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Commingling analysis is commonly used to provide preliminary evidence for a 
single genetic locus with a major effect on the quantitative trait of interest. In this 
paper, the effectiveness of commingling analysis as a screening technique to iden- 
tify samples for segregation analysis is assessed by applying both commingling 
and segregation analyses to samples of simulated pedigree data in which a major 
locus is segregating in the presence of polygenes and an individual-specific envi- 
ronmental effect. Under the circumstances simulated here, there is evidence for a 
single locus from segregation analysis but not from commingling analysis in at 
least 20% of the samples. No more than 2% of the samples provided evidence for 
commingling but not for segregation of a single locus. Comparisons of the samples 
that give evidence for both commingling and segregation, evidence for one but not 
the other, and no evidence for either show that evidence for commingling depends 
on the distributional characteristics of the trait in the sample, while support for the 
single locus from segregation analysis depends on both the distributional charac- 
teristics as well as the transmission of the rarer allele from parents to offspring. 
Since lack of commingling does not rule out the existence of a single locus in the 
realistic situations considered here, commingling analysis has limited usefulness 
as a screening technique for the presence for a single locus. In contrast, evidence 
for commingling does suggest the possibility that a single locus has a major effect 
on the trait and commingling analysis can provide guidance in the choice of initial 
parameter estimates for segregation analysis. 
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INTRODUCTION 

When segregation at a single genetic locus has a major effect on the observed 
variation in a quantitative trait, each genotype at that locus has a particular associated 
phenotypic distribution, and the overall population distribution results from the com- 
mingling of these genotype-specific distributions. In general, commingling in the 
observed distribution of a quantitative trait may be caused by variability in a single 
factor, genetic or not [Murphy, 1964; Morton et al., 19771. Evidence for a mixture of 
distributions is consistent with the hypothesis of a single genetic locus with a major 
effect on the trait of interest [Elston et al., 19751. For this reason, commingling analy- 
sis is commonly used in samples of unrelated individuals [Morton et al., 1977; Rice et 
al., 1982; Turner et al., 1985; Richelson et al., 1986; Price et al., 19891 or related 
individuals [Bucher et al., 1982; McGue et al., 1983; Friedlander et al., 1984; Sharma 
et al., 1984; Bogardus et al., 1988; Turner et al., 19891 to test the hypothesis of a 
mixture of distributions. 

Some studies of related individuals have considered the results from both com- 
mingling analysis and segregation analysis to interpret whether a single locus hypothe- 
sis is consistent with the observed data [Meyers et al., 1982; Dorus et al., 1983; 
Laskarzewski et al., 1984; Rice et al., 1984; Boerwinkle et al., 1986; Price et al., 
1988; Moll et al., 1989; Olson et al., 19891. In addition to providing preliminary evi- 
dence for a single factor with a major effect, commingling analysis can also provide 
guidance in the choice of initial parameter estimates for segregation analysis of family 
data [Elston et al., 19751. 

In the present study, the effectiveness of commingling analysis as a screening 
technique to identify samples for segregation analysis is assessed by applying both 
commingling and segregation analyses to samples of simulated pedigree data in which 
a single locus is segregating in the presence of polygenes and individual specific envi- 
ronmental effects. Under the circumstances simulated here, there is evidence for a 
single locus from segregation analysis but not from commingling analysis in at least 
20% of the samples. This finding suggests that the power of commingling analysis can 
be low relative to that of segregation analysis and that failure to find evidence for 
commingling should not preclude segregation analysis. 

MATERIALS AND METHODS 
Model and Simulation 

The quantitative data for this comparison study were generated to be representa- 
tive of a sample of pedigrees each ascertained through a single proband whose pheno- 
typic value exceeded the 95th percentile of a theoretical population distribution. The 
pedigree data were simulated under two mixed genetic models [Elston and Stewart, 
197 1; Morton and MacLean, 19741; the distribution of the quantitative trait represents 
the summed effects of a major locus with two alleles, additive polygenes, and individual- 
specific environmental factors. Parameter values were chosen to simulate a trait that 
1) showed dominance at the major locus, 2) had considerable overlap of the compo- 
nent distributions, 3) was unimodal in the general population, and 4) had a substantial 
polygenic component; such characteristics have been reported for several traits that 
are risk factors for common diseases [Sing et al., 19881. 
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We considered two different mixed genetic models. For Model I, the frequency 
of the dominant major locus allele A was set at q = 0.012579, so that 2.5% of the 
general population possessed genotype Aa or AA. The genotypic means were paa = 
100 and pAa = FAA = 117.28. The within-distribution standard deviation u was set 
at 9.5. This resulted in major locus genotype means separated by 1.75 phenotypic 
standard deviations. The within-distribution variance was divided evenly between the 
effects of additive polygenes and individual-specific environment. The composite pop- 
ulation for Model I is shown in Figure 1. Model I1 was identical to Model I except the 
genotype means were paa = 100 and pAa = FAA = 120 so that the major locus 
genotype means were separated by 2.00 phenotypic standard deviations, rather than 
1.75. Model I1 has previously been described in simulation studies by Bums [1982], 
Bumset al. [1984], andBoehnkeet al. [1988]. 

