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Abstract: Diabetes is a chronic and, according to the state of the art, an incurable disease. Therefore,
to treat diabetes, regular blood glucose monitoring is crucial since it is mandatory to mitigate the
risk and incidence of hyperglycemia and hypoglycemia. Nowadays, it is common to use blood
glucose meters or continuous glucose monitoring via stinging the skin, which is classified as invasive
monitoring. In recent decades, non-invasive monitoring has been regarded as a dominant research
field. In this paper, electrochemical and electromagnetic non-invasive blood glucose monitoring
approaches will be discussed. Thereby, scientific sensor systems are compared to commercial devices
by validating the sensor principle and investigating their performance utilizing the Clarke error grid.
Additionally, the opportunities to enhance the overall accuracy and stability of non-invasive glucose
sensing and even predict blood glucose development to avoid hyperglycemia and hypoglycemia
using post-processing and sensor fusion are presented. Overall, the scientific approaches show a
comparable accuracy in the Clarke error grid to that of the commercial ones. However, they are in
different stages of development and, therefore, need improvement regarding parameter optimization,
temperature dependency, or testing with blood under real conditions. Moreover, the size of scientific
sensing solutions must be further reduced for a wearable monitoring system.

Keywords: blood glucose monitoring; Clarke error grid; commercial; diabetes mellitus; machine
learning; microwave; non-invasive monitoring; review

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease, which is caused by the lack
or ineffective use of insulin produced by the body [1]. According to the report released
in December 2020 by the World Health Organisation (WHO), diabetes is among the top
10 causes of death [2]. Overall, patients suffering from diabetes can be categorized in three
groups: Type 1 Diabetes Mellitus (T1D), where the body produces no or too little insulin;
Type 2 Diabetes Mellitus (T2D), caused by an insulin resistance and Gestational Diabetes
Mellitus (TGD) during pregnancy [3].

The normal range of fasting blood glucose is between 70 mg/dL and 100 mg/dL [4,5].
Blood glucose levels (BGL) below 70 mg/dL are called hypoglycemia, whereas levels above
120 mg/dL or 140 mg/dL when fasting or two hours after eating, respectively, or in general
a value of >180 mg/dL, correspond to hyperglycemia [6,7]. In case the glucose level
differs from the normal range, it can cause an adverse influence on the heart, the blood
vessels, the eyes, the kidneys and the nerves [1] as well as circulatory system problems.
Those long term complications of hyperglycemia can be categorized into macrovascular
diabetic complications, such as heart diseases, and miscrovascular diabetic complications,
which cause diseases in organs, such as nephropathy, retinophathy and neuropathy [8]. In
particular, the high incidence of nephropathy occurs after suffering diabetes for five-years,
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and an early indicator thereof is increased urinary albumin excretion [9,10]. The occurrence
of retinopathy is caused by the long-term damage to the small blood vessels in the retina,
and it is a leading factor of resulting blindness [1,9,11]. Additionally, diabetics have a two-
to four-fold higher risk of cardiovascular disease and cardiovascular disease mortality than
those without diabetes [3,12,13]. In addition, short term complications of hypoglycemia
may lead to coma or death, in the worst cases [14–16]. Nevertheless, the complication inci-
dence has declined since the 1990s, benefitting from the better recognition and management
of blood glucose levels [13]. Consequently, affected patients must check their blood glucose
levels regularly. In 2000, systems for continuous blood glucose monitoring (CGM) became
commercially available [17]. These systems automatically measure the blood glucose level
and its trend in short time intervals and are, thus, excellent candidates to make the life of a
patient suffering from diabetes more comfortable and safe.

From this background, scientists are driven to conduct further research in the field of
continuous glucose sensing. For example, in 2014, the biotech-company Verily of Google
tried to use a 2-layer smart contact lens combined with a radio chip to monitor blood
glucose (BG) variation [18]. However, the results revealed that it is difficult to get a reliable
mapping between glucose level in the blood and the tear fluid [19]. In addition, the Robert
Bosch company has owned some patents for the BG sensor, which is a sensor that is
implantable in the earlobe [19].

Various approaches regarding blood glucose sensing have been proposed so far, which
can be divided into invasive, minimally invasive and non-invasive as follows:

• Invasive monitoring: The traditional monitoring method of BG is via pricking the
fingertip and then putting the obtained drop of blood on the test stripe multiple times
per day [19]. This way is called invasive monitoring measurement. Although such
monitoring helps patients greatly with BG management and is highly sensitive and
correct, it still brings pain, infection risk and even damage to the skin tissue over a
long time [20]. Moreover, the finger pricking method falls short when it comes to
CGM, since it is conducted every couple of hours by the affected patient rather than
in short time intervals over the length of the day [19].

• Minimal invasive monitoring: Minimal invasive glucose sensing is via microneedles
inserted into the skin where the interstitial fluid is located [21]. A probe of this liquid
is then chemically evaluated to determine the glucose level. The well-established
commercial available glucose sensing systems of Dexcom [22] and FreeStyle Libre [23]
are based on this method. Herein, a sensor is inserted into the skin of the belly or of
the upper arm. After a ‘warm-up’/calibration time of one (FreeStyle Libre 3) or two
hours (Dexom G6), the sensor is connected with a wearable device for monitoring
the measured data, and the glucose level is determined every few minutes [22,23].
Furthermore, the Dexcom G6 can additionally be calibrated manually by the patient
with the BGL measured by finger pricking [22]. Compared to the traditional finger
pricking, the determination of the BGL with the FreeStyle Libre or Dexcom sensors
is less painful for the patient and yields the significant advantage of enabling CGM.
However, the costs for this system are relative high, since the sensor has to be replaced
at last every 10 or 14 days.

• Non-invasive (NI) monitoring: NI blood glucose monitoring aims to produce neither
pain nor discomfort during the glucose measurement [24]. These approaches can
be classified according to the applied glucose sensing method. The primary sensing
methods for NI methods are the electrochemical [24,25] and the electromagnetic-based
methods [26–28]. In electrochemical NI glucose sensors, a probe of saliva [29], tear
drop [30] or the exhaled breath [31] is analyzed. The electromagnetic methods are
based on the interaction of electromagnetic waves with the human body. The applied
wavelengths vary from the m-range (impedance spectroscopy) to the mm-range
(microwaves) up to the nm-range (optical frequencies)—compare Figure 1.
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Figure 1. Electromagnetic spectrum.

Subsequently, post-processing is required to find the relation between the measured
signal (usually current, voltage or phase/frequency) and the BG concentration. Indeed, the
relation between the measured signal and the blood glucose level (BGL) is often determined
by a simple proportionality. However, a calibration step is required to extract the BGL
precisely. Nevertheless, since data loss is often a problem, interpolation and extrapolation
are also conducted on the data [32]. Furthermore, the rapid development of artificial
intelligence (AI) involving machine learning, deep learning and cognitive computing is
promising for more accurate and reliable data processing since AI is able to interpret and
process high amounts of data [33], and more or less instantaneously, it can suggest a proper
recommended course of action to the patient. In sum, this enables further improvements in
screening, diagnosis and management of the patients’ diabetes [34]. Methods like a hybrid
least squares random sample consensus (LS-RANSAC) [32] or a Principal Component
Analysis (PCA) algorithm [35] further enhance the detection sensitivity of the measured
sensor data significantly [35].

However, the main focus on using AI in post-processing of BGL data lies in predicting
glucose trends [36]. Thereby, the prediction horizon of the BGL is up to 120 min [37], being
based on data-based and hybrid models (e.g., Gaussian process and random forest [38]).
Various features such as BGL, insulin, meal, exercise, sleep and others can be observed
individually and combined with each other to improve prediction accuracy [37]. Addi-
tionally, AI-based approaches are also investigated for predicting the risk of secondary
diseases [39,40]. However, this is out of the scope of the proposed paper, and detailed
information can be found in the review papers [36,37,41,42].

2. Non-Invasive Sensor Principles

This article focuses on the non-invasive (NI) sensing of glucose. Consequently, in the
following, the main principles of state-of-the-art NI glucose sensing are explored.

2.1. Electrochemical NI Sensors

As mentioned in Section 1, NI monitoring can be approached via a medium such
as saliva, tear drops or exhaled breath [43]. This is because these body liquids are easily
accessible and collected [24]. Principally, a detection of the glucose concentration is also
possible via urine, but this is not suitable for a CGM-system [44,45]. Therefore, utilizing
saliva, tears and exhaled breath is preferred [46]. In general, such kinds of sensors are
called biosensors [25,36].

2.1.1. Saliva Analysis

Saliva contains lots of biological information that reflect the physiology and health
status [46]. Thus far it has been widely used in human immunodeficiency virus (HIV)
infection diagnosis and drug abuse [47–49]. That means saliva indicates physiological
functions of the body and can be regarded as an alternative to blood [50]. In the following,
the research on biosensors carried out by T. Arakawa et al. in 2016 and their improvement
in 2020 will be shown [29,51].

• Components: The sensor used for monitoring is called mouthguard (MG) glucose
sensor, where an electrode sensor is included. A cellulose acetate (CA) membrane
is used as interference rejection membrane to suppress the effect of ascorbic acid
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(AA) and uric acid (UA), which is the improvement of 2020 [29]. A wireless module
integrated with a potentiostat is designed for a continuous measurement. Finally,
the results are displayed on a smartphone or tablet device. The design is shown in
Figure 2. The first and third layer is in dentition shape and the second layer is for the
electrode sensor, wireless instrument and battery.

• Methods: The main idea is to use the enzymatic reaction of glucose oxidase (GOD) as
the connection between the blood glucose and the saliva. Equations (1) and (2) show
the reaction in detail:

Glucose + O2
GOD−−−→ Gluconolactone + H2O2 (1)

H2O2 −−→ 2 H+ + O2 + 2 e− (2)

The MG glucose sensor in 2020 consists of three layers:

First layer: It is built with MG material, polyethylene terephthalate glycol (PETG),
and modeled in the shape of dentition.
Second layer: The enzymatic reaction is performed on the electrode sensor, which
is formed on the first layer. On the sensor, a GOD mixture is set to the sensing
area to detect the glucose concentration. A Bluetooth low energy (BLE)-type
wireless measuring instrument is connected with the electrode sensor through
a conductive spring with nickel plating for saving the space. The current from
the enzymatic reaction will be then transferred via the wireless module and
displayed in a smartphone or tablet device via a self-developed application for
Android OS. The detection of electrodes shows the correlation to the glucose
concentration level.
Third layer: A second MG material is hermetically mounted through heat welding.

In 2016, the estimation was realized through artificial saliva, which is composed of
salts and various proteins, such as disodium hydrogen phosphate, anhydrous calcium
chloride, potassium chloride, sodium chloride, urea and type II mucin from porcine
stomachs [51]. Glucose solutions, such as galactose, fructose, mannitol, sorbitol and
xylitol, were also prepared for selectivity evaluation. In 2020 further estimations were
approached in both artificial and human saliva [29].

• Results: The glucose concentration is proportional to the output current. The sensor can
detect the glucose concentration in the range of 0–180 mg/dL (1.75–10,000 µmol/L).
The saliva glucose concentration of normal and diabetic patients is 0.4–3.6 mg/dL
(20–200 µmol/L). The minimum change in glucose concentration can be detected
at 0.9 mg/dL (0.05 mmol/L). In addition, experiments were also held to see the
performance of the sensor selectivity by comparing the mean relative output current to
different glucose solutions with 1.8 mg/dL (100 µmol/L). According to the magnitude
of the output current produced by glucose, the glucose is 100%, the glucose solutions
like mannitol, sorbitol, fructose and xylitol can be neglected in artificial saliva, and
the galactose is only 0.265%. The rejection of AA and UA interference reaches the
noise ratio of 97.1%. That means the sensor has a high selectivity. In addition, a stable
output can be obtained in approximate 20 min, and the monitoring can last more
than 5 h. The glucose concentration of human saliva is obtained after the calibration
curve for artificial saliva. In addition, since the sensor works in the oral cavity, the
researchers also ensure that the result is stable until four rounds of cleaning, which
also indicates that the sensor has excellent waterproofness. For the low glucose level
measurement, the designed biosensor has similar accuracy performance with the kit
and spectrophotometer with 0.4 mg/dL and 0.3 mg/dL, respectively.

• Further studies: Since many other proteins in saliva have influence on the glucose
measurement, a sensor, which performs under more complex conditions, is still
under research.
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Figure 2. View of saliva-based design (Reprinted with permission from Ref. [29] © 2021 American
Chemical Society).

2.1.2. Ocular Fluid: Tear

Tears also carry information and show similar glucose concentration to blood [30,52].
Tears contain organic molecules, which reflect the health status [46]. Compared to saliva,
tear glucose concentration is relatively stable in the range of 0.9–90 mg/dL (0.05–5 mM),
while blood glucose concentration is in the range of 90–140 mg/dL [53,54]. Therefore, tears
have attracted much attraction for decades [55]. In addition, the worldwide use of contact
lenses is a strong motivation for tear glucose measurement [56]. In 2014, Verily, which
is regarded as the Google Life Sciences, launched the smart contact lens project. Their
challenge was to get reliable tear glucose readings [18]. Even though their development was
discontinued because the correlation between blood glucose and tear was too weak [18], it
is still encouraging to have further innovation based on tear glucose concentration [57]. In
the following, a recent research carried out by H.D. Duong et al. [58] is discussed:

• Components: The sensor principle is based on the radiometric fluorescent glucose-
sensing membranes, which are fabricated based on an oxygen-sensing membrane
with different supporting polymers, namely, ethyl cellulose (EC), polyurethanes (such
as D4), aminopropyltrimethoxysilane and glycidoxypropyltrimethoxysilane (GA).
Figure 3 shows the fabrication of radiometric fluorescent glucose-sensing membranes,
which is composed of 2 layers: the oxygen-sensing membrane and GOD on the
supporting polymers (EC, D4, GA) [58]. The oxygen-sensing membrane is made
of polystyrene particles (PS) doped with oxygen-sensitive fluorescent dye platinum
meso-tetra porphyrin (PtP) and Coumarin 6 (C6) (abbreviated with PS@C6^PtP) in a
sol–gel matrix of GA.

