQD̂

)nB

. (B.25)

At D = 0, this gives (B.4) after regularizing the product over n:27

∏

n∈Z

1

Qσn
=
∏

n∈Z

iβ

Qu+ n
=

xQ/2

1− xQ . (B.26)

The second factor in (B.24) is the contribution from all the other modes:

ZΦ
massive =

∏

n∈Z

∏

λ

[
λ+Q2σ̃′nσn

λ+Q2σ̃′nσn + iQD̂

](
1− 2i

(Qσ̃′n)(QΛ̃1̄)(QΛ1)

(λ+Q2σ̃′nσn)(λ+Q2σ̃′nσn + iQD̂)

)
.

(B.27)

Note the appearance of the gaugino zero-modes, with the short-hand notation:

Λ̃1̄Λ1 =

g∑

I=1

Λ̃IΛI . (B.28)

We first perform the D̂-integrals in (B.20). This is essentially the same the discussion

in the previous literatures [7, 8]. Let ∆ǫ be the union of small circular neighborhoods of

radius ǫ2 around the potential singularities on the classical Coulomb branch M̃ ∼= C
∗ at:

Hi = {u | Qiu+ νi ∈ Z} , ∀i , H± = {u | u = ∓i∞} , (B.29)

corresponding to matter field and monopole operator singularities, respectively. To each

potential singularity, we associate its charge, as explained in the main text:

Hi → Qi , H± → Q± , (B.30)

where

Q± = ±k − 1

2

∑

i

|Qi|Qi (B.31)

are the monopole operator gauge charges. In each flux sector m, only some of the potential

singularities are actual singularities. We have a singularity at Hi ifQim+ni+(g−1)(ri−1) >
0 and a singularity at H± if Q±m+QF

±nF +(g−1)r± ≥ 0 —see equation (2.66). We denote

by M̃m
sing the union of all the singularities in a given flux sector. As alluded to in the main

text, we have to assume that each singularity is projective, meaning that to each singular

point we only associate either positive or negative charges. A non-projective singularity

can often be rendered projective by turning on generic fugacities. We denote by ∆ǫ,m the

27Note that the regularized product is not invariant under large gauge transformations u → u+ 1. This

is a manifestation of the so-called parity anomaly [87]. In a physical theory, this lack of gauge invariance

for an odd number of Dirac fermions must be compensated by an half-integer CS level.
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Figure 4. The singularities in the D̂ plane. When we choose δ > 0, the D̂ integral from ∆
(+)
ǫ,m

are modified to that of D̂ = 0 and a contour that passes negative imaginary axis, where the latter

contribution can be deformed away to give a vanishing contribution. For ∆
(−)
ǫ,m, the contour can be

deformed away to infinity. We set β = 1 for simplicity.

circular neighborhood of the singularities in a given flux sector. Since every singularity is

projective by assumption, ∆ǫ,m is the union of ‘positive’ and ‘negative’ singularities:

∆ǫ,m = ∆
(+)
ǫ,m ∪∆

(−)
ǫ,m . (B.32)

The integration contour of D̂ is taken along the real direction with a slight shift along the

imaginary axis:

Γ = {D̂ | D̂ ∈ R+ iδ , δ ∈ R , 0 < |δ| ≪ ǫ/k} . (B.33)

The auxiliary parameter η in the JK residue (2.59) is such that ηδ > 0. Let us choose

η > 0 for definiteness. Then, for the contour ∂∆
(+)
ǫ,m, the singularities in the D̂ plane are

depicted on the leftmost figure in figure 4. Note that, as long as |δ| > 0, the integrand

is bounded. The D̂ contour can be deformed to the one shown in the middle of figure 4,

which consists of a small contour around D̂ = 0 and of a contour in the lower-half plane.

The latter contribution can be deformed away along the negative imaginary axis. Since

the integrand evaluated on this latter contour is finite, the contour integral around ∂∆
(+)
ǫ,m

gives a vanishing contribution. Hence we are left with the contour integral around D̂ = 0.

For the ∂∆
(−)
ǫ,m contour, the D̂ contour is depicted in the last figure in figure 4, which can

be similarly deformed away to give a vanishing answer. To summarize, at the singularity

defined by the hyperplane Hi, we get

∫

Γ

dD̂

D̂

∮

∂∆
(Qi)
ǫ

Zm =





∮

Q2uiũ′
i=ǫ2

du Zm

∣∣∣
Λ0=Λ̃0=D̂=0

, if Qi > 0

0 if Qi < 0

, (B.34)

in the case η > 0. Similarly, in the case η < 0 one can show that Zi = 0 if Qi > 0 while

we pick minus the D̂ = 0 pole if Qi < 0. We will come back to the contributions of the

‘monopole singularities’ u = ∓i∞ in a moment, but for the time being we can note that

they can be treated essentially like in [8, 12].

Note that, until this point, Zm|Λ0=Λ̃0=0
still has a dependence on the Λ1, Λ̃1̄ zero modes

and on the Σg flat connections, which must be integrated over. In order to integrate out
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these zero-modes, let us define

f(λ, n) =
Qσ̃′n

(λ+Q2σ̃′nσn)(λ+Q2σ̃′nσn + iQD)
, (B.35)

and

g =
∏

λ,n

[
λ+Q2σ̃′nσn

λ+Q2σ̃′nσn + iQD

]
. (B.36)

Then (B.27) reads

ZΦ
massive = g exp

∑

λ,n,Q

ln
[
1− 2if(λ, n)(QΛ̃1̄)(QΛ1)

]

= g exp
∑

λ,n,Q

g∑

s=1

−(2i)s
s

[
f(λ, n)(QΛ̃1̄)(QΛ1)

]s
.