Data were generated for the nine-person pedigree illustrated in Figure 2. This 
pedigree configuration has been shown in previous studies to provide the basis for an 
efficient study design for complex segregation analysis [Burns, 1982; Bums et al., 
1984, Boehnke et al., 19881, and represents a compromise between small nuclear fami- 
lies and large extended pedigrees. Trait values for the pedigree members were simu- 
lated in the manner described by Boehnke et al. [ 19881. If the trait value of the potential 
proband (designated by the arrow in Fig. 2) was in the upper 5% of the trait distribu- 
tion for the population, the proband was included in the sample and the pedigree was 
ascertained. Sampling continued until a total sample size of 50 pedigrees including N 
= 450 individuals was achieved. Five hundred replicate samples (each with N = 450) 
were generated using each of the two mixed models. 

Commingling Analysis 
The simulated data for each replicate sample were evaluated for the presence of a 

mixture of normal distributions. The pedigree members were treated as unrelated indi- 
viduals for these analyses, and probands were excluded as a partial correction for ascer- 

Model I 

Poo PAa=pAA 

TRAIT VALUE 

Fig. 1. 
117.28. 

The population distribution of the simulated phenotypes for Model I. pa, = 100, )L,A,~ = FAA = 
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Fig. 2. Configuration of the nine-member pedigree used in the simulations. The potential proband is 
designated by the arrow. Numbers within the squares and circles represent the estimated probabilities for 
Model I that the corresponding individuals carry the major locus allele A as either a heterozygote or homo- 
zygote. Estimated probabilities are based on simulations of 20,000 replicate pedigrees. 

tainment. Maximum likelihood methods suggested by Day [ 19691 were used to evaluate 
whether one or two normal distributions provided the better explanation for the data. 
Maximum likelihood estimates were obtained by using an EM algorithm [MacLachlan 
and Basford, 19881 with the implementation procedure suggested by Ott [ 19791. The 
maximum log-likelihood for two component normal distributions with equal variances 
was compared to the maximum log-likelihood for a single normal distribution. Twice 
the difference between the log-likelihoods was assumed to be distributed approximately 
as chi squared with 2 degrees of freedom (do. A sample was classified as showing 
evidence of a mixture of two distributions if twice the difference between the log- 
likelihoods was greater then 4.605, corresponding to a significance level of a = 0.10. 

Segregation Analysis 

Log-likelihoods for the mixed genetic and polygenic models were computed for 
each replicate sample by using the Pedigree Analysis Package (PAP) [Hasstedt and 
Cartwright, 19811, which employs an approximation to the exact log-likelihood of a 
mixed model [Hasstedt, 19821. Log-likelihoods were maximized by using a quasi- 
Newton method [Lalouel, 19791. Since ascertainment was necessarily single, we cor- 
rected for ascertainment by conditioning on the quantitative trait value of the proband 
in each pedigree [Hopper and Mathews, 1982; Boehnke and Lange, 1984; Young et 
al., 19881. 

Twice the difference between the log-likelihoods of the mixed and polygenic mod- 
els was assumed to be distributed approximately as chi squared with 2 df. A sample 
was classified as showing evidence of major locus segregation if twice the difference 
between the log-likelihoods was greater than 5.99, corresponding to a significance 
level of (Y = 0.05. The different significance levels chosen for commingling analysis (a 
= 0.10) and segregation analysis (a = 0.05) are consistent with the view of commin- 
gling analysis as a preliminary, screening technique and segregation analysis as a more 
definitive, confirmatory method. 
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Statistical Analysis of the Simulation Results 

Based on the outcome of the commingling and segregation analyses, the 500 rep- 
licate data sets were classified into four groups: 1) those that showed evidence both for a 
mixture of two distributions by commingling analysis and for major locus segregation 
by segregation analysis, 2) those that showed evidence for major locus segregation but not 
for commingling, 3) those that showed evidence for commingling but not for major locus 
segregation, and 4) those that showed evidence neither for commingling nor for major 
locus segregation. Sample characteristics for these four groups were then computed 
for the total sample including probands and then for all individuals except the pro- 
bands. These included two major locus characteristics: the proportion of carriers of the 
dominant major locus allele and the mean number of parendoffspring pairs per pedi- 
gree both of whom carry the dominant allele; and the first four moments of the sample 
trait distribution: mean, variance, skewness, and kurtosis. Characteristics of the four 
groups were compared by using the analysis of variance. Multiple linear regression 
analysis was used to determine which characteristics were the best predictors of the 
results of the commingling and segregation analyses. Such an approach could not be 
taken by an investigator to infer the presence or absence of a major gene, but did allow 
us to identify those characteristics of the replicate samples that were important deter- 
minants of the results of the commingling and segregation analyses. 