• Methods: The main idea is to follow the catalytic reactions. Since the emission band
edges of PS@C6^PtP appear at 635 nm and 475 nm for PtP and C6, respectively,
the ratio of the fluorescence intensities (FI) is chosen at above two emission wave-
lengths (FI635 and FI475). The ratio is formed as below, in Equation (3). An excitation
wavelength is chosen at 400 nm.

R = FI635/FI475 (3)

The investigation is carried out in the artificial tear with the components of 10 mM
phosphate saline buffer (PBS, 7.0 pH), 10 µM uric acid, 100 µM ascorbic acid, and
10 µM acetaminophen. To quantify the immobilization properties of GOD of EC, D4
and GA, different amounts GOD are under test, namely, 10, 20, 40, 50, 60 and 100 units
(U). The amount of immobilized GOD is in the end 50 U after considering factors such
as sensitivity, cost and detection range because too much immobilized enzyme results
in a narrow detection range, while too little immobilized enzyme leads to the longer
detection time. After deciding the immobilized GOD amount, further measurements
of the response, the reversibility, the effect of pH and temperature and the long-term
stability on the GOD = PS@C6^PtP are estimated. The reversibility of the supporting
material indicates the sensitivity. The evaluation thereof is demonstrated by exposing
these three materials in a repeated cycle of glucose concentration in the range of
0–36 mg/dL (0–2 mM). Regarding the pH and temperature and since the slope value
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(SI), the ratio of the FI ratio and glucose concentration, are the vital indicators, the
relation between the pH value and the temperature with the slop value should not
significantly change. According to this, the 7–9 pH-range and the temperature 30 °C
are chosen. The stability is estimated by comparing the FI ratio and corresponding
glucose at the beginning and one month later.

• Results: The sensor has a detection range of 1.8–180 mg/dL (0.1–10 mM). A high linear
sensitivity is given in the low glucose concentration range of 1.8–36 mg/dL (0.1–2 mM).
At a high glucose concentration of 36–180 mg/dL (2–10 mM), GA performs better than
the other two. Table 1 shows the GOD = PS@C6^PtP response to the glucose level of
each supporting material in detail.
For the reversibility, each material performs separately and repeatedly in 0–36 mg/dL
(0–2 mM) glucose for about 20 min. Table 2 shows the different relative standard
deviation (RSD) of EC, D4 and GA at 0 mg/dL and 36 mg/dL and GA responses faster
than EC and D4. For the stability, the FI-glucose curve at the beginning and that from
one month later are very close to each other, which means that the membrane has
good stability. The SI of the linear calibration curves and the radiometric FI in both
standard glucose solution and artificial tears are estimated. Figure 4 gives the final
result. Clearly, the SI of both with three different supporting materials has similar
performance in standard and tear glucose. The detailed SI values are shown in Table 2.
Additionally, the percentage deviation thereof is −1.5 to 9.0%, which also shows a
promising detection in the tears.

Synthesis of PS

PS @ C6

PS @ C6∧PtP

Oxygen-sensing membrane

Glucose-sensing membrane

EC, GOD = PS @ C6∧PtP

Tear glucose detection

Glucose-sensing membrane Glucose-sensing membrane

D4, GOD = PS @ C6∧PtP GA, GOD = PS @ C6∧PtP

Tear glucose detectionTear glucose detection

+C6

+PtP

+GA

+(EC,GOD) +(D4,GOD) +(GA,GOD)

Figure 3. Fabrication of radiometric fluorescent glucose-sensing membranes (Adapted from Ref. [58]).

Table 1. Response characteristics of each supporting material according to the results of [58].

Supporting Material Limit of Detection (LOD) Maximal Reaction Rate (Vmax) Michaelis–Menten Constant (Km)

EC 0.5 mg/dL 8568 mg/dL·min 5.1 mg/dL
(0.025 mM) (476 mM/min) (0.286 mM)

D4 0.5 mg/dL 2534.4 mg/dL·min 6.6 mg/dL
(0.029 mM) (140.8 mM/min) (0.366 mM)

GA 0.8 mg/dL 1314 mg/dL·min 6.6 mg/dL
(0.043 mM) (73 mM/min) (0.364 mM)
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Table 2. Reversibility performance and comparison of SI for standard and tear glucose with the three
supporting materials EC, D4 and GA in glucose according to the results of [58].

Supporting Material RSD at 0 mg/dL RSD at 36 mg/dL SIstandard glucose SItear glucose

EC 0.32% 0.15% 0.0555 0.0503
D4 0.38% 0.79% 0.0821 0.0846
GA 23% 0.33% 0.0561 0.057

Figure 4. Percentage deviation of radiometric fluorescence intensities and the response between
radiometric fluorescence intensities and standard and tear glucose (Reprinted from Ref. [58]).

2.1.3. Exhaled Breath Analysis

Despite of the medium, such as saliva and tear, exhaled breath is another attractive
biomarker of diabetes. The relation between diseases and the smell of exhaled breath is
well established [31,59]. For instance: ‘fruity smell’ of acetone in the breath can be regarded
as an indicator of diabetes, whereas ‘musty and fishy smell’ can be considered as a hint
of advanced liver disease [60]. Therefore, exhaled breath analysis provides potential deep
insights on physiological and pathophysiological conditions in terms of related diseases [61].
Similar to the other two media, the exhaled breath is, in general, easy to access and collect.
In addition, it is safer, friendlier and more acceptable for patients compared to the saliva
and tear analysis [31,62]. Examples of biomarkers in human breath are acetone, isopropanol
(IPA), carbon monoxide, isoprene and ethanol [31]. The content of acetone is quite large,
which can be found both in T1DM and T2DM diabetics, and comes from the increase of
acetyl-CoA level in the liver because of the lipolysis [63].

Nevertheless, the correlation between blood glucose level and the detected acetone
is controversial as discussed in the literature [64]: positive [65] negative [66,67], some
arguing no correlation [68–70]. The core problem of BGL-detection based on exhaled breath
analysis is that the acetone level is influenced by many factors such as insulin injection,
type of diabetes, alcohol intake, exercise, food and beverage intake, etc. [63]. As acetone
is produced during fat metabolism, it is also used as a diet marker [71]. Companies, like
BIOSENSE, LEVL, Ketonix, Keyto, House of Keto Monitor and KHC M3, have released
their breath acetone meters. However, only BIOSENSE, LEVL and Ketonix have received
the FDA-approval for diet management and diabetes diagnosis [72]. In the context of
diabetes care, however, exhaled breath analysis is currently mainly investigated regarding
diabetes diagnosis and not as a CGM sensing system [73–75].



Sensors 2022, 22, 425 8 of 44

2.1.4. Summary

Nowadays research on glucose monitoring based on saliva, tear and exhaled breath
is still a hot topic. One of the dominant reasons is that these fluids are easily accessible
and can be markers for blood glucose concentration. However, these three MUTs face
the same problem: containing various proteins (saliva and tears) or breath biomarkers
(exhaled breath), which raises the challenge of having accurate monitoring. This also
indicates that in future studies more interference rejection parts are needed for a better
monitoring. Moreover, the lag time between blood and tear glucose, and exhaled breath
is different. The lag time of blood and tear glucose is about 15 min, whereas the lag time
of exhaled breath depends on the type of the sensor [76]. Therefore, reducing the lag
time during the secondary fluid glucose monitoring is another important research point as
well [77–79]. Furthermore, since saliva and tears are human parts, the materials also need
to be bio-materials, which brings the issue of allergies, such as skin irritation and rejection
reaction [80].

2.2. Electromagnetic Non-Invasive Monitoring

Optical techniques utilize the reflection, absorption and scattering properties of waves.
Well-known methods are for example Raman spectroscopy, optical polarimetry (OP) or
optical coherence tomography (OCT) [77]. The millimeter and microwave sensing and bio-
impedance spectroscopy utilize the dielectric properties of glucose [28,77]. Both techniques
are applied mostly over the skin. However, the tissue surface is rough, which is one main
factor leading to scattering and energy loss. Such characteristics of tissues lead to another
vital point, the so-called penetration depth. If the penetration depth is not high enough, it is
hardly possible to reach the vessels, i.e., arteries in the body for sensing the glucose change.
In consequence, the monitoring accuracy will be reduced [77]. Equation (4) shows the
calculation of the penetration depth Dp, where fr is the resonating frequency, c represents
the electric wave speed in free space, εsam stands for the dielectric constant, and tan δ
represents the loss factor of the deposited sample on the sensing area. Normally the skin
thickness is over 1 mm, which means the penetration depth should be greater than this
value. In this section, Raman spectroscopy and microwave-based monitoring methods will
be explored in detail, especially the microwave-based ones.

Dp =
c

2 · π · fr · (2εsam)0.5 [(1 + (tan δ)2)0.5 − 1]−0.5 (4)

2.2.1. Raman Spectroscopy

It is a vibrational spectroscopic technique based on Raman scattering. The rotational
and vibrational states among molecules are the dominant factors in Raman spectroscopy,
resulting in the so-called Raman peak in the spectrum. Another important feature is the
Raman shift (with the unit cm−1), which is the difference between the initial and vibrational
wavelengths. A basic Raman spectroscopy consists of 4 parts, namely a monochromatic
light source, a lens, a filter and a detector connected to the computer. Figure 5 gives an
overview of basic Raman spectroscopy. The reason why Raman spectroscopy is preferred
is that it has high sensitivity to detect tiny changes with a molecular size of 1 µm [81,82].
The general advantages of Raman spectroscopy are higher depth penetration compared
to mid-infrared spectroscopy, being less sensitive to temperature changes compared to
OCT, wide application and high specificity [77]. In the following, recent studies by J. W.
Kang et al. [83] and Y. S. Park et al. [84] are discussed.
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Incident light

Raman scattering

Rayleigh scattering

Figure 5. Scheme of a applied BGL measurement setup using Raman spectroscopy (Adapted from
Ref. [77]).

J. W. Kang et al. aim to show that in vivo glucose measurement can be achieved by a
direct observation of Raman peak [83].

• Components: The design consists of the following parts: An 830 nm laser diode, an
imaging spectroscope that includes a mechanical shutter, a charge-coupled device
(CCD sensor) and a filtered laser beam of 250 mW with an incidence angle of 60◦. In
Figure 6 the scheme of the Raman spectroscopy system is depicted.

Skin

CCD

Grating

LD

LP

FM

Coll.
fiber

FM: frequency

LP: lowpass filter

LD: laser diode

number matcher

Figure 6. Scheme of Raman spectroscopy system (Adapted from Ref. [83]).

• Methods: The measurements were conducted on three female Yorkshire pig ears. In
the experiments, four glucose difference solutions (∆G) of 456 mg/dL, 371 mg/dL,
352 mg/dL and 256 mg/dL are used to find the relation between the intensity of
increase of the Raman peaks and the glucose difference. A high linearity is found
between the Raman peak intensity, the band-area ratio and the glucose difference,
respectively. The band-area ratio is the normalized glucose intensity between the
glucose Raman peak intensity and the dominant tissue Raman peak intensity. To
maximize the effective sampling volume and for stability reasons, an off-axis Raman
instrument (Figure 7) is designed with a configuration of an oblique angle of 60° laser
illumination. For temperature controlling a water blanket is used. The penetration
depth is beyond 1 mm under the skin.

• Results: The detectable glucose concentration is between 29 and 78 mg/dL. The tests
are arranged for two five-minute measurements or 10 min in total for spectra collection.
It was highlighted that the oblique angle incidence of the laser proved a more effective
way to measure the glucose Raman signal. Nevertheless, there are challenges such
as movement of the object, sweat, temperature, heart rate, a lower maximum glucose
concentration, less integration time, smaller system size and adaption to more users
physical situations from different countries. In further development, improving the
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Raman system and developing sophisticated prediction algorithms are the main
directions of J.W. Kang et al. [83].

Collection Fibers

60°

Stratum Comeum

Epidermis

Dermis

Figure 7. The off-axis Raman instrument (Adapted from Ref. [83]).

Y.S. Park et al. [84] have conducted an additional study to J.W. Kang et al. As men-
tioned before, the miniaturization of the system needed further improvement. Y.S. Park
et al. identified the trade-off between the Raman spectrometer collection efficiency and the
device miniaturization. The setup of the glucose concentration was in the range of 50 to
400 mg/dL with uniform distribution.

• Methods: The framework of this research is as follows: Raman spectra serve as the
input in the computer space. The spectral information containing the glucose infor-
mation is then processed inversely through a back regression analysis, so that the
prediction performance can be evaluated. Random forest (RF) regression and partial
least squares regression (PLSR) are utilized for the prediction. A Monte-Carlo simula-
tion is used to demonstrate the Raman photon generation in skin tissue, which consists
of excitation photons scattered into the skin tissue and Raman photons escaping from
the skin surface. The excitation laser transmits at 785 nm with 60 mW. The glucose
concentration is set to be in the range of 50–400 mg/dL, and the collection efficiency is
set five times halved from 3.2% to 0.2%.
Equations (5)–(7) show the all used spectra in this research in more detail. The com-
puter simulates a glucose spectrum Sglu(λ, g, t), a fluorescence background spectrum
Sfluo(λ, t) and a total spectrum Stotal(λ, g, t), which is the sum of the former two spec-
tra at a certain glucose concentration. In addition, the simulation of excitation photons
and Raman photons is also included, which is introduced for the efficiency calcu-
lation. The parameters λ, g, t correspond to the wavelength, glucose concentration
and elapsed time, respectively. The glucose spectrum is calculated by the glucose
spectrum simulated by the Monte-Carlo method at a given concentration Sglu_scaled(λ),
considering the Raman scattering ηR(g, t), the collection efficiency ηcollect indicating
the miniaturization, the excitation laser power Pex, the excitation photons λex, the
Planck constant h and the speed of light c. The fluorescence background spectrum is
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measured for a duration of 30 s with an excitation laser and a lensed fiber optic probe.
In addition, α is the time-decay constant.

