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Alessandro Daducci⋆, Alessandro Dal Palù, Alia Lemkaddem, Jean-Philippe Thiran, Senior Member, IEEE

Abstract—Tractography is a class of algorithms aiming at in-
vivo mapping the major neuronal pathways in the white matter
from diffusion MRI data. These techniques offer a powerful
tool to noninvasively investigate at the macroscopic scale the
architecture of the neuronal connections of the brain. How-
ever, unfortunately, the reconstructions recovered with existing
tractography algorithms are not really quantitative even though
diffusion MRI is a quantitative modality by nature. As a matter
of fact, several techniques have been proposed in recent years
to estimate, at the voxel level, intrinsic microstructural features
of the tissue, such as axonal density and diameter, by using
multicompartment models. In this article, we present a novel
framework to reestablish the link between tractography and
tissue microstructure. Starting from an input set of candidate
fiber-tracts, which are estimated from the data using standard
fiber-tracking techniques, we model the diffusion MRI signal
in each voxel of the image as a linear combination of the
restricted and hindered contributions generated in every location
of the brain by these candidate tracts. Then, we seek for the
global weight of each of them, i.e. the effective contribution
or volume, such that they globally fit the measured signal at
best. We demonstrate that these weights can be easily recovered
by solving a global convex optimization problem and using
efficient algorithms. The effectiveness of our approach has been
evaluated both on a realistic phantom with known ground-truth
and in-vivo brain data. Results clearly demonstrate the benefits
of the proposed formulation, opening new perspectives for a
more quantitative and biologically-plausible assessment of the
structural connectivity of the brain.

Index Terms—Diffusion MRI, global tractography, tissue mi-
crostructure, convex optimization.

I. INTRODUCTION

D IFFUSION MRI (dMRI) is a powerful imaging modality

capable of inferring the local axonal structure in each

imaging voxel by exploiting the natural random movement of

water molecules in biological tissues [1], [2]. This ability is

particularly effective for studying the connectivity of the brain,

as it permits to noninvasively estimate the major neuronal

pathways in the white matter (WM) by means of the so called

tractography algorithms (also known as fiber-tracking). In the

last decade a variety of approaches have been proposed to

tackle the huge dimensionality of the problem, but tractogra-

phy still represents a tough challenge in this field. For a review

of existing techniques see, for instance, [3]–[5] and references
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therein. Among them, line-propagation methods [6], [7] are

characterized by greedy deterministic algorithms exploiting

solely the local information available in the neighborhood of

each voxel, usually in the form of the Orientation Distribution

Function (ODF) or Fiber Orientation Distribution (FOD) of

the diffusion process. They are very fast, but heavily suffer

from the propagation of local estimation inaccuracies along

the path. Probabilistic methods [8], [9] introduced the notion

of uncertainty in the tracking by repeatedly seeding deter-

ministic tractography in a Monte Carlo-like fashion, but they

are very time consuming and they only partially solve the

intrinsic issues of these local formulations. To overcome the

local nature of previous approaches, front-evolution methods

have been introduced [10], [11]. The rationale behind these

techniques is to consider the local diffusion profiles as a speed

function controlling the propagation of a front from a seed

point and to interpret the path with the minimal arrival time

between two brain regions (also known as geodesic) as the

fiber-tract which is globally optimal. These methods are com-

putationally efficient and very robust to noise. However, they

recover the “optimal path” between two given brain locations

one by one, disregarding the interactions with all the other

“optimal paths” connecting other regions. Recently, global

energy minimization approaches [12], [13] have been proposed

with the aim to reconstruct at once the full tractogram, i.e.

set of fiber-tracts, over the whole brain. Results obtained

with these global algorithms outperform any other previous

method [3], but the price to pay is a significant increase in

the computational burden which is normally not suitable in a

clinical perspective. Furthermore, these methods are based on

stochastic optimization procedures and consequently they do

not guarantee convergence to the global optimal solution.

Unfortunately, despite dMRI actually being a quantitative

modality by nature, the tractograms recovered by existing

tractography algorithms are not really quantitative [4]. In fact,

the structural connectivity between different brain regions

is usually quantified by counting the number of recovered

pathways or averaging some scalar maps along them [14].

In both cases, these estimates provide only indirect measures

of the true underlying neuronal microstructure and are not

truly quantitative. On the other hand, a large number of tech-

niques have been recently proposed in the literature to infer,

at the voxel level, microstructural features of the neuronal

tissue from dMRI data, such as axonal diameter and density.