RESULTS 

Table I cross classifies the 500 samples simulated under each of the two models 
by the significant or nonsignificant results for commingling and segregation analyses. 

TABLE I. Cross Classification of the Results of the Commingling and Segregation Analyses* 

Segregation analysis, No. (%) 

Commingling analysis P S 0.05 P > 0.05 Total 

Model I 
P s 0.10 206 10 216 

(41.2) (2.0) (43.2) 

P > 0.10 

Total 

168 116 284 
(33.6) (23.2) (56.8) 

374 126 
(74.8) (25.2) 

Model I1 
PSO.10 

P>O. lO  

385 3 388 
(77.0) (0.6) (77.6) 

107 5 112 
(21.4) (1.0) (22.4) 

Total 492 8 
(98.4) (1.6) 

*Model I: Under this model, pedigrees were simulated from a population with means 1.75 phenotypic 
standard deviations apart. Model 11: Under this model, pedigrees were simulated from a population with 
means 2.00 phenotypic standard deviations apart. 
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If evidence for major locus segregation is regarded as "truth," use of commingling 
analysis as a screening method to detect major locus segregation resulted in a proportion 
of false negatives of 45% (168/374) for Model I and 22% (107/492) for Model 11. Thus, 
using commingling analysis as a screening method would frequently prevent carrying out 
a segregation analysis that would provide significant evidence for major locus segre- 
gation under the circumstances simulated here, despite the more liberal significance level 
used for commingling analysis (a = 0.10) than for segregation analysis (a = 0.05). 

Table I1 presents major locus characteristics and sample moments for the Model I 
samples divided into four groups according to whether there was significant evidence 
for commingling and/or for major locus segregation. While analysis of variance pro- 
vided evidence (a = 0.05) for differences between the four groups for all characteris- 
tics listed with the exception of kurtosis with probands included, actual differences 
between the groups in terms of standard deviation units were for the most part small. 
The groups differed primarily in skewness, which showed differences between groups 
of up to 1.9 standard deviations, and proportion of carriers of the dominant allele and 
mean number of parent-offspring transmissions of the dominant allele per family, which 
showed differences between groups of up to 1 .0 standard deviation. All three of these 
measures appeared to have important effects on evidence for major locus segregation, 
while only skewness appeared to strongly impact evidence for commingling. Since 
some of the sample characteristics, notably skewness and kurtosis, were not normally 

TABLE 11. Characteristics of the Groups of Samples Classified by the Results of Commingling and 
Segregation Analyses, Model I 

Segregation 
P S 0.05 P > 0.05 

Commingling Commingling 
Probands Standard 

Statistic included? P 4 0.10 P > 0.10 P S 0.10 P > 0.10 deviation" P value 

Proportion 
of carriers 

Mean no. of 
transmissions 
per pedigree 

Sample mean 

Sample 
variance 

Sample 
skewness 

Sample 

No. of samules 
kurtosis 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

0.145 
0. I16 

1.017 
0.341 

107.8 
106.1 

130.2 
116.5 

0.150 
0.315 

2.733 
3.210 
206 

0. I48 
0.118 

I .042 
0.346 

107.7 
106.0 

130.4 
116.7 

0.025 
0.151 

2.689 
3.042 
168 

0.117 
0.094 

0.816 
0.306 

107.7 
105.9 

127.7 
113.4 

0.115 
0.268 

2.750 
3.237 

10 

0.130 
0.103 

0.91 1 
0.308 

107.6 
105.8 

125.1 
110.7 

- 0.022 
0.073 

2.720 
3.056 
116 

0.032 <0.0001 
0.026 <O.OOOI 

0.236 <0.0001 
0.095 <0.005 

0.638 C0.02 
0.693 <0.02 

9.133 <0.0001 
9.642 <O.OOOl 

0. I03 <0.0001 
0.128 <0.0001 

0.197 >0.15 
0.276 <0.0001 

"The standard deviations reported are of the characteristics in the entire set of 500 replicate samples of 450 
individuals each (if the probands are included) or 400 individuals each (if the probands are excluded). 
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distributed and had unequal variances in the four groups, each sample characteristic 
was transformed to normality by using inverse normal scores [Daniel and Wood, 19801. 
Analysis of variance on the normalized sample characteristics resulted in P values 
nearly identical to those reported in Table 11. 