Stotal(λ, g, t) = Sglu(λ, g, t) + Sfluo(λ, t) (5)

Sglu(λ, g, t) = Sglu_scaled(λ) · ηR(g, t) · ηcollect · (Pex ·
λex

h · c ) (6)

Sfluo(λ, t) = Sfluo_measured(λ) · exp(−αt) (7)

• Results: A wavelength of 1125 cm−1 is mostly used for glucose detection. However,
it is still a challenge for the non-invasive glucose monitoring devices to have a good
trade-off between the performance and the miniaturization with respect to the col-
lection efficiency. Here, three criteria are used to evaluate the prediction, namely, the
regression analysis (R), the mean absolute relative difference (MARD), and the zones
A and B in the Clarke error grid (CEG A + B). With the reduced collection efficiency
(from 3.2% to 0.2%), the achieved results get worse, as depicted in Table 3. For further
studies, artifacts detecting subject movement and sweating could be considered as
improvement aspects.

Table 3. Prediction evaluation results of the three criteria. R: regression analysis, MARD: mean absolute
relative difference and CEG A + B: zones A and B in the Clarke error grid according to the results of [84].

Prediction Method
(ηcollect Five Times Halved from 3.2% to 0.2%)

R MARD CEG A + B

RF regression 0.91 � 0.35 20.3% � 54.6% 93.0% � 82.4%

PLSR 0.91 � 0.34 20.3% � 54.8% 93.0% � 82.4%

2.2.2. Impedance Spectroscopy-Based Monitoring

For more than 15 years, impedance spectroscopy or also dielectric spectroscopy has
been under research for non-invasive glucose sensing [85]. The research of numerous
scientists resulted in a CE approval for such an impedance spectroscopy-based sensor
called Pendra in 2003. However, post-marketing studies on six type 1 diabetes patients
revealed that 4.3% of the Pendra readings were in the dangerous Zone E of the Clarke error
grid. Consequently, Pendra was removed from the market shortly after its CE approval [86].
Moreover, GlucoBand is another impedance spectroscopy-based glucose monitoring system
with a similar fate as Pendra and was never released in the commercial market.

In impedance spectroscopy, the impedance Z of human tissue is measured by pass-
ing alternating current signals across the skin in the frequency spectrum of 100 Hz to
200 MHz [85,87,88]. The specific reaction of blood and tissue cells to a change in glucose
level results in a change in the electrolyte balance across the membranes of blood and under-
lying tissue. Therefore, the electric conductivity σ, and thus, Z of tissue is sensitive to the
glucose level [85]. However, non-invasive glucose sensing with impedance spectroscopy
is challenging due to distortions imposed by the movement of the electrodes on the skin
surface [89], sweat, and temperature fluctuations as well as skin thickness or moisture vari-
ations [88]. Therefore, researchers proposed to combine impedance spectroscopy sensors
with multiple sensors to increase the overall accuracy and stability of non-invasive glucose
sensing. In [87], a wearable system comprising impedance spectroscopy, temperature,
humidity as well as optical sensors. Moreover, in [89], a similar multisensor wearable
system was proposed. The system consisted of dielectric, optical, temperature, humidity
sensors and an accelerometer. Both approaches fused several physiological parameters to
increase the overall sensor accuracy.
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Research by Geng et al. (2017) [87]:

• Components: The wearable system for non-invasive glucose motioning proposed in [87]
consisted of multiple sensors (Figure 8). A flexible band worn on the wrist contained
temperature and humidity sensors as well as electrodes for impedance spectroscopy.
Moreover, LEDs and a photoelectric sensor were integrated into the flexible band
for optical sensing. Additionally, a flexible band with an electrode for impedance
spectroscopy was fixed to the upper arm.

Figure 8. Wearable multisensor platform for non-invasive glucose sensing. The system includes
impedance spectroscopy-based sensors (electrodes) as well as optical sensors (LEDs, photoelectric
sensor) and humidity and temperature sensors (Reprinted from Ref. [87]).

• Methods: The described setup for non-invasive continuous glucose monitoring was
evaluated in 33 experiments on six healthy subjects and three subjects with dia-
betes. The system comprised two different electrodes for impedance spectroscopy.
The signal frequency applied on the low-frequency electrodes on the waist and up-
per arm was 1 kHz to 150 kHz and on the high-frequency electrodes on the waist
10 MHz to 60 MHz, respectively. Therefore, the low-frequency electrodes measured
the impedance of the arm and the high-frequency electrodes the impedance of the
waist tissue. The use of multiple sensors and the application of time series analysis on
these signals endured the time delay between the physiological parameters and the
glucose level change. The performance of the system was evaluated by comparing
the estimated glucose profiles with the reference glucose profiles derived by finger
pricking or a dynamic glucometer.

• Results: The results indicated that the average of the correlation coefficients of the
estimated and reference glucose profiles was 0.8315. Moreover, the normalized root
mean squared error (NRMSE) was 14.6064. Overall, 100% of the estimated glucose
levels fell in Zones A and B of the Clark error grid, and 92.86% fell in Zone A. Therefore,
it was concluded that the proposed system had the potential of accurate non-invasive
continuous glucose monitoring.

• Limitations: The work of Geng et al. is promising; however, the movement of artifacts
due to relative displacement between the electrodes and the skin was not addressed.
In future research, this problem could be explored.

2.2.3. Microwave-Based Monitoring

Reviewing the microwave-based system, utilizing frequencies in the GHz-range, is
one of the main goals of the proposed work and is meant to have a great potential in
biosensors. This is because of its promising characteristics: high penetration depth in
human tissue, high sensitivity to subtle variation of glucose concentration and easy and
low-cost fabrication as well as for safety reasons [77,90,91]. In general, the technology can
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be classified into three parts according to their properties, namely, reflection, transmission
and resonant perturbation [77]. The reflection-based technique is a one-port one, which
evaluates the reflection parameter S11, as there is a dependency relation between the
intensity and phase variation of the signal and permittivity variation in the blood glucose
level [77]. The transmission-based technique on the other hand is a two-port technique,
which utilizes the transmission coefficients S21 and reflection coefficients S11, whereas the
resonant perturbation-based technique uses the Q-factor [53,77]. In the following, two early
findings and several recent studies are described.

Early Findings

In this subsection, two early findings will be introduced, which are both given by
M. Hofmann et al. [92,93].

• In 2011, an approach based on the dielectric and mounting properties of human tis-
sues was demonstrated [92]. According to it, different components can be composed
to simulate a tissue model. A model with skin, fat and blood vessels was proposed to
mimic human tissues. The glucose detection range is 50–500 mg/dL. Two different
types of patch antennas are applied to find the relation between the scattering param-
eters and the blood glucose concentration. The simulation is based on the crook of
the arm model. The human arm model is represented via the previously published
permittivity [94]. The simulation uses S11 and S21 in the range of 5 to 12 GHz.
The setup was tested for a water plus glucose test fluid, as water has a high permittivity
but a similar dielectric behavior to blood. The measuring frequency is 5–6 GHz.
The tested water–glucose solution is from 50 mg/dL to 500 mg/dL, and a slope of
392.5 kHz/dL is achieved between 5.3 GHz and 5.5 GHz.

• In 2013, a six-port reflectometer and a homodyne vector network analyzer were used,
with basis on the dielectric measurements as well [93]. In this study, the glucose
detection range is 72–500 mg/dL. Both reflection and transmission methods are used
and indicate that there should be a limitation of maximum propagation distance in
the material under test (MUT) and a proper choice of the waveguide parameters.
In addition, a simplification model and an effective permittivity were introduced.
The bold line with width w represents the conductor and the gray part is the MUT.
Additionally, h is the substrate thickness of 100 µm, ω corresponds to the angular
frequency, and χ serves as the glucose concentration. The model is simplified from
a waveguide cross section of a stacked structure with a microstrip line covered by a
blood vessel. As the radius of the blood vessel is larger than the conductor width, the
blood vessel is regarded as the MUT, so that the transmission along the blood vessel
can be achieved. It has to be remarked that there is no air gap between the microstrip
line (MSL) and MUT.
In the experiment, 40 samples of real blood with added NaCl and water are used,
where NaCl and water serve as the carrier and reference samples. A total of 50 mea-
surements on the MUT were conducted with two 2.92 mm connectors in 14–16 GHz
with a glucose concentration variation between 0 and 40.000 mg/dL. The output mag-
nitude and phase shift of both reflected signal and transmitted signal are summarized
in Table 4. This implies that when the glucose concentration varies from 0 mg/dL to
10.000 mg/dL, a phase shift of 0.08◦ and a transmitted magnitude change of 3.2 mV
occurred for the reflected signal, whereas for the transmitted signal a phase shift of
0.2◦ and a transmitted magnitude change of 8 mV were shown. Such a variation on
the transmitted magnitude and phase shows the sensitivity of the proposed sensor.
That means both reflection-based and transmission-based sensors can detect the minor
glucose concentration variation.
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Table 4. Output magnitude and phase shift of reflected signal and transmission signal according to
the results of [93].

Reflected Signal Transmission Signal

Magnitude (mV) Phase Shift (°) Magnitude (mV) Phase Shift (°)

∆χ = 0 mg/dL ∼894.4 ∼−3.8 ∼858 —
∆χ = 10.000 mg/dL ∼891.2 ∼−3.96 ∼864 ∼−7.76

Recent Findings

In the following four recent new studies are introduced.

Research by A.E. Omer et al. [35,95]:

The remarkable points of this research are that the sensor is portable and the raw data
from the radar receiving channel demonstrate a clear correlation for a change in the blood
glucose level. The first findings were published in [95] which was extended in [35].

• Components: The idea of the sensor design is based on the hexagonal-shaped comple-
mentary split ring resonator (CSRR). The proposed sensor is composed of four-cell
CSRRs in a honey-cell pattern with two different topologies, namely, a compact one
with a horizontal distance of 7.6 mm and a dispersed one with a horizontal distance
of 12.6 mm. The distance between the other two vertical placed CSRRs is 12 mm.
Additionally, a VNA, a 2.45 GHz radar board and a container are used in the setup.

• Methods: The experimented glucose level varies in the range of 70–120 mg/dL on the
blood mimicking aqueous solutions. The chosen operation frequency is 2.45 GHz, as
it not only matches the Industrial, Scientific and Medical (ISM) band for the sensor
integrating in the radar system but also provides adequate penetration depth for
the glucose detection. As the magnitude and phase variation is more distinct and
sensitive on the transmission coefficient S21 than on the reflection coefficient S11, the
sensitivity evaluation is only conducted through frequency shifts of S21. The whole
research can be divided into three parts: a numerical analysis, an in vitro VNA mea-
surement and an in vivo evaluation with a radar system. The numerical analysis can
be further divided into three cases: unloaded, loaded with an empty container and
loaded with pure distilled water of volume 600 µL on the compact and dispersed CSRR
sensor. Additionally, different skin layer thicknesses of 0.5, 1.0 and 1.5 mm are consid-
ered in the simulation. In the in vitro VNA measurement, glucose concentrations of
70–120 mg/dL and 200–500 mg/dL are applied to the two different sensor topologies.
For the sake of sensitivity improvement, a PCA algorithm is utilized to analyze the
scattering response of the VNA measurement results. Finally, the in vivo test is inves-
tigated on the finger. Different to the measurement experiment (depicted in Figure 9),
the costly and bulky VNA is replaced with a radar system, which is low cost and low
power and carries out real-time monitoring. Notably, the whole research is carried out
at room temperature or 25 ± 1 °C.

Figure 9. Working principle of the proposed sensor system by Omer et al. The portable radar-driven
sensor measures the BGL by sensing electromagnetic waves of small wavelengths into the blood
vessels of the fingertip (Reprinted from Ref. [35]).
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• Results: From the numerical analysis, a clear frequency shift occurs after placing a
container on the sensor. After loading with distilled water, a further frequency shift
and a steeper magnitude variation on the S21 can be observed. Additionally, a clear
separable change on both frequency and amplitude can be directly seen after different
glucose samples in the range of 40–500 mg/dL are filled into the container. Notably,
the skin thickness has a negative influence on the coupled electric field, implying the
amplitude variation per dielectric permittivity and the loss tangent are different. In the
in vitro VNA measurements, both sample concentration ranges show similar responses
in the frequency shift and amplitude variation for the two typologies. Those changes
can be related correspondingly to the different sample concentrations. Remarkably,
only a slight variation occurs in the frequency shift, whereas the amplitude variation
is significant. Nevertheless, the average monitoring sensitivity is 0.94 MHz/(mg/dL)
(dispersed: 0.45–0.95 MHz/(mg/dL); compact: 0.63–1.25 MHz/(mg/dL)), which
indicates that the determined variation can be as little as 1 mg/dL. Additionally, after
applying PCA post-processing, a clearer separation can be seen for different sample
concentrations of 70, 90 and 110 mg/dL. In the in vivo test, the designed sensor
operates together with a radar system on a 29-year old healthy male volunteer for a
maximal test duration about one minute. The test result indicates the same glucose
variation trend as with a glucometer. Moreover, the result curves are distinct and
separable for different glucose concentrations.

Research by V.V. Deshmukh et al. in 2020 [96]:

Microstrip antennas have various structures, which lead to different antenna character-
istics. In 2020, V.V. Deshmukh et al. [96] gave suggestions for the choice of antenna structure
used in NI-measurements. The compared antennas are rectangular spiral shaped antennas,
ultra wide band (UWB) antennas and narrow band antennas. In 2021, V.V. Deshmukh
et al. [97] extended their findings by using a narrow band microstrip antenna to measure
the BG level, which will be shown later in the subsequent section.