Generally these techniques assume that the tissue is composed

of several different “compartments”, e.g. axons, glial cells and

extra-axonal space, and that the dMRI signal measured in each

voxel can be explained in terms of the unique diffusion pattern
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of each of them. The following overview is not exhaustive

and many other approaches have been proposed; for a com-

prehensive list, please see [15], [16] and references therein. A

very simple and popular technique that distinguishes different

compartments is the Ball&Stick model [9]. According to this

model, the dMRI signal arises from water molecules diffusing

either inside a hypothetical cylinder with zero radius, i.e. the

“stick”, or around it with isotropic pattern, i.e. the “ball”. Al-

though simplistic, this technique allows estimating the relative

volume fraction of the fiber compartment other than merely

the orientation. The composite hindered and restricted model

of diffusion (CHARMED) [17] extended this technique by

considering a more complex multicompartment model to yield

an accurate physical description of the two water pools. The

model assumes parallel cylinders with a fixed radius, with

no exchange between compartments, and the water molecules

can be either hindered in the extra-axonal space or restricted

in the intra-axonal space. In the former case the diffusion

process follows a Gaussian distribution and the signal decay

is represented by an anisotropic tensor, while in the latter case

diffusion is non-Gaussian and the attenuation is modeled by

means of exact analytical expressions for particles diffusing in

a restricted cylindrical geometry [18].

The method was later improved in [19] by letting the axon

radius to follow a Gamma distribution rather than a fixed

value. This enhancement to the model made it possible to

characterize the size of the axons from dMRI data, but the

imaging protocol was not compatible with a clinical setting.

The minimal model of white matter diffusion (MMWMD) [20]

opened the way for the estimation of orientationally-invariant

indices of axonal diameter with clinically feasible acquisitions;

tissue modeling was further refined using four compartments

and the multishell protocol was optimized to maximize the

sensitivity to the parameters of the model. Lastly, the neurite

orientation dispersion and density imaging (NODDI) tech-

nique [21] relaxed the assumption of parallel cylinders by

using Watson distributions and further optimized the acquisi-

tion protocol to allow both the axonal density and orientation

dispersion to be estimated on clinical scanners. All these

approaches represent an effective and practical opportunity

for characterizing in-vivo the microstructural organization of

neuronal tissue with dMRI. However, they require either long

acquisitions or computationally expensive fitting procedures

to obtain robust estimates and are thus not suited for clini-

cal applications or large cohorts of subjects. Also, as these

techniques are rather recent, further validation studies will be

needed before they are routinely adopted in clinical practice.

To date, fiber-tracking and tissue microstructure estimation

have been considered as two separate problems. However,

recent studies [22]–[26] have demonstrated the feasibility and

the potential benefits of combining tractography with local

microstructural features for mapping the connectivity. The

common denominator for these methods is the estimation

of a large set of candidate fiber-tracts using classical fiber-

tracking algorithms, e.g streamline, followed by a selection

of a subset that best fits the acquired dMRI signal (Fig. 1).

They tackle the problem in a top-down fashion, whereas

all previous tractography approaches were characterized by
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Fig. 1. Block diagram of top-down strategies to combine tractography
reconstructions with local properties of the tissue.

bottom-up strategies. In [22], a BlueGene/L supercomputer

with 2048 cores and 500 GB of RAM was employed to search

for the optimal combination of fiber-tracts from a huge set

of candidates. However, the procedure was too onerous (9

days to process a single brain dataset) to be of real interest.

The framework was optimized in MicroTrack [23] and a

multicompartment model similar to [20] was adopted to filter

out false-positive candidates, i.e. fibers that are not anatomi-

cally plausible. The model assumes that the microstructural

properties of the tracts, such as axon radius and myelin

volume, remain constant along the trajectory. The signal in

each voxel is modeled as a combination of the intra-axonal

contributions from all the pathways crossing the voxel and

further extra-axonal and isotropic compartments considered

locally. The results clearly showed the benefits of combining

tractography and microstructure, but the stochastic algorithm

employed was still computationally heavy (16 hours on 30

2.3 GHz CPUs) and, most importantly, the complexity of

the formulation did not guarantee to converge to the optimal

solution. Simplified methods that are similar in essence to

MicroTrack have been proposed lately. In [24], a particle filter

mechanism is employed to improve tractography by exploiting

microstructural properties of the tissue, i.e. axon dispersion

computed using NODDI [21], during the propagation of the

streamlines. The split-and-merge tractography (SMT) [25]