These findings are reinforced by the results of linear regression analysis of the 
likelihood ratio statistics for commingling and segregation from the 500 replicate sim- 
ulations against the various characteristics of the samples for Model I. Likelihood ratio 
statistics were transformed to approximate normality by using a square root transfor- 
mation prior to regression analysis. Skewness (excluding the probands) explained 86% 
of the variability in the transformed commingling likelihood ratio statistic; no other 
sample characteristic provided significant additional information. Residuals from the 
regression analysis appeared roughly normal and of constant variance. For segregation 
analysis, skewness (excluding the probands) explained 39% of the variability in the 
transformed likelihood ratio statistic; adding either the proportion of camers of the 
dominant allele or the mean number of transmission per family of the dominant allele 
significantly improved the proportion of variability explained to 44%. Residuals from 
the regression analysis appeared roughly normal and of constant variance. It is worth 
noting that as a predictor of the transformed likelihood ratio statistic for major locus 
segregation, skewness explained the same proportion of variability as could be explained 
by the transformed likelihood ratio statistic for commingling, that is, 39%. The fact 
that skewness alone or skewness and mean number of transmissions of the dominant 
allele alone could not be significantly improved upon as explanations of the trans- 
formed likelihood ratio statistics was not due to collinearity among the major locus 
characteristics and sample moments. Among these predictors, only the proportion of 
carriers and the mean number of transmissions per pedigree were strongly correlated. 

Results for Model I1 were qualitatively similar to those for Model I (data not shown), 
though the very small number of samples failing to provide evidence for major locus 
segregation makes their interpretation less clear cut. 

We examined the distribution of the parameter estimates from commingling anal- 
ysis to evaluate their usefulness as start values for subsequent segregation analysis. 
Because the distributions of several of the parameter estimates were non-normal, we 
report median values (Table 111). For both models, the two genotype-specific means 
and particularly the dominant allele frequency were generally overestimated, probably 
due to the non-random sampling through the upper tail of the population distribution. 
In contrast, the within-distribution standard deviation was estimated quite accurately. 

TABLE 111. Median Parameter Estimates From the Commingling Analyses* 

Model I Model I1 
Median Median 

Parameter True value estimated value True value estimated value 

q 0.012579 0.148 0.012.579 0.155 
P a a  100.00 103.89 100.00 103.62 
P A  - 117.28 118.61 120.00 121.47 
0 9.50 9.35 9.50 9.4.5 

*Median parameter estimates based on commingling analyses on 500 samples of 400 individuals each 
(since probands were excluded). 
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DISCUSSION 

Evidence for commingling has been suggested by some as a necessary (though 
not sufficient) condition for rejection of the null hypothesis of no major gene effect 
[Morton et al., 19771. To others, commingling is neither necessary nor sufficient 
[Murphy, 1964; Elston, 19791. In the present study, data were simulated to satisfy the 
theoretical assumptions, on a population level, of a trait under the influence of a single 
locus with dominance together with additive polygenes and individual-specific envi- 
ronmental factors. The sampling design used has been previously shown to be effi- 
cient to detect a single-locus effect when it is present [Bums et al., 1984; Boehnke et 
al., 19881. Our simulation results suggest that evidence for commingling is not a nec- 
essary condition for identification of the presence of a single locus. A few family stud- 
ies of quantitative traits in the literature have also shown evidence for a single locus 
from segregation analysis, while failing to find evidence for commingling [Meyers et 
al., 1982; Doruset al., 19831. 

It is not surprising that skewness in the sample distribution was the important 
characteristic for finding evidence for commingling. Others have noted the relation- 
ship between skewness and evidence for commingled distributions [MacLean et al., 
19761. An unexpected finding was that under the conditions simulated here, exclusion 
of the probands typically resulted in a more positive measure of skewness than inclu- 
sion of the probands (see Table 11). In contrast, Chakraborty and Hanis [ 19871 showed 
that for quantitative traits influenced solely by polygenes and individual-specific envi- 
ronmental factors, skewness was reduced to its expected value under a normal distri- 
bution when probands were excluded; the probands in their study were also selected 
from the upper 5% tail of the population distribution. The difference in the effect of 
eliminating the probands on the estimate of the measure of skewness under a model of 
multivariate normality [Chakraborty and Hanis, 19871 and under the mixed genetic 
models simulated here exemplifies the difficulties inherent in analyzing non-randomly 
sampled family data. 