• Methods: The experiments were conducted in the range of 1 GHz to 5 GHz. Blood
glucose levels between 0 and 400 mg/dL were measured via a VNA. The antenna
is fabricated on FR4 material with 1.6 mm height and a single feed line with a 50 Ω
characteristic impedance. The spiral antenna, UWB antenna and narrow band antenna
are designed for resonating frequencies of 4.7 GHz, 3.4 GHz and 1 GHz, respectively.
The relation to the BGL is constructed according to the return loss measured by S11
and the frequency peak.

• Results: Because of the rectangular spiral shape of the antenna, there is a certain loss,
characterized by the return loss of S11, between simulated and measured values. The
simulated value and the tested values of the S11 peak for the spiral shaped antenna
are –32.04 dB and –20.09 dB, respectively. As the frequency response of UWB antenna
is quite wide, it is not easy to get a correspondence of the frequency response and
the blood glucose level, although it is an encouraging method. The final simulated
and tested values of the S11 peak are –33.327 dB and –29.236 dB, and –42.22 dB and
–39.34 dB, respectively. Nevertheless, the narrow band antenna gives a more accurate
linear response compared to the other two antennas. For the narrow band antenna,
the simulated value and tested value of the peak of S11 are –31.37 dB and –26.84 dB,
respectively. In sum, the loss for the narrow band antenna is the smallest, compared
to the other two types of antennas.

• Further Improvements: As next steps, V.V. Deshmukh et al. [96] suggest to generate a
mathematical model to predict blood glucose level. For this purpose, the forehand
data can be collected to build a data set.

Research by V.V. Deshmukh et al. in 2021 [97]:

• Methods: The main idea of this research is based on the observed frequency shift of S11
depending on the variation of BGL. The designed narrow band microstrip antenna
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resonates at 1.36 GHz. The whole research has two parts: data collection and data
processing. The BGL is in the range of 0–400 mg/dL.
In the data collection, 250 individuals were involved: 75 diabetic subjects (50 male and
25 female aged 18–65), 50 pre-diabetic subjects (25 male and 25 female aged 18–65) and
125 diabetic subjects (75 male and 50 female aged 10–70). The Accu-Check machine
was used to record the reference BGL and a VNA to collect corresponding frequency
shifts. The reference BGL data were collected 12 h after the fasting period or 2 h after
the lunch.
In the data processing part, some redundant data were eliminated, which resulted
from the environmental change interference. After that, two regression analyses were
performed, linear regression with and without sub band frequency analyses, which
depended on the frequency shifts. The detailed 3 sub bands are the frequency shifts less
than 1 GHz (non diabetic), 1–1.5 GHz (pre-diabetic) and larger than 1.15 GHz (diabetic).

• Results: The performance without the sub band results in the coefficient of determi-
nation value R2 of 0.7525, the surveillance error grid (SEG), which is an estimation
for clinical scenarios. SEG illustrates the risk level through a color-coded graph from
dark green to dark red. Lower risk is displayed in dark green, whereas higher risk is
shown in dark red. In other words, the result with more points appears in the green
part and the one with less points in the red part performs better. The SEG results are
60.91% in the dark green part, 20% in the green part and 19.09% in the yellow part,
and the MARD result is 22.98%. After using the sub-band regression, the performance
is improved: R2 of 0.8479 for non-diabetic, of 0.8346 for pre-diabetic and 0.9133 for the
person with diabetes; SEG of 85.37%, 9.76% and 4.88% in the dark-green, green and
yellow parts, respectively, and mean MARD of 4.204%.

• Further Improvements: The observed measurement errors, such as in the skin thickness
and the finger pattern, are mainly caused by the finger movement, the temperature,
the pressure and the humidity. Therefore, a proper analysis is important for the
microwave-based BG sensor. Meanwhile, the finger should be pressed moderately on
the sensor, otherwise the blood may be pressed away, which may lead to measurement
inaccuracy.

Research by X. Xiao et al. [32]:

Although it is quite difficult to find the correlation between the frequency response
and the actual glucose concentration by using UWB microwave, X. Xiao et al. proposed a
novel method, the so called UWB microwave with improved neural network and hybrid
optimization (INNHO). Both S-parameter and frequency response are utilized. The results
are remarkable, as the prediction error is just in the range from 0.31% to 4.64% for a glucose
concentration in the range of 0–500 mg/dL. The testing object is a glucose–water solution.

• Methods: The whole process can be divided into two parts, namely, a detection part
and a data processing part. In the detection part, a VNA and a three-layer earlobe
model are employed, which play a vital role in further data processing and serve
as training dataset and test set. The VNA is calibrated with a 12-term short-open-
load-thru (SOLT), including isolation using OLSN50 calibration kits. The VNA is
operated in the range of 0.2–4 GHz and with a stepsize of 6.25 MHz to detect the
reflection and transmission coefficients. In the earlobe model, B1 corresponds to the
blood layer with a thickness of 3 mm, whereas F1 and F2 are two fat layers with the
thickness of 1.5 mm each. D1 and D2 are the boundaries between the fat and blood
layer. A1 and A2 represent two antennas with a size of 80 mm × 20 mm, whereas E
describes the plane Electromagnetic (EM) wave. In particular, E1i, E1r, E2i, E2r and E3
are the transmitted wave in layer F1, the reflected wave in layer F1, the transmitted
wave in layer B1, the reflected wave in layer B1 and the transmitted wave in layer
F2, respectively. Additionally, εi and σi are the permittivity and conductivity of the
respective medium. The measured data are then stored in a PC for further signal
post-processing.
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In the subsequent processing part, the INNHO is used, which consists of two models: a
modified back propagation neural network (BPNN) model and a hybrid least squares-
random sample consensus (LS-RANSAC) model. Since this research uses machine
learning signal post-processing, the detailed methods will be explained in Section 3.1.

• Further Improvements: The model in this state misses real-world factors to some extent.
Thus, e.g., the thickness of the tissue should be considered.

Research by S. Zeising et al. [98]:

• Components: The approached sensor (Figure 10) is a two-port microstripline simula-
tion based system with an operating frequency of 19.037 GHz after tapering and an
impedance of 50 Ω. It is adhered to a substrate with a dielectric constant εrs of 10.7.
The size of the sensor is 0.36 mm in width. The MUT object is a water glucose solution
of 0–500 mg/dL glucose level. A water tank simulates the blood-glucose with 5 mm
in depth, 5 mm in width and the dielectric constant εrw = 78.2.

Figure 10. View of the proposed sensor approach (Reprinted with permission from Ref. [98] ©
2020 IEEE).

• Methods: The main idea is to evaluate the frequency shift of the reflection coefficient
S11 caused by various glucose concentrations. Moreover, two step-sizes are chosen
for studying the relation between the glucose concentration and the reflection and the
transmission coefficients, a fine one with 10 mg/dL in the range of 0–110 mg/dL and
a coarse one with 50 mg/dL in the range of 0–500 mg/dL.

• Results: The corresponding phase variation to the glucose concentration change is
detected through the reflection coefficients S11, with circa 2 ° per 10 mg/dL change
and with about 10 ° per 50 mg/dL variation, while no significant phase difference,
with 0.035 ° per 10 mg/dL variation, can be seen through the transmission coefficients
S21 (Figure 11), which indicates that the phase variation of S11 is more sensitive than
of S21.

• Challenging: The fabrication of the sensor is challenging because of the high matching
purpose, which means an impedance-tuner is needed to avoid the mismatching. Ad-
ditionally, a cable with a high phase stability is in demand. Furthermore, the material
of the substrate and an additional layer above it need to be moisture-absorption free.
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(a)

(b)

(c)

Figure 11. Phase variation of S11 and S21 due to the different glucose concentrations (Reprinted with
permission from Ref. [98] © 2020 IEEE). (a) Phase variation of S11 with a glucose concentration of
10–110 mg/dL. (b) Phase variation of S11 with a glucose concentration of 50–500 mg/dL. (c) Phase
variation of S21 with a glucose concentration of 10–110 mg/dL.

Research by A. Kumar et al. [99]:

A. Kumar et al. proposed an LC-resonator-based biosensor to achieve a low resonating
frequency system so that the penetration depth and the interaction areas are enhanced.
Additionally, influencial factors like temperature were considered.
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• Methods: The biosensor utilizes an LC-resonator. The applied inductor is chosen to be
an intertwined air-bridge-type asymmetrical differential spiral inductor to improve the
whole device inductance. The capacitor is a circular finger-type inter-digital capacitor
with max. five circular fingers and a varying resonating frequency depending on the
number of fingers. The system is proposed to have a resonating frequency of 1.5 GHz
to accomplish a deep penetration according to Equation (4). Hereby, the value of
penetration depth is calculated according to the deionized (DI) water. In consequence,
a penetration depth of 34.46 mm is achieved.
The detected S-parameters serve as the estimation factor to evaluate the accuracy of
the fabricated sensor through comparison among the simulated, fabricated and DI
water droplet sensors. Then, through the S-parameter and various glucose samples
(30–500 mg/dL), the relation between resonating frequency and glucose concentra-
tion is found. After a linearization for calibration reasons, temperature effects are
determined. According to the resonating shifts and the Q-factor shifts, a mathematical
modeling of the sensor is developed, leading to the relation between the effective
permittivity and glucose concentration.
In addition, the glucose sample permittivity and relaxation time both affect the varia-
tion in complex permittivity, which can be observed by the Debye equations [98]

εr(ω) = ε
′
(ω)− jε

′′
(ω) (8)

εr(ω) = εinf + (εr,stat − εinf)/(1 + jωτrelax), (9)

where ε
′
(ω) and ε

′′
(ω) are the real and imaginary part of the relative permittivity, εinf

is the the permittivity at very high frequencies, εr,stat is the relative permittivity in the
steady state, and τrelax is the relaxation time.

• Results: The proposed biosensor is able to detect glucose concentration in the range
of 30–500 mg/dL in less than 5 s with an amplitude deviation of 0.004 dB/mgdL−1.
In addition, the measurements were conducted at temperatures of 10–50 °C. The
deviation of the tested and simulated accuracy-estimation is because of fabrication
errors and impedance mismatching. Compared to the previously published glucose
sensors, this sensor has a smaller size and low limitation of detection. Table 5 shows
a summary of the results compared to the previous published studies, for example,
utilizing Complementary Split Ring Resonators (CSRRs).

• Further Improvements: In the next step, the measurement should be performed under
more realistic conditions, taking for example the human serum albumin with different
age, gender and diabetes problems into account.

Table 5. Performance comparison of different resonator approaches.

Reference Biosensor Structure Concentration
(mg/dL)

Size
(λ0 × λ0)

Sample Amount
(µL)

Sensitivity
(dB/mg/dL)

Limit of
Detection
(mg/dL)

[99] LC-Resonator 30–500 0.006 × 0.005 0.1 0.0049 35
[100] LC-Resonator 25–500 0.026 × 0.060 1 NA 80
[101] CSRR Resonator 30–400 0.251 × 0.386 NA 0.0003 NA
[102] CSRR Resonator 0–500 NA 70 0.005 NA
[103] Hilbert-shaped Resonator 50–250 0.408 × 0.808 500 0.000156 19.2

Research by A. Gorst et al. [104]:

• Components: The designed sensor is a coin-shaped near-field sensor, 25 mm in diameter
and 0.76 mm in thickness. In addition, there is a VNA to measure the BGL and a hand
model, which simulates biological tissue.

• Methods: The research is managed in three parts: model calculation, numerical simula-
tion, and practical experiment. The blood considered here is venous blood. Therefore,
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instead of the various solutions in a container such as in the aforementioned studies,
the solution is given through a silicon tube with a 5 mm inner diameter. In the hand
model, the stratum corneum of the epidermis, the dermis, the subcutaneous adipose
tissue, the hand vein and its wall and the fat are considered as having a thickness
of 0.22, 0.04, 1.83, 1, 4, 0.5 and 6 mm, respectively. The system, including the hand
model and the sensor, is operated in the frequency range of 0.5–5 GHz. Different saline
solutions: 0, 18, 54, 72, 90, 126, 162 and 180 mg/dL (0, 1, 3, 4, 5, 7, 9 and 10 mmol/L)
are simulated to get the relation between the real part of the dielectric permittivity
and the frequency. In the practical part, the simulations are then validated in practice.

• Results: After applying the subtraction of the zero concentration to various con-
centrations, the maximum difference can be detected at around 1 GHz and in the
range of 1.5–1.8 GHz. At the frequency of 1.07 GHz, the accuracy can be achieved
with 0.1 dB in amplitude value of reflection coefficient S11 to the glucose change of
18 mg/dL (1 mmol/L). However, in the practical experiment, the maximum difference
is achieved at frequencies from 1.45 GHz to 1.55 GHz. The bias between the simulation
(1.07 GHz) and the experiment is mainly caused by sensor manufacturing. In addition,
the difference between the solution with 126 and 162 mg/dL (7 and 9 mmol/L) is hard
to distinguish. In this range, at a frequency of 1.53 GHz, the sensor showed an optimal
solution, which means the average variation in amplitude value of S11 is 0.15–0.4 dB.
However, the average value thereof is over the simulation result.

• Further improvements: In further research, the flexibility and mobility of the whole setup
need improvements such as replacing the bulky VNA. Moreover, the time needed to
perform the data collection and data processing should be reduced significantly.

Research by A.S. Zapasnoy et al. [105]:

• Methods: The proposed setup operates in near-field in the frequency range of 0.1 GHz
to 10 GHz at 1 mm distance between the sensor and the tissue through the reflection
coefficient S11. There are two processing stages, namely, numerical simulation and
experimental testing. The glucose level is monitored via the real part of dielectric
permittivity. The sensor is conical, horn-shaped so that a wider passband can be
achieved than in those with an open-end narrow-band probe. In the numerical
simulation, conducted in the frequency range from 10 MHz to 10 GHz, biological
tissues such as skin, blood, fat, muscles, and bones are considered. In the experimental
testing, a sodium chloride solution with various contents of dextrose is used as a
sample. The spectrum is analyzed with an N5230C power network analyzer (PNA-L)
at its working frequency from 10 MHz to 40 GHz.