splits the tracts at unreliable points according to a reliability

measure and produces clusters of short tracts as output,

hence providing a tool to explore a tractogram rather than

an actual tractography method. The spherical-deconvolution

informed filtering of tractograms (SIFT) method [26] uses the

FOD reconstructed with constrained spherical deconvolution

(CSD) [27] to choose which candidates have to be removed

for better fitting the measured signal. Since the algorithm

removes candidates iteratively, there is no guarantee to recover

the global optimal solution, as the procedure can get trapped

in the many local minima of this very high-dimensional

space. Notably, despite showing reasonable performances (few

hours for a single brain), these simplified methods either
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do not implement a real global approach or do not actually

have access to the tissue microstructure, as they do not use

multiple b-values acquisitions and proper tissue models that

are required to be sensitive to such features [15], [20], [21].

In this work, we present a flexible and efficient formula-

tion to reestablish the link between tractography and tissue

microstructure. We propose to reformulate tractography in the

framework of convex optimization with the aim to (i) improve

the quality of the reconstructed tractograms by combining

them with microstructural properties of the tissue, (ii) re-

duce the computational cost to accommodate real application

demands and (iii) guarantee to recover the global optimal

solution. The framework proposed here is an improved and

extended version of our work presented in [28]. Our approach

is close in spirit to MicroTrack [23], for both use multi-

compartment models and global optimization techniques to

combine fiber-tracking with microstructure tissue parameters.

Nevertheless, our convex formulation drastically reduces the

computational complexity hence opening the way for quan-

titative tractography to become practical. To the best of our

knowledge, this is the first attempt to use convex optimization

for tractography and microstructure estimation. Source code is

available at https://github.com/daducci/COMMIT/. The rest of

the paper is organized as follows. The proposed formulation

is presented in detail in Section II. Results obtained on both

realistic phantom and in-vivo data are reported in Section III,

followed by a discussion on benefits and limitations of our

approach. We conclude with future perspectives and potential

implications of this novel formulation.

II. A CONVEX FORMULATION FOR TRACTOGRAPHY

Given a tractogram F , the corresponding measured dMRI

image I ∈ R
nx×ny×nz×nd

+ , composed of nd q-space samples

acquired over nv = nxnynz voxels, can be modeled as

I = A(F) + η, where A : F → I is an operator modeling

the signal contribution of each fiber in all imaging voxels

and η is the acquisition noise. Its inverse formulation (i.e.

given an input dMRI image I , finding the set of fibers F̃ that

best describes the data) represents the ultimate goal of every

tractography algorithm. Our approach to solve this inverse

problem consists of two steps. First, the candidate pathways

are estimated from the data using classical fiber-tracking tech-

niques, with the only requisite that these candidates represent

a valid superset of the anatomically plausible tracts, i.e. true

positives, possibly including also many false positives. Then,

we seek for the weight of each of them, i.e. real contribution or

volume, by solving a global convex optimization problem that

exploits multicompartment models to explain the measured

dMRI signal at best. For this reason, we named our framework

COMMIT, acronym for Convex Optimization Modeling for

Microstructure Informed Tractography.

A. Estimation of the candidate tracts

Any tractography algorithm, or combination of them, can

be used for the estimation of the candidates. The study

of the most appropriate approach to construct this initial

set of tracts, i.e. local reconstruction models and tracking

methods, goes beyond the scope of this paper and will be

the subject of future research. Yet, to show the flexibility of

our framework, in our experiments we tested COMMIT with

different inputs; in particular, and without loss of generality,

we used a classical line-propagation method based on [6], a

front-evolution algorithm similar to [10] and a global approach

[13]. In the case of the first two algorithms, we employed

the FOD as local diffusion model for the propagation of the

tracts in all our experiments, computed by means of the CSD

technique [27] using MRtrix1 and default settings. The global

approach of [13] does not construct the tracts by propagation,

but all the trajectories are estimated at once by finding the

configuration that best describes the measured data, using

the Stick [15] as local model. Finally, a binary mask was

used as support for all the methods (both for seeding and

constraining the tracts in the WM) and the tracking was

performed using standard parameters as found in the literature,

such as maximum curvature and stopping criteria.

B. Local forward-model

Once the pathways have been estimated with any given

tractography algorithm, the dMRI signal contribution of every

tract must be mapped to each voxel of the image. To this

aim, we adopt a multicompartment model similar to [23] to

characterize the neuronal tissue, accounting for both restricted

(intra-axonal) and hindered (extra-axonal) water pools, as

well as partial volume with isotropic diffusion, e.g. CSF.