(B.37)

We are interested in the quantity

F̂s =
∑

λ,n

f(λn)
s (B.38)

evaluated at D̂ = 0. We can rewrite this as:

F̂s(D = 0) =
∑

n∈Z

(Qσ̃′n)
sζn(2s) , (B.39)

where we defined

ζn(2s) =
∑

λ

1

(λ+Q2σ̃′nσn)
2s

=
1

Γ(2s)

∫ ∞

0
dt t2s−1

(
∑

λ

e−t λ

)
e−tQ2σ̃′

nσn .

(B.40)

We can now use the fact that we have introduced a rescaled variable ũ = ũ′/k2 with

a positive number k2. Note that we are free to choose k to our convenience in order

to compute f(λ, n), since all the contributions from the one-loop determinants, from the

classical action and from the measure are independent of ũ after the D̂ integral. We will

take k arbitrarily small (which is equivalent to a large σ̃′n limit), so that only the small t

expansion of the heat kernel:
∑

λ

e−tλ =
1

4πt

∞∑

l=1

alt
l (B.41)

contributes to (B.40). The first few coefficients a0, a1, · · · of (B.41) are known to be spectral

invariants [88, 89]. In particular, we have:

a0 = vol(Σ) , (B.42)

which is also known as Weyl’s law. Performing the t integral in (B.40), we obtain:

(Qσ̃′n)
sζn(2s) =

a0(Qσ̃
′
n)

s

4π(2s− 1)(Q2σ̃′nσn)
2s−1

+
a1(Qσ̃

′
n)

s

4π(2s)(Q2σ̃′nσn)
2s

+ · · · . (B.43)
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First, let us consider contributions from s = 1. On the contour ∂∆ǫ where σ̃
′
nσn = ǫ2, the

l ≥ 1 terms are bounded by the expression

(σ̃′n)
s

(σ̃′nσn)
2s+l−1

∼ 1

(σn)s
k2(s+l−1)

ǫ2(s+l−1)
→ 0 (B.44)

which vanishes if we take the limit k ≪ ǫ. When a contour is defined for the boundary com-

ponent uũ′ →∞, the first term dominates as well. Therefore, only the first term remains:

lim
k→0
F̂1(D̂ = 0) = lim

k→0
(Qσ̃′n/2e

2)ζn(2) =
∑

n∈Z

vol(Σ)

4πQσn

=
β

2
vol(Σg)

1

2

(
1 + xQ

1− xQ
)
.

(B.45)

Similarly, we have

lim
k→0
F̂s(D = 0) = 0 , if s > 1 . (B.46)

To summarize, the dependence on Λ1 and Λ̃1̄ can be written as28

ZΦ
massive

∣∣
D=0

= g exp
[
−iβvol(Σg)Λ̃

a
1̄Λ

b
1Hab(x)

]
, (B.47)

where

Hab(x) =
1

2

∑

Q

QaQb

(
1 + xQ

1− xQ
)
. (B.48)

Note that it can be written in terms of the three-dimensional twisted effective superpoten-

tial Wmatter:

Hab = ∂ua∂ub
Wmatter , (B.49)

where

Wmatter =
∑

i

∑

ρi∈Ri

[
1

(2πi)2
Li2(x

Qyi) +
1

4
(Qi(u) + νi)

2

]
(B.50)

in general. As an important consistency check, consider the classical Chern-Simons ac-

tion (2.13) on this background (with Λ0 = Λ̃0 = D = 0):

e−SCS = xkm exp
(
iβvol(Σg) k

ab Λ̃a
1̄Λ

b
1

)
. (B.51)

The classical and one-loop terms come with the correct relative coefficients to reproduce

the full twisted superpotential.

This one-loop contribution and the contributions from the classical action are inde-

pendent of αI , α̃I , and they have a simple dependence in the gaugini ΛI , Λ̃I . This allows

us to perform the integral over these zero modes explicitly, which leads to the insertion of

the Hessian determinant of the twisted superpotential:

∫ g∏

I=1

dVI Zm

∣∣∣
Λ0=Λ̃0=D̂=0

= H(u)g Zm

∣∣∣
Λ0=Λ̃0=ΛI=Λ̃I=D̂=0

. (B.52)

28Here a, b labels the gauge group indices for any higher-rank G.
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Note that all the contributions are holomorphic in u after the D̂ integral and after taking

the k → 0 limit. This allows us to tune ǫ → 0, while the result of the u-plane residue

integral does not change.29

The monopole singularities H± at u = ∓i∞ can be discussed in the similar way as

in [8, 12], which we briefly summarize below. For this purpose, we need to compute the

dependence of D̂ linear part in the lnZmassive in the limit u = ∓i∞. It reads

lnZmassive|D̂a-linear = −
∑

λ

iQa

(λ+Q2σnσ̃n)
, (B.53)

in large Im(u). This can be evaluated from the observation

∂ub
lnZmassive|D̂a-linear =

∑

λ

QaQb(Qσ̃′)/β

(λ+Q2σnσ̃n)2
=

1

2
Hab (B.54)

with Hab defined in (B.48). Integrating back, we find30

lnZmassive|D̂-linear =
1

2
vol(Σg)

(
∂uW1-loop − ∂ũ′W̃1-loop

)
(B.55)

where

∂uaW1-loop = − 1

2πi

∑

i

∑

Q

Qa
i

[
ln(1− xQyi)− πi(ρi(u) + νi)

]
. (B.56)

From here and onwards, we will set vol(Σg) = 1. Taking the limit Im(u) → ∓∞, we get

the D̂ dependence at infinity which is
∫

Γ(η)

dD̂

D̂
exp

[
−πβ
e2
D̂2 ± iQ±D̂Im(u)

]
, (B.57)

where Q± is defined in (2.53). It is convenient to work with the rescaled variable D̂ = e2D̂′.