• Results: The simulation results illustrate the attenuation characteristics and penetration
depth of different biological tissues. The penetration depths of blood, muscles and
skin, of bone and of fat are 30, 60 and over 100 mm, respectively. In the experimental
setup, when the frequency is lower than 1.5 GHz or over 3.5 GHz, the spectral behavior
for different sample solutions cannot be distinguished. Therefore, the frequency range
of 1.4–1.7 GHz is chosen. In this frequency range, the glucose concentration can be
monitored from 0 to 450 mg/dL with a resolution of 1.8 mg/dL.

• Further improvements: The signal distinction at a frequency over 3.5 GHz can be
improved, being not limited between 1.4 and 1.7 GHz.

3. Post-Processing

There are several methods to perform the data processing of glucose data, such as
temporal abstractions, time series analysis and a combination of symbolic and numerical
methods [106]. As the loss of data occurs quite often, interpolation and extrapolation are
applied for more reliability. The processed data are then fitted into the regression equations.
Such problems will be amplified, especially for individual glucose management.

The problem, however, can be dealt with by applying machine learning, which has
drawn a great deal of attention for its advantageous data processing performance in
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optimization [107]. With CGM, the data recording is nowadays straightforward, and on
the other hand, a huge amount of data are available. This large dataset is particularly
advantageous for the machine learning method to improve the data analysis for better
accuracy [32,35,108]. Notably, for the machine learning method, a large training set is
needed, which means large biomedical data have to be available. However, the biomedical
data are usually complex and disordered [109]. Thus, the pre-processing of the data is
mandatory. The performance of machine learning depends not only on the algorithm itself
but also on the similarity of the training set and the test set, which means the right choice
of the dataset and the test set is essential.

Moreover, machine learning can even enhance the diagnosis as well as the therapy
of diabetes by improving the prediction of BGL trends, thus reducing hyperglycemia and
hypoglycemia [36,37,41,42]. Furthermore, the risk of getting secondary diseases can be
estimated [39,40]. All in all, as machine learning has such a high potential for the post-
processing of BG monitoring, in this paper, the chosen processing systems using machine
learning methods for improving accuracy as well as predicting BGL trends are introduced.

3.1. Improving Accuracy via Post-Processing

Research by X. Xiao et al. [32]:

The underlying sensing principle has already been introduced in Section 2.2. The samples
under test are between 0 and 500 mg/dL. In one series, twenty-five data samples in the range
of 20–500 mg/dL are collected with 20 mg/dL steps. These are later used as the training set.
Additionally, five samples in the range of 50–450 mg/dL are taken with an interval of 50 mg/dL
between each other, which serve as the test set. For each concentration, 255 different sets of
data were investigated. All data from the training sets are used for k-fold cross-validation. The
INNHO system applies two approaches, namely, the BPNN and LS-RANSAC. BPNN is used
to find out the relation between the glucose concentration and S-parameters. After the training,
LS-RANSAC is conducted on the estimated results to optimize estimation accuracy.

Before training, the data are pre-processed as follows: first, the difference between the
measured S-parameter and that of water, the so-called relative S-parameter, is computed to
minimize the system error; then, normalization is applied to have the frequency and the
relative S-parameter in the same range [0,1].

BPNN is utilized for presenting the non-linear correlation among the frequency, the
relative S-parameters and the glucose concentration, benefiting from a short processing
time. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is used in the training phase
due to its 25% quicker calculation than gradient descent. The training phase will stop when
the iteration reaches 400,000 times or the mean square error reaches 0.001. That means that
the loss function is defined regarding the square error.

LS-RANSAC is used as a further accuracy improvement of the estimation. LS is widely
used for fitting; however, it is sensitive to noise. That means, it has poor performance
eliminating outliers. Therefore, RANSAC is conducted as a next processing step to decrease
the influence of the outliers on the estimation accuracy of concentration.

In the network (Figure 12a), there are 7 input parameters, namely, the frequency f ,
the amplitude of the relative S-parameter (Re(∆S11), Re(∆S21), Re(∆S22)) and the phase
of the relative S-parameters (Im(∆S11), Im(∆S21), Im(∆S22)). The hidden layer consists of
2 layers and 18 and 7 neurons, respectively. The training data set is built with 255× 25× 7
data. The output layer of the neural network outputs the blood glucose levels for every
iteration. By executing the LS-RANSAC, the final concentration value is figured out. Finally,
the k-fold cross-validation (Figure 12b) was applied, and the root mean square (RMSE)
and the median absolute error (MAE) were calculated. Both the estimation accuracy with
RMSE and MAE for 10 and 25 iteration times show a low evaluation metric being less
than the ISO 15197 and the Food & Drug Administration (FDA) standard of 15 mg/dL
and 12 mg/dL, respectively. The performance results are summarized and compared to
the previously published studies [110–113] in Table 6. It is clear that the research by X.
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Xiao et al. is promising in terms of obtaining a lower RMSE of 5.53 mg/dL and a sensitivity
of 0.0045 dB/(mg/dL) (equal to 0.07 dB/(15.48 mg/dL)).

Input layer

Hidden layer

Output layer

Cm

f

Re(∆S11)

Im(∆S11)

Re(∆S21)

Im(∆S21)

Re(∆S22)

Im(∆S22)

Original dataset

Training dataset Test

1st iteration
2nd iteration
3rd iteration

kth iteration

Validation fold Training folds

E1

E2

E3

E4

Ea

Final performance
estimate

Evaluate

Predictive
Model

(a) (b)

Figure 12. Overview of the signal post-processing redrawn according to [32]. (a) Structure of the
applied neural network. (b) Structure of the applied cross validation.

Table 6. Performance comparison of recently published earlobe models, concerning analytical as well
as neural network approaches such as Complex-Valued Neural Networks (CVNN). Cal. corresponds
to calibration.

Reference Frequency
(GHz)

Utilized Data,
Calibration

Estimation
Method Dataset Concentration

(mg/dL)
Sensitivity

(dB per mg/dL) Performance

[110] 60 S21
No Cal. Analytical 10 healthy men

in vivo 23.94–4788 0.65× 10−3 Glucose spike
monitoring test

[111] 1.4–1.9
S11, Z11
Cal. not

mentioned
Data Fitting

12 meas. samples
in vitro

5000 pseudo samp.
78–625

625–5000
1.8× 10−3

6.6× 10−3

Average error
20 mg/dL
50 mg/dL

[112] 60–80
S21

Cal. not
specified.

CVNN 7× 30 meas. sampl.
in vitro 50–300 —

Estimation for 100 mg/dL:
80–107 mg/dL

internal validation

[113] 3–10

Absorption
Spectrum
Cal. not

mentioned

Linear
Fitting

meas. from 0 to 500 mg/dL
in step of 20 mg/dL

in vitro
20–500 — Proof of concept

[32] 0.2–4 S11, S21, S22, f
SOLT Cal. INNHO

training: 255× 25
testing: 255× 5

in vitro
20–500 4.5× 10−3 RMSE: 5.52 mg/dL

k-fold cross-validation

3.2. Prediction of BGL Trends

Research by E.A. Pustozerov et al. [114]:

E.A. Pustozerov et al. elaborate on the so-called gestation diabetes mellitus (TGD),
a particular type of diabetes [114]. The BG control effectiveness is evaluated through
the postprandial glycemic response (PPGR), the prediction subject here. The decision
tree gradient boosting algorithm is used for a prediction model, the xgboost model. This
algorithm comes with a highly accurate prediction, even though some information about
the BGL is missing, which means it still works promisingly even if some training data
are lost. The loss function is the mean square error. The used data are meal-related, such
as the amount of fat in the meal, the food context, such as the amount of carbohydrates
consumed 3 h before the meal, and some patients’ personal characteristics, such as lifestyle,
age, weight and height. In addition, an official mobile software is designed for the users.

PPGR includes the following characteristics:

• BGmax in mmol/L: The peak BG level after the meal started;
• iAUC120 in mmol/L · h: The incremental area under the glycemic curve 120 min after

the meal start, which is the main factor in PPGR research;
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• BGRise in mmol/L: The rise of BG from the meal start to the peak;
• BG60 in mmol/L: The BG value 60 min after the meal start.

Three ‘data’ scenarios are analyzed: without glucose measurement data before the
start of the meal, a single data point measured with a glucometer or flash CGM, and with
full CGM measurement data. That means, there are 12 characteristics. Further, there are
some detection rules for eliminating incorrect or invalid information. For instance: More
than half of the meals are recorded with the same dish.

The Pearson’s coefficient of correlation R and the MAE are utilized. In addition, the
research team looked through various influence factors and chose the top three factors
according to the Shapley value, namely, the meal’s glycemic load, the amount of car-
bohydrates, and the type of consumed food, especially at breakfast. The dataset with
3240 records of meals and corresponding PPGRs is separated into two parts: 75% thereof
belong to the training set and the rest to the test set.

The results of the BGmax model are illustrated in Figure 13: The yellow points
represent a discrepancy between the predicted BGmax values and the real BGmax values
of less than 18 mg/dL (1 mmol/L). The red points correspond to a variance larger than
18 mg/dL (1 mmol/L). It is quite clear that the number of the yellow points dominates the
red ones, showing the reliability of the proposed method. In addition, compared to the
previously published models, the work of E.A. Pustozerov et al. has a similar performance,
which is summarized in Table 7.

evaluation mistake less
than 18 mg/dL (1 mmol/L)

evaluation mistake more
than 18 mg/dL (1 mmol/L)

real values equivalent
to the predicted values

real values (mmol/L)
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Figure 13. Correctness of real and predicted values of BGmax (Adapted from Ref. [114]).

Table 7. Performance comparison of previous publications regarding the iAUC120 value.

Reference Value Model Performance Diabetic Status

[114] iAUC120 Boosted decision trees R = 0.644 TGD
[115] iAUC120 Boosted decision trees R = 0.70 healthy
[116] iAUC120 Boosted decision trees R = 0.62 healthy

D. Zeevi et al. [115] also aim to see the variability of food PPGRs but by applying
gradient boosting regression, which predicts PPGRs with thousands of different decision
trees. Their experiment was trained with 800 people and had two validation methods: leave-
one-person-out cross-validation and independent 100-person validation. Additionally,
H. Mendes-Soares et al. [116] aim to find the PPGR to food. The predictive model is based
on D. Zeevi et al. [115] and uses the gradient boosting regression as well. However, E. A.
Pustozerov et al. outperform both approaches, achieving R = 0.644 compared to 0.7 and
0.62 of the Zeevi et al. and H. Nedes-Soares et al.
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In sum, the gradient boosting model offers promising prediction effectiveness and
accuracy. However, since the patients’ meal data are mandatory, the reliability of this
information has to be guaranteed, which needs further improvements, e.g., eliminating the
incorrect information in the context of the documentation. Furthermore, the microbiome
and metabolomics data should be taken into account.

Research by J. Martinsson et al. [117]:

Another approach was proposed by J. Martinsson et al. [117], which is based on
recurrent neural networks (RNN) and achieves the BG level prediction up to one hour later.
In the RNN, there are two hidden dense layers, called the dropout layer and the output
layer. The dropout layer eliminates the overfitting data, whereas the output layer has two
neurons, namely, the linear activation and the exponential activation. This characterizes a
univariate Gaussian distribution.

The training set is based on the Ohio T1DM dataset [118], which contains an observation
time of 8 weeks with a CGM record every 5 min, considering two male and four female patients
aged 40 to 60. In addition, the dataset provides some additional self-reported information
about the amount of consumed carbohydrates, exercise, sleep, and work. However, only the
glucose records were evaluated because the authors want to prove that it is still feasible to
predict the glucose level based only on them. Moreover, the dataset is divided into three parts,
60% of which serves as the training set, 20% for validation, and the rest for testing purposes.

Two loss functions are used, a negative log-likelihood loss function and a physiological
loss function. However, the physiological loss function showed no improvement in the
training phase. The applied optimizer, batch size, and the learning rate are Adam, 1024,
and 0.001, respectively. For the model estimation, two criteria are used, namely, SEG and
the RMSE. The final model is trained on the BG level with a duration of 60 min and predicts
the BG level in 30 or 60 min. The results show an improved baseline.

3.3. Summary

As can be seen in the previous sections, post-processing using AI offers great oppor-
tunities in both, increasing the accuracy of measurement data and predicting the trends
of blood glucose levels. The latter supports diabetic persons significantly, since it helps
to avoid hyperglycemia and hypoglycemia. A comparison of different approaches with a
prediction horizon of 30 min is given in the discussion summarized in Table 11. A more
detailed table can be found in [37,42]. Further discussion regarding potential, challenges
and concerns (used dataset, external validation) of AI in signal post-processing can be
found in Section 5.2.

4. Commercial Devices and Systems
4.1. Commercial Devices

A commercial sensor must satisfy several criteria to get CE and Food and Drug
Administration (FDA) approval, which implies satisfying the reliability, consistency, and
safety criterion [77]. The corresponding accuracy for the EU, defined by the European
Medicine Agency (EMA), and for the USA, defined by the FDA, are listed in Table 8. The
FDA requires that 95% of all measurement values should be for BGL ≥ 75 mg/dL within
the range of±12% compared to the reference values and, additionally, for BGL < 75 mg/dL
within ±12 mg/dL. Furthermore, 98% of the measurement results should not exceed ±15%
for BGL ≥ 75 mg/dL, and ±15 mg/dL for BGL < 75 mg/dL, respectively [119].

Table 8. Criteria for FDA and EMA according to [26,77].