While segregation analysis can take into account the relatedness of the observa- 
tions as well as the method of selecting pedigrees, commingling analysis cannot. How- 
ever, both methods of analysis involve a null hypothesis with two restrictions on the 
parameters, namely a proportion set equal to zero and, in the case of dominant inheri- 
tance, two equal means. As a result of the two restrictions on the parameters, we have 
assumed that the corresponding likelihood ratio statistics are distributed approximately 
as chi squared on 2 degrees of freedom when the null hypotheses are true [Rao, 19731. 
However, since the null hypothesis value for the proportion is on the boundary [Self 
and Liang, 19871, and either setting the proportion to zero or setting the means equal 
is sufficient to yield the null hypothesis, standard asymptotic theory cannot be invoked 
to guarantee the distribution of the test statistics. This concern is partially allayed by 
the fact that exactly the same sort of parameter restrictions are specified under the null 
hypothesis for both methods. In addition, even large changes in the critical values did 
not qualitatively affect our finding that a substantial difference in classification existed 
for the commingling analysis compared to the segregation analysis. 

Several analytical techniques, in addition to commingling analysis, have been 
proposed to screen for the presence of a single locus with a large effect on a quantita- 
tive trait. In families, the within-sibship variance is expected to be higher in those 
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families where there is segregation at a single locus with a large effect on the trait 
[Hewitt et al., 19791. A single locus with a large effect is also suggested if there is a 
significant relationship between the within-sibship variance and within-sibship mean 
[Fain, 19781. Exploratory data techniques allow a graphical representation of the data 
to be compared to what would be expected if a single locus with a large effect is pres- 
ent [Karlin et al., 1979; Carmelli et al., 1979; Kammerer et al., 19841. All of these 
techniques require family data while commingling analysis can be applied to samples 
of unrelated observations as well as family data. While there are several examples of 
applications of the exploratory techniques in the literature, commingling analysis is 
the screening technique most often used. 

Our finding that commingling analysis provides a high proportion of false nega- 
tives (no evidence for commingling when segregation analysis supports the presence 
of a single locus) suggests that commingling analysis is not a useful screening tech- 
nique for identifying samples of pedigrees for segregation analysis. Evidence for com- 
mingling is not necessary to confirm the presence of a single-locus effect and, as has 
been suggested by Morton [ 19821, the critical evidence comes from the segregation 
analysis. Our finding that evidence of commingling depends on the distributional char- 
acteristics alone while evidence of major locus segregation depends on the distributional 
characteristics as well as the transmission of the rarer allele from parent to offspring is 
consistent with the lower power of commingling analysis compared to segregation anal- 
ysis (43.2% compared to 74.8% for Model I and 77.6% compared to 98.4% for Model 
11). It has been noted by others that the presence of commingling is not sufficient to 
identify a single-locus effect and that power transformation should be used to remove 
skewness while testing for evidence of a mixture of distributions [Murphy, 1964; 
MacLean et al., 1976; Elston, 19791. While in our study we did not consider any power 
transformations, the proportion of samples not showing evidence for major locus seg- 
regation when commingling analysis did support the notion that the presence of a mix- 
ture of distributions was very low (10/216 = 4.6% in Model I and 3/388 = 0.8% in 
Model 11). 

In contrast, commingling analysis can provide guidance in the choice of initial 
parameter estimates for segregation analysis. Despite the bias in the commingling anal- 
ysis parameter estimates, all estimates with the possible exception of the allele fre- 
quency were in absolute terms not far from the true parameter values. Further, some 
upward bias in the commingling parameter estimates was predictable based on the non- 
random sampling through the upper tail of the trait distribution. In principle, this allows 
the possibility for downward adjustment of these commingling analysis estimates for 
use as initial parameter estimates in the segregation analysis. Choice of initial parame- 
ter estimates is seldom an exact science. 

In conclusion, since realistic situations exist in which lack of evidence for 
commingling does not rule out the existence of a single locus with a major effect 
on the trait of interest, commingling analysis has limited usefulness as a screen- 
ing technique for the presence of a single locus. In contrast, while evidence for 
commingling is not proof of a single genetic locus, it does suggest the possibility 
that a single locus having a major effect on the trait is involved. Furthermore, 
commingling analysis can provide guidance in the choice of initial parameter esti- 
mates for subsequent segregation analysis. Thus, commingling analysis can use- 
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fully be performed prior to segregation analysis, but lack of evidence for a mixture 
of distributions in the commingling analysis should not preclude subsequent segre- 
gation analysis. 
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