We have ∫

Γ(η)

dD̂′

D̂′
exp

[
−πβe2D̂′2 ± iQ±e

2D̂′Im(u)
]
. (B.58)

For the singularity at infinity, we can take e → 0 before doing the D̂ integral since the

matter integrals are regulated with infinite mass. We take the limit e → 0 at the same

time as taking |u| → ∞ in such a way that e2|u| → a for some finite number a > 0. Then

we have ∫

Γ(η)

dD̂′

D̂′
exp

[
−ia Q±D̂

′
]
. (B.59)

Suppose that we have a D̂ integral defined at Γ+ with positive δ as in figure 4. Then the

D̂ contour integral can be done as follow. When Im(u)→ −∞, we have

∫

Γ(η)

dD̂′

D̂′
exp

[
−ia Q±D̂

′
]
=

{
2πi , if Q+ > 0

0 if Q+ < 0
, with η > 0 (B.60)

29We encountered several order of limits that we should be careful about. To summarize, the correct

prescription is the following: 1) perform the D̂-integral; 2) take k → 0; 3) take ǫ → 0; 4) take e → 0.
30We added the anti-holomorphic piece to recover the fact that the expression is real. When we diffentiate

the formula and integrate back, we lost the information of the phase in the argument of the log.
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On the other hand, when Im(u)→∞, we have

∫

Γ(η)

dD̂′

D̂′
exp

[
−ia Q±D̂

′
]
=

{
2πi , if Q− > 0

0 if Q− < 0
, with η > 0 (B.61)

If we choose η < 0, the poles associated to Q± < 0 contribute instead.

Finally, let us consider theories with keff = 0 (at either infinity). In this case, we can

turn on an auxiliary (Q-exact) FI parameter ξ̃/e2 which only couples to D̂. Then the

integral at infinity reads:

∫

Γ(η>0)

dD̂′

D̂′
exp

[
iξ̃D̂′

]
= 2πiΘ(−ξ̃) . (B.62)

Since the choice of η is arbitrary, we can set η = ξ̃ such that there is never any contribution

from the singularities at infinity. Since the 3d theory does not suffer from wall-crossing

phenomena, the answer should not depend on the choice of auxiliary FI parameter ξ̃ = η.

The integration over ΛI , Λ̃Ī and αI , α̃I can be done in exactly same way as in the bulk

singularities discussed above, resulting in a H(u)g insertion to the path integral.

B.3 The general case

The generalization to the higher rank G involves technical difficulties due to the non-trivial

topology of the M̃\M̃m
sing. However, given the detailed discussion of rank one theory, the

generalization to the higher rank G follows directly from the discussions in the previous

literatures [6–8, 12]. The additional ingredient is the insertion of the H(u)g, resulting

from the one-form gaugino zero modes. The final answer can be written as a Jeffrey-

Kirwan residue:

1

|WG|
∑

m∈Γ
G∨

∑

u∗∈M̃m

sing

JK-Res
u=u∗

[Q(u∗), η]Z
vector
1-loop(u,m, g)Z

Φ
1-loop(u,m, g) H

g(u) ,
(B.63)

where M̃m
sing contains all the singularities from Hi and H±. This formula is discussed in

details in section 2.5.

C Decoupling limits for 3d N = 2 SQCD in flat space

In this appendix, we briefly review Seiberg dualities for the three-dimensional N = 2

supersymmetric SQCD[k,Nc, Nf , Na] of section 5. Starting from Aharony duality [24]

for SQCD[0, Nc, Nf , Nf ], we derive all the other Seiberg dualities [26, 28] by real mass

deformations.31

31We follow the analysis of [28] but choose somewhat better conventions. Thus the results of this appendix

for the relative flavor CS terms across dualities look a bit different from the ones of [28]. (In [28], the U(1)A
and U(1)R symmetries were mixed with the gauge symmetry, corresponding to setting kgR = kgA = 0. For

that reason, the R- and flavor charges of the monopole operators in that reference were not necessarily

integer-quantized.)
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In three dimensions, the two-point function of conserved currents contains an interest-

ing conformally-invariant contact term, whose corresponding local term is a Chern-Simons

functional for background gauge fields [28, 44, 90]. Whenever the CS levels are quantized

— that is, if the corresponding symmetry group is compact, these contact terms are phys-

ical up to integer shifts of the ‘global’ CS levels [44]. While the global CS levels of a given

theory can be specified arbitrarily, their relative values might differ across dualities. As

part of the description of the duality, we need to specify the relative CS levels:

∆kF ≡ kDF − kF , (C.1)

where kF , k
D
F are the global CS levels in the original theory and in the dual theory,

respectively.