Reference Agency Country Blood Glucose Level Min. Accuracy

[120] EMA EU ≥100 mg/dL 95%± 15%

[119] FDA USA ≥75 mg/dL 95%± 12%
98%± 15%



Sensors 2022, 22, 425 25 of 44

For determining the accuracy, there are several methods such as the mean absolute
relative difference (MARD), root mean square error (RMSE), correlation coefficient, sys-
tematic measurement difference (bias) and error grids (namely, Clarke-, Consensus- and
Surveillance error grid) [37,121]. In the proposed paper, the accuracy of state-of-the-art
non-invasive glucose sensors and commercially available sensor systems will be further
discussed (next to the already introduced metrics) using the Clarke error grid.

According to this model, the accuracy of a glucose monitoring system has to meet strict
requirements [122]. The Clarke error grid compares the true BGL with the measured BGL
and is illustrated in Figure 14. If the measured BGL perfectly fits the reference (ideally true)
BGL, it is located on the bisector of the grid. The more the true and the measured values
differ, the more dangerous it can be for the patient. This is represented by the different
zones A-E in the grid. A glucose sensor is classified as a clinically valid treatment when
the tolerance of the glucose level is below 20% (see region A in Figure 14), or both the true
and the measured BGL are below 70 mg/dL, since the latter corresponds to hypoglycemia.
The other zones, B, C, D and E, correspond to clinically uncritical treatment, unnecessarily
treatment, dangerous fails to diagnose and treat, and extremely dangerous leading to
wrong treatment, respectively [121].
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Figure 14. Clarke error grid model. The region A shows the desired accuracy of a glucose sensing
system to fulfill clinical accuracy requirements.

In addition, the success of a commercial device is not only about the technology but
also about the cost. In consequence, various approaches using different sensor principles are
proposed by different companies, e.g., the TensorTip Combo Glucometer by Cnoga Medical
Ltd (NI-optical, CE Mark, not cleared by FDA), the sugarBEAT by Nemaura Medical
(NI-fluid-based, CE Mark, not cleared by FDA), and Eversense by Senseonics (minimal
invasive, CE Mark and FDA cleared) [123]. A detailed review was published by Shang
et al. [123] (2021). They investigated in total 65 different blood glucose monitoring products
with different statuses of development regarding their advantages and disadvantages. The
products include 28 non-invasive optical products, 6 non-invasive fluid sampling products,
and 31 minimally invasive products. Few of the sensor systems have received the CE
Mark and/or have been cleared by the FDA yet. Some of them were discontinued, such
as the GlucoWatch Biographer from Cygnus Inc. and the Pendra Device from Pendragon
Medical because of issues about burning sensation and inaccuracy, respectively, or did not
enter the market, such as the NBM-200G from OrSense [26,77,108,123]. Although there are
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many failed commercial devices, others are successful, such as the two popular commercial
systems, FreeStyle Libre and Dexcom. Table 9 gives a brief comparison of both. The price
for both the FreeStyle Libre and the Dexcom, approx. 60€ [124,125] each plus additional
costs for a reusable transmitter/reader.

Table 9. Technical data comparison between FreeStyle Libre and Dexcom [22,23,80,123,126].

FreeStyle Libre 2 FreeStyle Libre 3 Dexcom G6

Release time 2020 2021 2020

Sensor type CGM
using flash glucose
monitoring system

CGM
using CGM system

CGM

Sensor principle electrochemical electrochemical electrochemical

Regulatory
status

CE Mark
cleared by FDA

CE Mark
not cleared by FDA

CE Mark
cleared by FDA

Sensor size 5 mm in height
35 mm in diameter

2.9 mm in height
21 mm in diameter

45.7 mm × 30.5 mm
×15.2 mm

Sensor weight 5 g 1 g 12 g

BG measuring range 40–500 mg/dL 40–500 mg/dL 40–400 mg/dL

Working period 14 days 14 days 10 days

Calibration time 60 min 60 min 120 min

Wearing position back of the upper arm back of the upper arm

belly (from the age of 2)
back of the upper arm (from

the age of 2)
the upper buttocks (ages from

2 to 17)

User age from the age of 4 from the age of 4 from the age of 2

Data reading mobile phone
(FreeStyle LibreLink APP)

seperate reader

mobile phone mobile phone (Dexcom
Follow App)

4.2. Commercial System

Both Freestyle Libre and Dexcom have released several generations. The well-known
versions are the second Freestyle Libre generation and the sixth generation of Dexcom. In
the following, a more detailed overview of different generations of Freestyle Libre and
Dexcom is given.

FreeStyle Libre has already released three versions. Those three versions are all CGM
devices. For the first FreeStyle Libre generation, there is no acetaminophen interference
and no calibration, and it is inaccurate in indicating hypoglycemia. In detail, 40% of the
time a BGL under 60 mg/dL is reported, whereas the actual BG value is in the range of
81–160 mg/dL [127–130]. Moreover, the inaccuracies occur on the first and last days of the
14 days working time with a MARD of 11.2% [131].

Meanwhile, the second version was released in 2020, the so-called FreeStyle Libre
2 [126]. The sensor of FreeStyle Libre 2 (Figure 15a) provides information about the continu-
ous measured blood glucose level, optional results for finger pricking, and a prediction of a
rising or falling trend. Especially, the trend helps not only the patients but also the medical
specialists to manage the blood glucose level. In addition, there exists a specific FreeStyle
LibreLink APP to assist the user. Like the first generation, the sensor works for 14 days in the
range of 40–500 mg/dL, and it is small in size and comfortable to wear, being 5 mm in height,
35 mm in diameter (see Figure 15a), 5 g in weight and worn at the backside of the upper
arm [126]. The cost of FreeStyle Libre 2 was analyzed by I. Oyagüez et al., who showed that
about 43.1% is saved compared to self-monitoring of blood glucose (SMBG) [132].
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FreeStyle Libre 3 was released in 2021 [23]. It is designed for children from the age
of 4 onwards, works for 14 days, and is still worn on the backside of the upper arm [23].
For the data reading, the personal mobile phone via Bluetooth is used instead of a separate
reading device. The BG monitoring range is 40–500 mg/dL, and the size is 2.9 mm in height
and 21 mm in diameter, while the weight is stated to be 1 g.

A competitor of FreeStyle Libre is Dexcom with its BG sensor technologies. Dexcom
has several versions, like G5 and G6. Dexcom G7 is in development [133] and the first
study results were already published [134]. Dexcom G6 consists of three parts, namely, an
auto-applicator, a sensor and transmitter, and a display device [22]. All components with
different display devices are depicted in Figure 15b. It works for 10 days. Compared to
FreeStyle Libre 2 and 3, Dexcom G6 has three possible sensor positions: belly, the back of the
upper arm and upper buttocks. It is also suitable for children from the age of 2 onwards [22].
As can be seen in Table 9, the G6 is significantly heavier than the FreeStyle Libre sensors;
however, the G7 is expected to be reduced in size by about 60% [133].

(a) (b)

Figure 15. Commercial systems of FreeStyle Libre 2 and Dexcom G6. (a) FreeStyle Libre 2 sensor
(Reprinted with permission from Ref. [135] © Abbott GmbH). (b) Dexcom G6 sensor (Reprinted with
permission from Ref. [136] © Dexcom, Inc).

5. Discussion

Diabetes is a chronic disease. More precisely speaking, in case of T1D it is until
now an incurable disease. The glucose level must be within a specific range to prevent
further damage to a patient by avoiding hyperglycemia and hypoglycemia. Therefore, a
glucose monitoring system should continuously track the glucose level with high accuracy
(<20%). Thus, research in glucose monitoring has attracted attention for years, from the
early conventional diagnosis to intensified diagnosis, which nowadays, it is desired that
it be non-invasive. Meanwhile, many commercial devices were in the market to provide
a reliable glucose measurement. However, most are unsuccessful in receiving the FDA
or CE approval or are discontinued afterwards. At present, two commercial systems are
dominant in such a field, namely, FreeStyle Libre and Dexcom. In recent years several
generations have been released. The latest versions are FreeStlye Libre 3 and Dexcom G6.
The advantages of these systems are that both provide continuous glucose measurement
and work for at least ten days, which eases the burden of glucose management on both
patients and medical specialists. Nevertheless, both commercial systems belong to minimal-
invasive technology. Therefore, the risk of infection, pain for the patient and contact allergy
and the cost of sensor replacement are still existing disadvantages.

To satisfy the demand for less costly, more convenient, and more accurate glucose mea-
surement and monitoring devices, much research is conducted on non-invasive monitoring
technology. In the proposed review, recent electrochemical-based and electromagnetic-
based measurement systems are introduced and compared. An overview of exemplary
state-of-the-art approaches is listed in Table 10. Furthermore, the opportunities and chal-
lenges of advanced post-processing are discussed, and finally, all proposed approaches are
characterized and compared using the Clarke error grid.
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Table 10. Review and comparison of different sensor systems with and without AI-based post-processing.

Reference Evaluation
Object

Measuring
Method

Post-
Processing

Detection
Range

(mg/dL)

Calibration/
Validation

Accuracy/
Sensitivity

Observation
Time Sensor Size

Influence Factor/
Sensor Limitation/

Further Development
Dataset

Sensor Systems:

[29] real saliva
in vivo

electro-
chemical — 0–180 Proof of Concept —

testing: 20 min;
monitoring

more than 5 h
25 mm × 5 mm × 0.5 mm many proteins

in the saliva 1 person

[137]
aqueous solution with,
glucose, urea, lactate

in vitro

Raman
spectroscopy

filtering,
smoothing,

least-square fit

glucose: 18–1081
urea: 18–3604

lactate: 18–3604

area under Raman
shift peaks

R2 = 0.97
≈4072 counts/mM

360 s each meas.
3× 36× 360 s —

interference due to
other blood comp.,

scattering light
3× 36 meas.

[93]
real blood with NaCl,

water and glucose
in vitro

microwave — 0–40.000
(14–16 GHz)

temperature
control

reflected signal:
0.08◦ and 3.2 mV (∆10, 000 mg/dL)

transmitted signal:
0.2◦ and 2 mV (∆7500 mg/dL)

— decimeter range
plus VNA

temperature of
the oscillator,

sedimentation in the
blood samples,

water absorption

50× 4 meas.

[98]
glucose water

solution
simulation

microwave Debye model 0–500
(19 GHz) — phase of S11 of

2° per 10 mg/dL — 20× 11.8× 0.4 mm tapering,
fabrication errors simulation

[99] glucose solution
in vitro microwave lin. regression 30–500

(1.5 GHz) lin. regression 0.0049 dB/mg/dL — 0.3× 0.25 mm optimization for more
realistic situation —

[104] saline solutions
in vitro microwave regression

averaging
0–180

(1.45–1.55 GHz) regression 21.7–23.4
dB/(mg/dL) — diameter: 25 mm

thickness: 0.76 mm

optimization for mobility,
data collecting time,
data processing time

10× 7 meas.

[138]
glucose water

solution
in vitro

microwave lin. fitting 25–300
(0.8, 3.2 GHz)

lin. fitting,
2-port cal. 1.38 MHz per mg/dL — centimetre range

plus VNA

temperature,
geometrical
parameters

12× 3 meas.

[139]
glucose water

solution
in vitro

microwave lin. fitting,
averaging

0–400
(2.26 GHz) VNA Cal.

1.947 mdB
per mgdL−1µL

1080 s (CGM)
≈several

centimetre
plus VNA

temperature,
rel. humidity

20× 9
CGM meas.

[140] real blood
in vivo microwave lin. interpolation 89–262

(5.5, 8.5 GHz)

Comparison with
Accu check and

aqueous solution
for cal. curve

8.5 GHz: 0.04 per mg/dL
5.5 GHz: 0.06 per mg/dL — 30× 18 mm

plus VNA

temperature (skin, environ.),
blood pressure, EMV,

thickness of skin, pressure,
sweat, pollution

11 persons

Sensor Systems and Accuracy Improvement via Post-Processing:

[32]
glucose water

solution
in vitro

microwave
INNHO,

LS-RANSAC,
BPNN

20–500
(0.2–4 GHz)

Cal.: SOLT
Val.: k-fold cross-val.

0.0045 dB/(mg/dL)
RMSE of 5.52 mg/dL — 80× 30× 6 mm measurement

uncertainty
training: 255× 25

testing: 255× 5

[35]
aqueous glucose
water (in vitro)

fingertip (in vivo)
microwave PCA classification 40–140

(2.45 GHz)
VNA calibrated,

internal validation

0.45–0.9 (dispersed)
0.63–1.25 (compact)

each per MHz
1 h each 10 min 5.55× 3 cm

temperature,
geometrical
parameters

600 samples
(in vitro)

1 healthy P.
(in vivo)
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Table 10. Cont.