Computationally expensive nonlinear procedures are normally

required to fit such models; however, when the response

functions are known (or can be determined) a priori, these

models can be efficiently estimated by means of systems of

linear equations [27], [29]. Hence, in a voxel, the predicted

signal S (q) at q-space location q ∈ R
3 can be expressed as

a linear combination with the following general formulation:

S (q) = f ICRIC(q)
︸ ︷︷ ︸

restricted

+ f ECREC(q)
︸ ︷︷ ︸

hindered

+ f ISORISO(q)
︸ ︷︷ ︸

isotropic

, (1)

where RIC, REC, RISO are the predicted signal profiles of the

compartments and f IC, f EC, f ISO the corresponding volumes.

RIC, REC and RISO can be either estimated from the data, as

in [27], or synthetically generated with analytic models, as

in [15]. Noteworthy, the classical CSD [27] can be seen as a

special case of (1) where only one compartment is considered.

Besides, in this context, the restricted contribution of a

voxel is given by all the tracts traversing the voxel itself

and the hindered space around them also depends on their

organization. Thus, Eq. (1) we be rewritten as follows:

S (q) =
∑

Fi∈F

f IC

i R
IC

(i)(q) +
∑

Fi∈F

f EC

i R
EC

(i)(q) + f ISORISO(q),

(2)

where f IC

i is the global contribution of the restricted diffusion

arising from fiber Fi ∈ F , f EC

i accounts for the hindered space

around the axons in the direction of Fi and the summation is

done over all the candidates. Each RIC

(i) represents a rotated

version of the response function RIC to match the local

1Available online: www.brain.org.au/software/mrtrix

https://github.com/daducci/COMMIT/
www.brain.org.au/software/mrtrix
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Fig. 2. The COMMIT model. When both the fiber pathways and the response functions of different tissue compartments can be estimated a priori, tractography
can be expressed as a convex optimization problem. The mapping A : F → I between the input fibers F (controlled by the coefficients x) and the dMRI
image I (stored in the vector y) can be implemented as a linear operator A by a natural extension of classical deconvolution approaches to the domain of

fiber-tracts. The signal in each voxel is given by a linear combination of the restricted diffusion arising from all the fibers intersecting the voxel, possibly in
addition to local extra-axonal and isotropic contributions at the voxel level.

orientation of Fi and it is scaled by the actual length (in mm)

of the portion of Fi intersecting the voxel, i.e. its intravoxel

length. Analogously for the REC

(i) response functions. Clearly,

if a fiber does not cross a voxel there is no signal contribution

from it in that voxel.

C. The COMMIT model

In this context, both the trajectories of the fibers and the

response functions of the compartments are known or can be

estimated a priori. Consequently, the mapping A : F → I can

be implemented as a linear operator by a natural extension of

Eq. (2) to the space of fiber-tracts which accounts for all voxels

of the image I , thus allowing us to express tractography as a

convex optimization problem. A schematic representation of

our formulation is illustrated in Fig. 2. The observation model

can be written in matrix form as

y = Ax+ η , (3)

where y ∈ R
ndnv

+ is the vector containing the nd q-space

samples acquired in all nv voxels, η accounts for both ac-

quisition noise and modeling errors, A ∈ R
ndnv×nc is the

observation matrix (i.e. dictionary) modeling explicitly the

multicompartment model of Eq. (2) in every voxel and the

positive weights x ∈ R
nc

+ are the contributions of the nc basis

functions in A (i.e. atoms). Please note that even if the size of

A may appear prohibitive, in practice it contains many zeros

as each fiber-tract traverses only a very small portion of the

voxels of the image.

The linear operator A is a block matrix:

A =
[
AIC AEC AISO

]
, (4)

in which nc = nr + nh + ni and the three sub-matrices

AIC ∈ R
ndnv×nr , AEC ∈ R

ndnv×nh and AISO ∈ R
ndnv×ni en-

code, respectively, the nr restricted, nh hindered and ni

isotropic contributions to the image, defined as follows.