C.1 Aharony duality and real mass deformations

Consider a U(Nc) YM theory with vanishing CS level, with Nf pair of fundamental and anti-

fundamental chiral multiplets Qi (i = 1, · · · , Nf ) and Q̃
j (j = 1, · · · , Nf ), and a vanishing

superpotential. The theory has a flavor symmetry group SU(Nf )×SU(Nf )×U(1)A×U(1)T
and a R-symmetry U(1)R, under which the matter fields have charges:

U(Nc) SU(Nf ) SU(Nf ) U(1)A U(1)T U(1)R

Qi Nc Nf 1 1 0 r

Q̃j Nc 1 Na 1 0 r

Most of the classical U(Nc) Coulomb branch of this theory is lifted by an instanton-

generated superpotential [53, 54], but the overall U(1) direction remains, parameterized

with the two monopole operators T± with charge ±1 under the topological symmetry

U(1)T . (The operator T±(x) inserts a magnetic flux (±1, 0, · · · , 0) at x ∈ R
3.) The two

operators T± have induced U(1)A and R-charges given by:

QA
± = −Nf , rT ≡ r± = −Nf (r − 1)−Nc + 1 . (C.2)

Let M j
i = Q̃jQi be the gauge-invariant ‘mesons’, which parameterize the Higgs branch.

We consider the case Nf ≥ Nc, which preserves both the R-charge and supersymmetry.

For Nf = Nc, the IR theory can be described as a σ-model for the mesons and for two

additional chiral multiplets T± identified with the monopole operators, interacting through

the superpotential [53]:

W = T+T− det(M) . (C.3)

A particular instance is for Nf = Nc = 1, which is the SQED/XY Z-model duality consid-

ered in section 3.2. For Nf > Nc, there is a dual description in terms of an U(Nf − Nc)

gauge group with Nf fundamental and antifundamental chiral multiplets qi, q̃j and the

gauge singlets M j
i, T

+ and T−, with superpotential:

W = q̃jM
j
iq

i + T+t+ + T−t− , (C.4)
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where t± are the monopole operators of the dual gauge group [24]. The quantum numbers

of the dual matter fields are summarized in table 4 on page 32. Finally, all the relative

flavor CS levels (C.1) vanish for this duality.

Starting from this duality, we derive the Seiberg-like dualities of the other N = 2

U(Nc) YM-CS-matter theories with fundamental and antifundamental matter, which we

dubbed SQCD[k,Nc, Nf , Na] in section 5. If we turn on a large real mass m0 for a global

symmetry U(1)0, we generate the CS levels:

δkIJ =
1

2

∑

i

sign
(
Q0

im0

)
QI

i Q
J
i ,

δkIR =
1

2

∑

i

sign
(
Q0

im0

)
QI

i (ri − 1) ,

(C.5)

for all abelian symmetries U(1)I , U(1)J and U(1)R, and similarly for any non-abelian

symmetry. Here the sum runs over all chiral multiplet field components with charges QI
i

and R-charge ri.

C.1.1 Seiberg duality with k > kc ≥ 0

Consider SQCD[k,Nc, Nf , Na], a U(Nc) theory with CS level k > 0, Nf fundamental and

Na antifundamental chiral multiplets. We consider kc ≡ 1
2(Nf −Na) ≥ 0 and k > kc. This

theory can be obtained from SQCD[0, Nc, n, n] with

n = k +
1

2
(Nf +Na) , (C.6)

by integrating out k − kc fundamental chiral multiplets Qα with positive real mass and

k + kc antifundamental chiral multiplets Q̃β with positive real mass, while the remaining

Nf fundamental chiral multiplets Qi and Na antifundamental chiral multiplets Qj remain

light. The corresponding real mass m0 > 0 is such that:

σa −mi = 0 , σa −mα = m0 , −σa + m̃j = 0 , −σa + m̃β = m0 , (C.7)

in the limit m0 →∞. We also need to scale the FI term as:

ξ = kcm0 , (C.8)

in order for the effective FI parameter ξeff = ξ − kc|m0| to remain finite. This means that

the symmetry U(1)0 contains a mixing with U(1)T . The charges of the ‘electric’ theory

U(Nc) with nf flavors are:

U(Nc) SU(Nf ) SU(Na) U(k − kc) U(k + kc) U(1)A U(1)T U(1)R U(1)0

Qi Nc Nf 1 1 1 1 0 r 0

Qα Nc 1 1 k − kc 1 1 0 r 1

Q̃j Nc 1 Na 1 1 1 0 r 0

Q̃β Nc 1 1 1 k+ kc 1 0 r 1
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U(n−Nc) SU(Nf ) SU(Na) U(k − kc) U(k + kc) U(1)A U(1)T U(1)R U(1)0

qi n − Nc Nf 1 1 1 −1 0 1− r 0

qα n − Nc 1 1 k− kc 1 −1 0 1− r −1
q̃j n−Nc 1 Na 1 1 −1 0 1− r 0

q̃β n−Nc 1 1 1 k + kc −1 0 1− r −1
M j

i 1 Nf Na 1 1 2 0 2r 0

Mβ
i 1 Nf 1 1 k+ kc 2 0 2r 1

M j
α 1 1 Na k − kc 1 2 0 2r 1

Mβ
α 1 1 1 k − kc k+ kc 2 0 2r 2

T+ 1 1 1 1 1 −n 1 rT −k + kc

T− 1 1 1 1 1 −n −1 rT −k − kc

Table 7. Charges of the matter fields in the U(n − Nc) Aharony dual theory used to derive the

Seiberg dual of SQCD with k > kc ≥ 0. Here rT = −n(r − 1)−Nc + 1.