Reference Evaluation
Object

Measuring
Method

Post-
Processing

Detection
Range

(mg/dL)

Calibration/
Validation

Accuracy/
Sensitivity

Observation
Time Sensor Size

Influence Factor/
Sensor Limitation/

Further Development
Dataset

Sensor Systems and Prediction of Blood Glucose Trends:

[83] pig ears
in vivo

Raman
spectroscopy

Prediction
MLR, PLSR 52–914

Lin. Regression
for calibration,

cross-4-fold
validation

MARD: 6.6%
R = 0.96 (250–500 mg/dL)

R = 0.98 (>500 mg/dL)
3× 7 h each 5 min

portable Raman
spectrometer

fibre bundle: 2 mm
diameter

temperature, heart
rate, skin movement,

sweat, effective
sampling volume

3 female
Yorkshire pig

[141] nail fold
in vivo

Raman
spectroscopy

Prediction
PCA, BPNN 105–216 Cal. with 2

reference points
R2 = 0.98

RMSE = 5 mg/dL
12× 10× 2.5 h

each 5 min 6 meas.
Renishaw inVia confocal

Raman spectrometer
temperature
dirt, sweat

12 healthy
persons

[87] in vivo impedance spectroscopy
and multiple sensors

time series analysis
sensor fusion

0–200
(1–150 kHz)
(10–60 MHz)

Comparison with
Accu-check and

calibration

average correlation
factor = 0.8314

NRMSE = 14.6064

3× 72 h (diabetic, CGM)
healthy: during lunch

flexible wrist band
≈ several cm

movement artifacts
sweat

6 healthy,
3 diabetic
persons

[97] real blood
in vivo microwave Prediction

linear regression
60–400

(1.3 GHz)
Pre-processing

Accu check as reference

MARD:
22.98% (without sub-band)

4.204% (with sub-band)
— 6.8× 4.8 cm

object movement,
temperature,

pressure, humidity

75 non-diabetic
50 pre-diabetic

125 diabetic
persons
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5.1. Non-Invasive Sensor Principles

For electrochemical-based measuring of the glucose level, different biological medium
such as saliva, tears, exhaled breath and blood are regarded as the MUT. However, many
distortion factors (e.g., foot or beverage intake) exist in saliva, tear and exhaled breath, as
the molecules inside are various and complex. Therefore, an additional layer was proposed
as a standard solution to such a problem, although the function is different. The authors
of [29], added a membrane to filter the molecules inside the saliva to increase the glucose
measurement accuracy, based on the design in [51]. Similarly, an additional layer with
different supporting polymers was proposed in [58] or for condensation of VOCs in [73].
The difference is that such a layer is not for filtering but for sensing. Especially, sensing
using exhaled breath is regarded as controversial in the discussion regarding the correlation
between BGL and measured acetone because of the significant influence of various factors.
In consequence, exhaled breath is currently commercially investigated for diet management
or diabetes diagnosis and not as a CGM sensing system [73–75]. However, for example
GLUCAIR™ is currently working on a commercial solution for non-invasive blood glucose
monitoring using exhaled breath [43]. In general, secondary liquids, such as saliva, urine,
teardrops or interstitial fluid, face the problem of latency compared to glucose variations in
blood. For example, the duration of the glucose observation in [1,58] is about 20 min. The
requirement for CGM is, however, a short latency between the measured and real glucose
value. Additionally, the biosensor material must be waterproof and manufactured to be
biocompatible, which is crucial for avoiding skin irritation or rejections but increases the
costs of a biosensor.

Blood is more commonly used than saliva and tears as MUT for electromagnetic-based
glucose sensors. In [83,84,137], Raman Spectroscopy was applied. A linear relation was
observed between the signal intensities and the glucose concentration difference in [83].
The minimal detectable change was reported to be 29–78 mg/dL, which is not suitable
for real application. In [141], a non-invasive Raman spectroscopy sensor was proposed.
The sensor was placed on the microvessels of the nail fold. A mean accuracy of approx.
8.1 mg/dL was reported on 12 subjects. Although the results for optical-based sensing
systems of [141] and of [142], where 35 patients were evaluated, were located mainly in
Zone A and B of the Clarke error grid, the strong dependency on the temperature and
environmental aspects, such as scattering light, has to be mentioned. Moreover, their
relative bulky structure makes it difficult to integrate into a wearable glucose sensing
system.

The impedance spectroscopy-based glucose sensors with operating frequencies in
the kilohertz to megahertz range, have been extensively explored by researchers over the
past years [85,87–89]. This effort resulted in a shortly commercially available impedance
spectroscopy-based glucose monitoring system called Pendra. However, post-market
studies revealed that the accuracy partially fell in the dangerous Zone C of the Clarke error
grid, and thus, it was removed from the market. The impedance of human tissue is affected
by several factors such as temperature, sweat, skin thickness and moisture, which vary
over the day and also from patient to patient. Moreover, since electrodes are placed on the
skin, relative movement between the skin and the electrodes may change the measured
impedance as well as have the potential to lead to allergic reactions. To increase the overall
accuracy and stability of impedance spectroscopy-based glucose sensing, recent studies
combined those sensors with multiple sensors, such as temperature, humidity and optical
ones [87,89] and also with accelerometers [89]. Thereby, promising results were achieved in
in vivo experiments. Moreover, the time lag between the physiological parameters and the
estimated glucose values was reduced by using time series analysis and sensor fusion [87].
However, the study population of 9 [87] and 20 [89] was still relatively small and in [89]
12.1% sensor readings fell in the potential dangerous Zone D of the Clarke error grid.
Therefore, impedance spectroscopy-based sensors are promising and yield the potential
to be integrated into a wearable sensors system to enhance the overall performance and
stability of non-invasive glucose sensing in the daily life situations of a patient.
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The microwave-based approaches to miniaturization show a quite promising perfor-
mance with low fabrication costs. The sizes of the sensors are in the range of centimeters to
millimeters and even go down to the micrometer range, such as in the case of A. Kumar
et al. [99], with a sensor of 0.3 mm × 0.25 mm. Consequently, these sensors are highly
applicable to wearable systems for a patient’s daily life. However, one of the most crucial
design criteria is getting the measurement signal to the area of interest (blood vessels)
through the different tissues (e.g., skin, fat) and back to the sensor, respectively. If the signal
levels are too low, changes in BGL will not be detectable. This significantly depends on the
chosen operating frequency, which defines the penetration depth. The working frequencies
are mostly in the range of 0–6 GHz [32,92,95–97,99,104,105,138–140], and the others are
in the range of 10–20 GHz [93,98]. In general, the higher the frequency, the lower the
penetration depth. Considering their similar working frequencies and working principles,
the performances of [32,99] and [104] are similar, with accuracies of 0.0045 dB/(mg/dL),
0.0049 dB/(mg/dL) and 0.003 dB/(mg/dL), respectively. For the other working frequency
range, [98] works better than [93], as the phase change to the glucose change is larger to
2° per 10 mg/dL. In addition, different from other approaches, [97] introduced sub-band
processing. V.V. Deshmukh et al. proposed different frequency bands for diabetes situations
(with diabetes, without diabetes and pre-diabetes) to increase the accuracy.

In addition, the choice of the antenna and its corresponding tapering are essential
as this will also define the available signal strength. X. Xiao et al. [32] utilized an UWB-
antenna, whereas V.V. Deshmukh et al. [96,97] recommend narrow-band antennas since
they provide a more accurate linear response between frequency and BGL.

In general, the proposed scientific microwave approaches are in different develop-
ment stages: conducting only simulations or developing a corresponding (mathematical)
simulation-based model and validating this with experiments under ideal and under real-
istic conditions. Besides this classification, the scientific approaches can also be divided
into those that only investigate the sensors system and those that utilize advanced signal
processing for improving sensor accuracy. Depending on the desired mounting position,
several tissue models were analyzed. X. Xiao et al. [32] applied an earlobe model, whereas
A. Gorst et al. [104] designed a detailed hand model considering the complex structure
of the different tissue layers. Other researchers prefer to use the fingertip for measuring
the BGL, since a low penetration depth is needed to reach the intra vascular blood in
the micro vessels of this region [35,140]. Fingertip approaches provide great prospects
of success, since they outperform systems using other detection areas. These are mostly
resonator-based such as in the cases of Omer et al. [35] or Kiani et al. [140]. However, they
are based on placing the fingertip on the sensor area, and therefore, they can be a good
alternative to finger pricking but are not suitable for a CGM system.

Furthermore, the proposed methods differ in the evaluated liquid. Most approaches
use water with glucose or dextrose solutions [98,99,104], whereas a minority conduct mea-
surements with real blood in the lab or even with humans. M.Hofmann et al. [93] mixed real
blood with NaCl and water, whereas V.V.Deshmukh et al. [96,97] conducted measurements
with a study population consisting of non-diabetic, pre-diabetic and diabetic persons.

In the literature, there are three methods discussed for detecting the change of the
permittivity and the corresponding BGL: shift of resonance frequency [99–103], reflection
(S11) [32,96,98,104,105,111] or transmission (S21) [32,110,112] of the amplitude or phase of
the S-Parameters. S. Zeising et al. [98] stated that the phase variation of S11 is more sensitive
than of S21. X. Xiao et al. [32] utilized both, S11 and S21, plus advanced signal processing
improving the performance of RSME to 5.53 mg/dL. Modern signal processing techniques
like machine learning can improve the performance of the BGL-detection significantly.
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5.2. Post-Processing

Overall, post-processing using AI offers excellent opportunities to increase the accu-
racy of measurement data and predict the trends of blood glucose levels. The latter supports
diabetic persons significantly since it helps to avoid hyperglycemia and hypoglycemia.
However, in the prediction, there is a trade-off between accuracy and the prediction hori-
zon [37]. This gets particularly interesting for predicting, warning and thus avoiding
hypoglycemia during sleep, which can be highly dangerous for the patients [143,144]. A
comparison of different approaches with a prediction horizon of 30 min is given in Table 11.

Table 11. Performance comparison for 30 min prediction horizon.

Reference Model RMSE in mg/dL Data Set

[117] RNN 18.87 Ohio T1DM

[145] RNN 19.04 Ohio T1DM

[146] RNN 18.22 Ohio T1DM

[147] Autoregression with exogenous inputs (ARX) 19.48 Ohio T1DM

[148] Grammatical evolution (GE) 21.19 Ohio T1DM

[149] Physiological models 19.33 Ohio T1DM

[150] XGBoost 19.32 Ohio T1DM

[151] Convolutional Neural Network (CNN) 21.72 Ohio T1DM

[42] Ensemble MMS (3 aggregated NNs) 19.57 Ohio T1DM

[152] Long short-term memory (LSTM) 18.23 Ohio T1DM

[153] RNN and Restricted Boltzmann Machines (RNN-RBM) 15.59 DirecNet [154]

[155] Support Vector Regression (SVR) 18.0 own data set

[156] LSTM 21.4 described in [155]

For the validation, a trustworthy reference BGL-value is indispensable, which is
carried out e.g., via the invasive finger pricking [97] with a commercial system or with
a bulky and expensive VNA [32,95,104]. Both options are not satisfactory for a future
minimal-invasive system solution. J. Martinsson et al. [117] used the available Ohio T1DM
dataset [118], which collects the CGM record of 6 persons, aged 40 to 60, every 5 min
over 8 weeks to predict BGL trends. The approach of J. Martinsson et al. [117] is based on
RNN. The final model is trained with a duration of 60 min and predicts the BGL in 30 or
60 min. This is applicable for commercial systems, such as for example, the FreeStyle Libre
3, which also has a calibration time of one hour. E.A. Pustozerov et al. [114] structured their
dataset meal-related considering the food context and patients’ personal characteristics.
For signal processing, they used an xgboost model (boosted decision trees) and were able
to achieve R = 0.644. However, for a more realistic, daily-life study, the microbiome and
metabolomics data should also be considered. D. Zeevi et al. [115] trained their model with
800 persons and considered microbiomic features. However, their performance was worse
compared to [114] with R = 0.70.

A potential way to increase the performance of prediction is by taking additional
influence factors such as temperature into account. This can be carried out by sensor
fusion [52,87,157]. For example, Geng et al. [87] were able to improve their results sig-
nificantly by combining the impedance spectroscopy-based glucose sensing system with
temperature, humidity and optical sensors. However, it is worth mentioning that consider-
ing too many additional sensors can lead to misinterpretation and an increased noise level.
Thus, only the essential features should be evaluated.
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Moreover, the results of AI in general strongly depend on the dataset and the model
design (training, validating, and testing). Next to unrecognized biases in the dataset, the
accuracy of the results can be distorted by a wrong validation. Thus, appropriate testing
combined with external validation is crucial. However, the available datasets are often
limited by a small-sized samples or missing data regarding reference BGL or features
such as eating, physical activities or insulin injection. In consequence, generalization is a
problem. Additionally, reproducibility is a fundamental problem, as only few researchers
share their codes and/or datasets [33].

Overall, AI-based post-processing offers opportunities such as being able to predict
BGL trends, and furthermore, it outperforms traditional signal processing approaches
by enhancing the sensitivity of sensor systems. For the approaches using AI to increase
their sensor performance validation is critical. For the required reproducibility, the study
design must be defined for all the influential factors such as conditions of the sensor
itself (hardware, fabrication errors), measurement environment (temperature, humidity),
generalizability of tested persons (gender, age, type of diabetes) and algorithm.

Indeed, X. Xiao et al. [32] fulfill the ISO 15197 and the FDA-standard by using BFGS for
training; LS-RANSAC for optimization and BPNN for presenting the correlation between
the frequency, the S-parameters and the glucose concentration. However, they do not use
patient related data, which makes their work not comparable to others. Omer et al. [35]
were able to further enhance their measuring results by applying the PCA feature extraction
algorithm and a one-time personalized invasive calibration to identify the blood glucose
level patterns from the fingertip. The in vivo measurements were conducted with one
healthy 29-year male volunteer for about one minute. The measured BGL was validated
with finger pricking. Here, the dataset with only one tested person was insufficient for
external validation and could be seen more as a proof of concept. In sum, the reviewed
literature has gaps related to many of the aforementioned points regarding reproducibility
and generalizability since many of them are not mentioned/considered. Thus, it remains
an open question whether these systems are externally validated in full.

5.3. Evaluation with Clarke Error Grid

Based on the different levels of development of the proposed sensor systems in the
literature, the archived accuracy varies significantly. Several researchers demonstrated only
a proof of concept of their approach, by simulating [98] and measuring [92,93,95,104,105]
physical parameters such as S11 or S21. All of them showed that the amplitude and phase as
well as the resonance frequency depend on the glucose concentration; however, a specific
determination on their measured BGL was missing. In consequence, their methods cannot
be evaluated by means of the Clarke error grid.

An overview of the other approaches regarding the Clarke error grid is listed in
Table 12: The sensor readings of commercial glucose monitoring systems fell, particularly
in zones A and B. However, the results of [158–160] revealed that up to 2.1% of the sensor
readings were in the dangerous zone D.