Here the U(1)0 charge is indicated in the last column. Sending m0 →∞, we integrate out

Qα and Q̃β and obtain the CS levels:

kgg = k , kgA = −kc , kgR = −kc(r − 1) , (C.9)

for the gauge CS levels. We also generate the following flavor CS levels:

kAA = Nck , kAR = Nck(r − 1) . (C.10)

We also generate a level kRR, which we will ignore throughout because such terms do not

play any role on Σg × S1. All other flavor CS levels vanish.

We can follow the same RG flow in the Aharony dual U(n − Nc) theory. The dual

matter fields are summarized in table 7. Integrating out all the fields with Q0 6= 0, we

generate the gauge CS levels:

kDgg = −k , kDgA = kc , kDgR = kcr , (C.11)

and the flavor CS levels:

kDSU(Nf )
=

1

2
(k + kc) , kDSU(Na)

=
1

2
(k − kc) ,

kDAA = kNc +
1

2
(Nf +Na)n− 2NfNa , kDTT = − 1 ,

D
AR =

Nf +Na

2
(n−Nc)−NfNa + (r − 1)kDAA ,

(C.12)

and all other mixed CS levels vanishing. From (C.10) and (C.12), we find the relative

global CS levels (5.42)–(5.43).
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C.1.2 Seiberg duality with kc > k > 0

Consider SQCD[k,Nc, Nf , Na] with CS level k > 0 and kc > k. This theory can be obtained

from SQCD[0, Nc, Nf , Nf ] by integrating out kc + k antifundamental multiplets Q̃β with

positive real mass and kc− k antifundamental multiplets Q̃γ with negative real mass. The

relevant real mass m0 is such that:

σa −mi = 0 , −σa + m̃j = 0 , −σa + m̃β = m0 , −σa + m̃γ = −m0 , (C.13)

in the limit m0 →∞. We also need to scale the FI term as:

ξ = kcm0 . (C.14)

The charges of the fields in the ‘electric’ theory with Nf flavors are:

U(Nc) SU(Nf ) SU(Na) U(kc + k) U(kc − k) U(1)A U(1)T U(1)R U(1)0

Qi Nc Nf 1 1 1 1 0 r 0

Q̃j Nc 1 Na 1 1 1 0 r 0

Q̃γ Nc 1 1 kc + k 1 1 0 r 1

Q̃γ Nc 1 1 1 kc − k 1 0 r −1

Integrating out the massive fields generates the gauge CS levels:

kgg = k , kgA = −k , kgR = −k(r − 1) , (C.15)

and the global CS levels:

kAA = kNc , kRA = kNc(r − 1) . (C.16)

The charges of the fields in the dual field theory in the UV are given in table 8. Integrating

out the massive fields, we obtain a U(Nf −Nc) theory at CS level −k with the mixed CS

levels (5.46). We easily verify that the relative CS levels are given by (5.47).

C.1.3 Seiberg duality with kc = k > 0

The limiting case k = kc is obtained by the same reasoning as in the previous subsection.

The only difference is that the singlet T+ in the Aharony dual remains massless — see

table 8.

In this case, the singlet T+ is dual to the ‘half’ Coulomb branch that survives in the

U(Nc)kc theory. The U(Nf −Nc) dual theory also contain a superpotential

W = q̃jM
j
iq

i + T+t+ , (C.17)

coupling T+ to a monopole of the dual gauge group. In the particular case Nc = Nf , the

gauge theory is dual to a free theory of NfNa + 1 chiral multiplets M j
i and T

+. The case

with Nc = Nf = 1 and Na = 0 was considered in section 3.3.
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U(n−Nc) SU(Nf ) SU(Na) U(kc + kc) U(kc − kc) U(1)A U(1)T U(1)R U(1)0

qi n − Nc Nf 1 1 1 −1 0 1− r 0

q̃j n−Nc 1 Na 1 1 −1 0 1− r 0

q̃β n−Nc 1 1 kc + k 1 −1 0 1− r −1
q̃γ n−Nc 1 1 1 kc − k −1 0 1− r 1

M j
i 1 Nf Na 1 1 2 0 2r 0

Mβ
i 1 Nf 1 kc + k 1 2 0 2r 1

Mγ
i 1 1 Na 1 kc − k 2 0 2r −1

T+ 1 1 1 1 1 −Nf 1 rT −k + kc

T− 1 1 1 1 1 −Nf −1 rT −k − kc

Table 8. Charges of the matter fields in the U(Nf −Nc) Aharony dual theory used to derive the

Seiberg dual of SQCD with kc ≥ k > 0. Here rT = −Nf (r − 1)−Nc + 1.

D Proving the equality of Seiberg-dual indices

In this appendix, we briefly explain how to prove the equality of the twisted indices between

the Seiberg dual theories considered in section 5.2. Consider SQCD[k,Nc, Nf , Na] with

k ≥ 0 and kc ≥ 0, which is governed by the characteristic polynomial of degree n:

P (x) =

Nf∏

i=1

(x− yi)− q y
QA

+

A xk+kc

Na∏

j=1

(x− ỹj) , (D.1)

Let us denote by {x̂α}nα=1 the n distinct roots of P (x). Given the quantities U ,H and

UD,HD defined in (5.20)–(5.21) and (5.29)–(5.30), respectively, we can show that:

CU(x̂) = u UD(x̂D) , H(x̂) = h HD(x̂D) , (D.2)

where x̂ ≡ {x̂a}Nc
a=1 ⊂ {x̂α} is a choice of Nc distinct roots of P (x), and x̂D ≡ {x̂ā}n−Nc

ā=1 its

complement.

Identities satisfied by P (x). From the factorization:

P (x) = C(q)
n∏

α=1

(x− x̂α) , C(q) =





1− q y−Nf

A if k = kc ≥ 0

−q y−Nf

A if k > kc ≥ 0

1 if kc > k ≥ 0

, (D.3)

we obtain a useful identity for the product of all the roots:

n∏

α=1

x̂α =
(−1)n
C(q)

P (0) =
(−1)n+Nf

C(q)
p̂0 , (D.4)
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where we defined:

p̂0 ≡
{
y
−Nf

A − q if k = kc = 0

y
−Nf

A if k + kc > 0
. (D.5)

Note that we used (5.13) in the above equations. Similarly, we find:

n∏

α=1

(yi − x̂α) =
1

C(q)
P (yi) =

(−1)
C(q)

q y
−Nf

A yk+kc
i

Na∏

j=1

(yi − ỹj) ,

n∏

α=1

(x̂α − ỹj) =
(−1)n
C(q)

P (ỹj) =
(−1)n+Nf

C(q)

Nf∏

i=1

(yi − ỹj) .
(D.6)

We also need the following lemma. Consider partitioning the set of roots {x̂α}na=1 into a

subset x̂ ≡ {x̂a}Nc
a=1 and its complement x̂D ≡ {x̂ā}n−Nc

ā=1 . It is easy to show that:
∏

a ∂xP (x̂a)∏
a 6=b(x̂a − x̂b)

= (−1)Nc(n−Nc)C(q)2Nc−n

∏
ā ∂xP (x̂ā)∏

ā 6=b̄(x̂ā − x̂b̄)
, (D.7)

for any polynomial P (x).

Explicit form of u and h. By direct computation, we can show that:

u = (−1)su uM Z
SU(Nf )
CS Z

SU(Na)
CS û , h = (−1)sh hM ĥ . (D.8)

Here uM and hM are the contributions of the mesons M j
i defined in (5.27). We also

introduced the quantities

Z
SU(Nf )
CS =




Nf∏

i=1

ysii




k+kc−
1
2
(n−Na)

, Z
SU(Na)
CS =




Na∏

j=1

y
s̃j
i




1
2
(n−Nf )

, (D.9)

with the SU(Nf )× SU(Na) fluxes defined by si = ni + nA and s̃j = nj − nA. These are the

contributions from the SU(Nf )× SU(Na) flavor Chern-Simons terms at level:

kSU(Nf ) = k + kc −
1

2
(n−Na) , kSU(Na) =

1

2
(n−Nf ) . (D.10)

The signs in (D.8) are given by:

(−1)su = (−1)(n−Nc)(Nf−Na)(−1)(n+Nf )nT+N2
f nA ,

(−1)sh = (−1)(n−Nc)(Nf−Na)+N2
f r .

(D.11)

The remaining factors in (D.8) read:

û = p̂
nT−QA

−nA
0 C(q)−nT+NfnA q−NfnA y

[ 12n(Nf+Na)−NaNf−NfQ
A
+]nA

A , (D.12)

and

ĥ = p̂
−(r−−1)
0 C(q)rNf+Nc−nq−rNf+n−Ncy

[(Nf+Nc−n)(k−QA
+)+Nfkc]

A

× y(r−1)[ 12n(Nf+Na)−NaNf−NfQ
A
+]

A ,

(D.13)

with QA
± and r− given by (5.5) and (5.13). One can evaluate these terms in the four cases

k = kc = 0, k > kc ≥ 0, kc > k ≥ 0 and k = kc > 0, to complete the proof the equality of

the twisted indices across the corresponding Seiberg dualities.
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E Vortex-Wilson loop duality in N = 4 theories

In this section, we briefly review some of the results of [33], where the duality mapping

between half-BPS Wilson loops and vortex loops under 3d N = 4 mirror symmetry was

studied. For N = 4 quiver theories engineered in type IIB string theory, it was shown

that the vortex loop mirror to a Wilson loop in a given representation R of G can be

described by a 1d supersymmetric quantum mechanics, which can be read off from the

brane configuration. On general ground, such 1d GLSMs coupled to the three-dimensional

theory provide a useful UV descriptions of vortex loop operators.

For example, the charge k Wilson loop in T [SU(2)] has a brane construction in terms

of k fundamental strings, shown on the left in figure 5. In the S-dual brane configuration,

the k D1-branes can be moved along the D3-brane, so that they end up on top of the left

NS5-brane or if the right NS5-brane. The field content of the 1d worldvolume theory on

the D1-brane can be read off in either case as a quiver shown in figure 6. The two quiver

descriptions are two distinct but IR-equivalent realizations of the vortex loop, which is

known as hopping duality [33].

One can construct the dual vortex loops for more general non-abelian theories using a

similar argument. These results have been also confirmed via the S3 partition function [33].