By applying Raman spectroscopy, 93% of the sensor readings fell in zones A and
B [84]. However, the study was only simulation-based. Moreover, in [141], 100% of the
sensor readings fell in zones A and B in measurements on twelve subjects. Compared
with commercially available monitoring systems, this is a good performance. Raman
spectroscopy-based sensors are relatively bulky and expensive. Therefore, they are not
suitable for a wearable glucose monitoring device considering the state of the art. Moreover,
in [142], photoplethysmography (PPG) was used for non-invasive glucose sensing. The
reported accuracy was slightly worse than that of commercial sensors with 96.85% in zones
A and B and with 3.15% in the dangerous zone D. The limitation of this study was that
heterogeneous finger models were considered. Nevertheless, the thickness of the tissue
layers can vary from person to person.
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Table 12. Overview of the accuracy according to the Clarke error grid. Abbreviations: P = Persons,
T1D = diabetes mellitus type 1, T2D = diabetes mellitus type 2, TGD = gestational diabetes mellitus,
NA = Not a Number.

Reference Measuring Method Detection Range Dataset Clarke Error Grid:
in mg/dL A B C D E

Commercial Sensor Systems:

[158] Dexcom G6 40–400 25P T1D (resistance), 30 min each 85.4% 12.5% 0% 2.1% 0%
(aerobic), 30 min each 74.0% 26.0% 0% 0% 0%

[159] FreeStyle Libre 30–400 24P T1D, 11P T2D, 39P TGD, 83.6% 15.5% 0% 0.8% 0%all pregnant, 4207 data points

[160] FreeStyle Libre 40–500 30P T2D, 1353 data points 88.54% 11.01% 0% 0.45% 0%

Optical Sensor Systems:

[84] Raman Spectroscopy 50–400 10.000 synthetic generated spectra 93.0% NA NA NA

[141] Raman Spectroscopy 105–216 30 meas. × 12P 100% 0% 0% 0%

Microwave-Based Sensor Systems:

[97] Microwave 60–400 205P without categorization 80.91% 19.09% 0% 0% 0%
205P with categorization 95.12% 4.88% 0% 0% 0%

[99] Microwave 30–500 6× 6 meas. 100% 0% 0% 0% 0%

[104] Microwave 0–180 7× 10 meas. 85.7% 14.3% 0% 0% 0%

[139] Microwave 0–400 10 min in total, 2 min each 100% 0% 0% 0% 0%concentration level (CGM)

5× 6 meas. for:
[161] Microwave 50–500 1. Silver-painted device 44.45% 40.74% 3.70% 11.11% 0%

2. Adhesive copper tape device 68.97% 24.14% 0% 6.89% 0%

Sensor Systems with Advanced Post-Processing:

[32] Microwave 20–500 255× 5× 7 data points 100% 0% 0% 0% 0%Post Processing INNHO

[87] Impedance Spectr./Sensor Fusion 0–200 3 T1D P and 6 healthy P 100% 0% 0% 0%Post-Proc.: Time Series Analysis

[114] Flash CGM 60–180 198 TGD, 37 healthy P 100% 0% 0% 0%Post Processing xgboost model 3240 data points

[117] Medtronic Enlite CGM sensors 30–400 Ohio T1DM dataset [118] patient dependent, >90% in A and BPost Processing RNN 2514 . . . 2791 data points

[142] Photoplethysmography (PPG) 50–150 synthetic 80% 20% 0% 0% 0%
Monte Carlo Simulation 80–200 real data (35P) 91.8% 5.05% 0% 3.15% 0%

[146] RNN 30–400 Ohio T1DM dataset 90% 9% 0% 1% 0%

[148] Grammatical Evolution (GE) 30–400 Ohio T1DM dataset 87.1% 11.5% 0% 1.4% 0%

Many scientists are working on the development of microwave-based non-invasive
glucose sensors. Gorst et al. [104] proposed a parabolic regression between the glucose
concentration and S11, whereas Kumar et al. [99] obtained a linear relation. However, A.
Gorst et al. [104] considered a larger glucose range from 18 to 180 mg/dL compared to
Kumar et al. [99] with concentrations up to 90 mg/dL. Based on these regressions, an
evaluation regarding the Clarke error grid can be carried out: Gorst et al. [104] were able
to achieve all results in A apart from one in B; the results of Kumar et al. [99] are highly
accurate (all in A) and reproducible. However, both of them evaluated only a few data
points. Deshmukh et al. [97] conducted the measurements on 205 persons containing non-,
pre-, and purely diabetic people. In the Clarke error grid, they predicted only BGL in A or B
(A = 80.01 and B = 19.09%) without a categorization. By using different frequency bands
according to the diabetic classification, their results improved to 4.88% in B, and the results
in A were also closer to the real values. Moreover, X. Xiao et al. [32] were able to improve
their results significantly by post-processing the data using the INNHO method. Without
the INNHO method, the data points were distributed all over the Clarke error grid; even
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in the extreme risk zone E. By applying the INNHO method, all values were categorized
in A apart from one for 50 mg/dL in D. Similar results proposed Pustozerov et al. [114],
having also outliers in D for BGL < 70 mg/dL. However, Martinsson et al. [117] stated that
the performance of the BGL diagnosis also strongly depends on the individual person. For
one person, nearly all values could be classified in A, whereas the results of another person
with the same RNN had also values in the high risk zone D. Nevertheless, due to the small
number of test persons (6), the reason for the deviation was not further investigated. In
addition, resonator-based measurement systems were proposed by Jang et al. [139] and
Juan et al. [161]. In [139], 100% of the sensor readings fell in zone A, whereas in [139]
up to 93.11% were in zones A and B and 6.89% in zone D. Therefore, the results of [139]
outperformed commercial sensors. However, the performance of the resonant-based sensor
was evaluated with a DI water solution, which does not represent real conditions for
non-invasive glucose sensing.

In addition, Table 12 shows the results of an impedance spectroscopy-based sensor
combined with multiple different sensors [87]. Herein, 100% of the sensor readings fell
in zones A and B, which is considered as clinical accuracy. The results were significantly
improved by adding humidity, temperature and optical sensors to the wearable system
and applying time series analysis as post-processing. However, the study population
was relatively small, with nine subjects. Furthermore, the observed detection range was
insufficiently limited to 0–200 mg/dL. According to the requirements of the FDA, an
appropriate sensor system used outside the hospital must be able to detect the BGL in
a range of 20–500 mg/dL [119]. Most of the systems proposed in Table 12 cover this
required range approximately. However, approaches such as that of [104,114,141,142] are
also limited in their analyzed detection range. The Clarke error grid results of those have to
be interpreted with caution, since it is easier to design a precise sensor system for a narrow
detection range than for a broad one.

In sum, the microwave approaches show the most promising results regarding minia-
turization and low fabrication cost. Moreover, the accuracy of those approaches is compa-
rable to that of commercial sensors. Kumar et al. [99] achieved a microwave-based sensor
that is independent from temperatures between 10 and 50 ◦C. However, they conducted
their measurements with a DI water drop, and therefore, it is questionable if the tempera-
ture independence is also fulfilled for a blood drop. Furthermore, using a drop of blood
is invasive and, thus, cannot be seen as an improvement compared to traditional finger
pricking. In addition, in the microwave-based approaches, the sensor must have direct
contact with the skin, with no air gap in between, since the impedances of the sensors
are designed to match those of the skin. Impedance matching is the most critical point in
measurement scenarios, especially in daily life, since it also depends on immutable factors
such as the temperature and the humidity of the skin or the sensor mounting compression.
If the sensor loses contact with the skin, there is a jump in the impedance, which leads
to high losses, and thus, the change of the BGL is no longer detectable. The impedance
spectroscopy-based sensors suffer from the same problem. Since electrodes are fixed on
the skin, relative movement between the skin and the electrodes results in an impedance
change. Moreover, the impedance of the tissue is affected by the temperature, sweat or
moisture level of the tissue. Therefore, they are usually combined with other sensors. The
optical-based sensors are in the early stage of development and are not suitable for a wear-
able system due to their bulky size. Moreover, optical-based sensors significantly depend
on the temperature. Overall, the accuracy of scientific solutions for non-invasive glucose
monitoring is comparable with commercial sensors. Nevertheless, it is worth mentioning
that gold standard finger pricking—which is often used as a reference value for sensors
characterization [87,97,140,162]—also does not have 100% of the measurement results in
Zone A of the Clarke error grid as shown in [163].



Sensors 2022, 22, 425 36 of 44

In future scientific approaches to non-invasive glucose sensing systems, additional
criteria (apart from the sensor sensitivity, safety and accuracy), such as sensor size, battery
lifetime and convenience of the sensor should be considered. Since nowadays it is common
to track the fitness level via a smart watch, a glucose sensor is proposed to be assembled in
the electric watch instead of as a separate device, such as Apple is planning to do with the
Apple Watch [164]. On the other hand, some new approaches are underway through cell
therapy with β-cells [165]. Some companies are actively involved, e.g., Sernova, which is a
regenerative medicine company, is developing new therapeutic technologies. Recently, they
proposed Sernova’s Cell Pouch System™, which is an implantable and scalable medical
device [166]. Additionally, a clinical trial, the so-called functional cure, is now in process,
which captured a great deal of attention at the beginning of the year [167].

6. Conclusions

The lives of those who face diabetes differ significantly from those of non-diabetics.
Patients must test their blood glucose levels at least several times a day. Although people
nowadays can use insulin pumps with integrated blood glucose sensing systems as an
automatic way to monitor and control their blood glucose, there is still an increased
risk of infection. That is why non-invasive methods, such as those using saliva, tear, or
electromagnetic-based sensors embedded in wearable devices, are attracting increased
attention. Since electromagnetic sensors offer several advantages, such as low fabrication
cost and independence in terms of temperature, they are the most promising approaches to
non-invasive blood glucose monitoring. However, they are highly sensitive to penetration
depth, operating frequency and tapering. On the other hand, artificial intelligence is gaining
importance in signal processing to improve accuracy and predict the development of the
blood glucose level precisely. Moreover, combining microwave-based sensors with multiple
sensors such as temperature, humidity, or impedance spectroscopy-based sensors could
improve the overall accuracy and stability of a non-invasive glucose sensing system. In
this paper, the state of the art is reviewed, focusing on comparing scientific electrochemical
and electromagnetic non-invasive approaches to already existing commercial solutions. A
summarized overview of the various approaches is given in Table 10. Companies such as
Sernova are introducing novel diabetes therapies, whereas sensors like the ones of FreeStyle
Libre or Dexcom are already commercially available and are being steadily enhanced.
However, considering the current situation, under the COVID-19 pandemic, a reliable,
low-cost blood glucose monitoring sensor enabling tele-medical care is in high demand.
Thus, there is still substantial room for improvements in terms of better accuracy, stability,
safety, efficiency, simplicity, lab-on-chip compatibility, and miniaturization.

Author Contributions: Conceptualization, Y.X. and M.L.; methodology, Y.X.; formal analysis, G.F.
and M.L.; literature research, Y.X., A.S.T., S.Z. and M.L.; discussion, A.S.T. and M.L.; writing—original
draft, Y.X., A.S.T. and M.L.; writing—review and editing, all authors; supervision, M.L. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors like to acknowledge financial support by Deutsche Forschungsgemeinschaft
and Friedrich-Alexander-Universität Erlangen-Nürnberg within the funding programme “Open
Access Publication Funding”.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AA Ascorbic Acid
AI Artificial Intelligence
ARX Autoregression with Exogenous Inputs
BG Blood Glucose



Sensors 2022, 22, 425 37 of 44

BFGS Method Broyden-Fletcher-Goldfarb-Shanno Method
BGL Blood Glucose Level
BLE Bluetooth Low Energy
BPNN Back Propagation Neural Network
CA Cellulose acetate
CGM Continuous Glucose Monitoring
CCD Charge-coupled Device
CEG Clarke Error Grid
CNN Convolutional Neural Network
CSRR Complementary Split Ring Resonator
CVNN Complex-Valued Neural Network
C6 Coumarin 6
D Depth
DI Deionized
DM Diabetes Mellitus
EC Ethyl Cellulose
EM Electromagnetic
EMA European Medicine Agency
FDA Food and Drug Administration
FI Fluorescence Intensities
FM Frequency Number Matcher
GA Glycidoxypropyltrimethoxysilane
GE Grammatical Evolution
GOD Glucose Oxidase
HIV Human Immunodeficiency Virus
INNHO Improved Neural Network and Hybrid Optimization
IPA Isopropanol
ISM Industrial, Scientific and Medical
LD Laser Diode
LOD Limit of Detection
LP Lowpass Filter
LS-RANSAC Least Squares-Random Sample Consensus
LSTM Long short-term memory
MAE Median Absolute Error
MARD Mean Absolute Relative Difference
MG Mouthguard
MLR Multiple Linear Regression
MUT Material Under Test
MSL Microstrip Line
NA Not a Number
NI Non-invasive
NIR Near Infrared
NRMSE Normalized Root Mean Squared Error
OCT Optical Coherence Tomography
OP Optical Polarimetry
P Persons
P-TiO2 Porous TiO2
PCA Principal Component Analysis
PETG Polyethylene Terephthalate Glycol
PBS Phosphate Saline Buffer
PLSR Partial Least Squares Regression
PNA Power Network Analyser
PPG Photoplethysmography
PPGR Postprandial Glycemic Response
PtP Platinum Meso-Tetra Porphyrin
PS Polystyrene Particles
R Regression
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RBM Restricted Boltzmann Machines
RF Regression Random Forest Regression
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RSD Relative Standard Deviation
SEG Surveillance Error Grid
SI Ratio of FI and Glucose Concentration
SMBG Self-Monitoring of Blood Glucose
SOLT Short-Open-Load-Thru
SPP Surface Plasmon Polariton
SVR Support Vector Regression
T1D Diabetes Mellitus Type 1
T2D Diabetes Mellitus Type 2
TGD Gestational Diabetes Mellitus
U Unit
UA Uric Acid
UWB Ultra Wide Band
VNA Vector Network Analyser
VOC Volatile Organic Compound
WHO World Health Organisation
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