Let us consider a U(N1) gauge theory coupled to N2 + N3 fundamental hypermultiplets,

which we split into two groupsN2, N3 (splitting the stacks of D5-branes in two, in the analog

of figure 5). For simplicity, we consider a Wilson loop in the k-symmetric representation

of U(N1), corresponding to k stretched F-strings. The 1d theory which is dual to that

Wilson loop can be obtained from the quiver in figure 7.

When considering vortex loops in the twisted theory on Σg (as compared to vortex

loops in flat space-time), we have to be careful about the R-charge assignment. The cubic

superpotential among 3d fundamental (Q), 1d fundamental (q) and 1d anti-fundamental

(q̃) requires that the sum of U(1)H charges to be 1. Finally, the 1d the adjoint multiplet

(A) is not charged under the R-symmetries. Hence the R-charge assignment reads:

U(1)H U(1)C U(1)H−C

Q 1
2 0 1

2

q 0 0 0

q̃ 1
2 0 1

2

A 0 0 0

(E.1)

Therefore, the QM index of the 1d theory reads:

Vk(±)(x, a, t) =

1

k!

q±k/2

(t− t−1)k

∫

JK(ξ1d)

k∏

i=1

dui
ui

k∏

i 6=j

ui − uj
uit−1 − ujt

k∏

i 6=j

uit
Radj−1 − ujt−Radj+1

uitRadj − ujt−Radj

×
k∏

i=1

N1∏

a=1

(−uit−1 + xat

ui − xa

) k∏

i=1

N2∏

p=1

(
−ypt−1/2 + uit

1/2

ypt1/2 − uit−1/2

)
.

(E.2)
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Figure 5. Brane construction of the charge kWilson loop for T [SU(2)], and its S-dual configuration.

The horizontal segment represents a stretched D3-brane, which is invariant under S-duality.

Figure 6. Hanany-Witten brane move [83] of the S-dual configuration for T [SU(2)] theory. The

field contents in the dotted box are coupled 1d theory. If the k D1-branes are attached to the left

(right) NS5-brane, the 1d quiver is coupled to the (anti-)fundamental and to the gauge node of

3d theory.

Figure 7. Quiver corresponding to the vortex loop which is dual to the Wilson loop in k-symmetric

representation. The 1d flavor symmetry N1,2 couple to the gauge group and flavor group of the

bulk 3d theory.

Here Radj is a regulator, to be sent to zero at the end of the computation. Note that the

D1-branes in between two left (or right) NS5 branes induce an additional flavor Wilson

line factor in (E.2). When the defect is attached to the left (right) NS5-brane, we have

the flavor Wilson loop factor q
|R|
L = q−k/2 or q

|R|
R = qk/2, respectively [33]. Let us focus on
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the D1-branes attached to the left NS5-brane. The set of poles selected by the JK residue

and with non-vanishing residue are given as follows. The contributing poles are classified

by the integer set {ka ≥ 0, a = 1, · · · , N1}, which satisfies k =
∑N1

a=1 ka. For each set, the

positions of the poles are at

{ui=1,··· ,k} = {xa, xat2R, xat4R, · · · , xat(ka−1)R, for a = 1, · · · , N1} . (E.3)

Different mappings of ui’s to elements of the r.h.s. give the same residue due to the Weyl

symmetry, which cancels the factor 1
k! of (E.2). Evaluating the residue and taking the limit

Radj → 0, we end up with

Vk(−)(x) = q−k/2
∑

k=
∑N1

i=1 ki
ki≥0

N1∏

a=1




N1∏

b 6=a

xat
−1 − xbt
xa − xb

N2∏

p=1

−xat− a
1/2
p

xa − a1/2p t




ka

. (E.4)

Suppose that there exists another 3d node with rank N3 which is connected to the N1

node by a 3d bifundamental. Then, applying the three-dimensional Bethe equation for the

U(N1) theory to each term of (E.4), we obtain an alternative expression:

Vk(−)(x) = qk/2
∑

k=
∑N1

i=1 ki
ki≥0

N1∏

a=1




N1∏

b 6=a

−xat−1 + xbt

−xa + xb

N3∏

k=1

−xa − b
1/2
k t

xat− b1/2k




ka

= Vk(+)(x) . (E.5)

This is simply the expression for Vk(+)(x), the vortex loop which is attached to the right

NS5-brane in the brane construction. The existence of two distinct UV descriptions of an

IR vortex loop is known as “hopping duality” [5, 33].

F Coulomb branch Hilbert series for an N = 4 U(2) theory

In this appendix, we show that the A-twisted index for an N = 4 U(2) gauge theory with n

fundamental hypermultiplets reproduces the monopole formula [38] of the Coulomb branch

Hilbert series.

Consider the expression (6.53) with G = U(2). In order to perform the integral at

each flux sector, we pick the η = (1, 1). In this case, the sum over the flux sectors for the

twisted index can be decomposed into the following expression

IU(2) =
1

2

y

(1− y)2

[
∞∑

m1=1

I(m1,m1) + 2
∑

m1>m2>0

I(m1,m2)

]
. (F.1)

Let us first consider the second term. It can be written as the residue integral at funda-

mental fields:

I(m1,m2) =
n∑

q=1

res
x2=yqy1/2




n∑

p=1

res
x1=ypy1/2

Z1-loop(x1, x2)


 . (F.2)
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Note that the charge sets involving x1 = x2y
−1 do not contribute even though they pass

the JK condition. The hyperplane equation x1 = x2y
−1 evaluated at x2 = aqy

1/2 imposes

the condition x1 = aqy
−1/2, where we have a zero of order m1. Since the order of the pole

is (1+m1−m2)+m2, this singularity always has a vanishing residue. Since the only poles

on the x1 plane are x1 = 0, ∞, ypy1/2, x1 = x2y
−1, the residue integral on the x1 plane

can be converted into:

I(m1,m2) =
n∑

q=1

res
x2=yqy1/2

[
− res

x1=0,∞
Z1-loop(x1, x2)

]
. (F.3)

Then we can write (F.3) as

I(m1,m2) =

n∑

q=1

res
x2=yqy1/2

[
− res

x1=0,∞
Z1-loop(x1, x2)

]

= res
x2=0,∞

[
res

x1=0,∞
Z1-loop(x1, x2)

]
(F.4)

The last equation follows from the fact that after taking residues at x1 = 0,∞, the only

remaining poles on the x2 plane are x2 = yqy
1/2 and x = 0,∞.32 Evaluating this expres-

sion gives

2
∑

m1>m2>0

I(m1,m2) = 2
∑

m1>m2>0

qm1+m2

(
y

n
2
(m1+m2)−(m1−m2) + y−n

2
(m1+m2)+(m1−m2)

−y n
2
(m1−m2)−(m1−m2) − y−n

2
(m1−m2)+(m1−m2)

)
.

Rearranging each infinite sums, we can show the following identities:

2
∑

m1>m2>0

qm1+m2yn(m1+m2)/2−(m1−m2) =
∑

m1>0,m2>0
m1 6=m2

qm1+m2yn|m1|/2+n|m2|/2−|m1−m2| ,

2
∑

m1>m2>0

qm1+m2yn(−m1−m2)/2+(m1−m2) =
∑

m1≤0,m2≤0
m1 6=m2

qm1+m2yn|m1|/2+n|m2|/2−|m1−m2|

+ 2

0∑

m1=−∞

q2m1yn|m1| ,

and

− 2
∑

m1>m2>0

qm1+m2

(
yn(−m1+m2)/2+(m1−m2) + yn(m1−m2)/2+(m2−m1)

)

=
∑

m1>0,m2≤0

qm1+m2yn|m1|/2+n|m2|/2−|m1−m2| +
∑

m1≤0,m2>0

qm1+m2yn|m1|/2+n|m2|/2−|m1−m2|

+ 2
∞∑

m1=1

q2m1

32Note that the order in which we take the residues matters for the last expression. We choose this order

according to the magnitude of m1,m2.
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Using these, we have

2
∑

m1>m2>0

I(m1,m2) =
∑

(m1,m2)∈Z×Z

m1 6=m2

qm1+m2yn|m1|/2+n|m2|/2−|m1−m2|

+ 2
0∑

m1=−∞

q2m1yn|m1| + 2
∞∑

m1=1

q2m1 .

(F.5)

Next let us evaluate the first term of (F.1), for the case when the U(1)2 gauge symmetry

enhances to U(2). The residue formula reads:

I(m1,m1) =
n∑

q=1

res
x2=yqy1/2




n∑

p=1

res
x1=ypy1/2

Z1-loop(x1, x2)


 , (F.6)

which can be converted into

I(m1,m1) =
n∑

q=1

res
x2=yqy1/2

[
−
(

res
x1=0,∞

+ res
x1=x2y

)
Z1-loop(x1, x2)

]

= res
x2=0,∞

(
res

x1=0,∞
+ res

x1=x2y

)
Z1-loop(x1, x2) . (F.7)

Then we can evaluate the residue integral explicitly, which yields

∞∑

m1=1

I(m1,m1) =

∞∑

m1=1

q2m1(ynm1/2 − y−nm1/2)2

+
∞∑

m1=1

q2m1(ynm1 − y−nm1)

∮

x1=x2y

dx1
x1

∏

α

xα − 1

xαy1/2 − y−1/2
.

(F.8)

Using the formal identity:
∞∑

m1=−∞

q2m1ynm1 = 0 , (F.9)

which can be checked by analytic continuation, we can show that the sum of (F.5) and (F.8)

can be written in the following form:

IU(2) =
1

2

(
y1/2

1− y

)2 [ ∞∑

m1=1

I(m1,m1) + 2
∑

m1>m2>0

I(m1,m2)

]

=
1

2

(
y1/2

1− y

)2

×
∑

(m1,m2)∈Z×Z

qm1+m2y
n
2
(|m1|+|m2|)−|m1−m2|

(∮

|x1|=1

dx1
x1

∏

α

xα − 1

xαy1/2−y−1/2

)δm1,m2

which reproduces the monopole formula of the N = 4 U(2) gauge theory with n fundamen-

tal hypermultiplets, up to prefactor which can be defined away by turning on a background
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CS level for U(1)t. Note that the integral in the last factor is a unit circle contour integral,

which includes the residue at x1 = x2y and x1 = 0. This factor can be evaluated as

1

2

(
y1/2

1− y

)2 ∮

|x1|=1

dx1
x1

∏

α

xα − 1

xαy1/2 − y−1/2
= y2 · 1

(1− y)(1− y2)
(F.10)

where the second factor in the r.h.s. corresponds to the Casimir invariant for the U(2)

gauge group.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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