1) Restricted: The matrix AIC has one column (or more)

for each candidate fiber Fi ∈ F and its rows correspond to

the restricted signal contribution of all the fibers F for a given

voxel and diffusion gradient. As in previous approaches [22],

[23], [26], we assume as well in our formulation that, at the

scale measurable with dMRI, the microstructural properties

of the tracts remain constant along their trajectories. The

restricted contribution in every voxel due to fiber Fi is

computed by rotating the response function RIC ∈ R
nd to

match the local orientation of Fi. In addition, this contribution

is scaled by the relative length of fiber Fi in each voxel; no

signal contribution is generated if a fiber does not traverse a

voxel. Finally, multiple contributions can be specified for a

fiber, e.g. considering each pathway as consisting of distinct

populations of axons with different diameters; in that case,

multiple columns in AIC will be associated with each fiber.

2) Hindered: Several strategies are possible to model hin-

dered diffusion in a voxel as, quoting [15], the effect of

multiple fiber populations on the extra-axonal space is not

very clear. For the sake of generality, in this work we allow

the possibility to specify multiple anisotropic contributions in

every voxel. Yet, to avoid the redundancy caused by the fact

that multiple pathways can follow locally the same direction,

only one extra-axonal compartment is considered for every

unique fiber population in each voxel v ∈ {1, . . . , nv}. In

particular, every atom in AEC is associated with one of the

principal diffusion directions estimated in a given voxel by
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means of any local reconstruction technique, CSD in this work.

It consists of the anisotropic response function REC ∈ R
nd

reoriented to match the corresponding unique fiber population

in the voxel; all remaining (nv−1)nd elements of the column

are null.

3) Isotropic restriction: An independent contribution is

added to each voxel to model any partial volume with brain

and non-brain tissues that are characterized by isotropic re-

striction. Each atom in AISO contributes to a single voxel

v ∈ {1, . . . , nv} with the predicted signal RISO ∈ R
nd ; all

remaining (nv − 1)nd elements of the column are null.

D. Model fitting

The weights x can be estimated by solving the following

non-negative least-squares (NNLS) problem:

argmin
x≥0

||Ax− y||22 , (5)

where || · ||2 is the usual ℓ2 norm in R
n. Unfortunately,

the size of A prevents to solve (5) using direct methods,

as the computation of the corresponding pseudo-inverse or

Cholesky decomposition is intractable. However, several ap-

proaches have been developed to iteratively find the least-

squares solution of such large-scale problems [30], [31].

In many practical situations the system of equations (3)

might be under-determined, i.e. more unknowns than measure-

ments; in this context, that condition can arise if the number

of q-space measurements in the input image is small (under-

sampling) or the set of candidate fibers is very large. In these

situations the inverse problem in (5) does not have, in general,

a unique solution. However, if the coefficients to be recovered

are known to be sparse, the use of ℓ1-regularization is a very

popular and effective choice to find a solution to these ill-posed

problems [32], [33]. A solution to (3) can then be recovered by

solving, for instance, the following ℓ1-minimization problem:

argmin
x≥0

||x||1 subject to ||Ax− y||2 ≤ ǫ , (6)

where the || · ||1 is the usual ℓ1 norm in R
n, which is used to

promote sparsity in the solution x, and the parameter ǫ is a

bound on the noise level and modeling errors. This formulation

is known as basis pursuit de-noise (BPDN). In the following

experiments we will use the most appropriate formulation for

each specific experimental condition.

E. Implementation details

In this work we have used off-the-shelf software that is

publicly available to solve the inverse problems (5) and (6);

specifically, we used the sbb2 [34] algorithm to solve NNLS

problems and spgl13 [35] for BPDN. Both solvers are imple-

mented in Matlab and are specifically designed to solve large-

scale problems. In particular, they iteratively search for the

optimal solution using canonical gradient-projection optimiza-

tion approaches that rely only on matrix-vector operations, as

the inversion of A would be too expensive. This property is

2Available online: http://suvrit.de/work/progs/nnls.html
3Available online: http://www.cs.ubc.ca/∼mpf/spgl1

of paramount importance in our framework; in fact, the matrix

A does not need to be stored explicitly and it can rather be

represented by means of sparse data structures. Moreover, as

tractography is an intrinsic WM reconstruction technique, only

WM voxels must be kept in memory. Our implementation

internally uses precomputed lookup-tables for the response

functions of the compartments and thus the two operations Ax

and A†y can be efficiently calculated at runtime. The response

functions have been generated using the tool datasynth

available in the Camino toolbox4 which offers a wide gamma

of analytic models [15] and different alternatives have been

tested in this work; more details will be provided regarding

the specific models used in each experiment.

F. Data and experiments

To show the flexibility and effectiveness of our formulation,

we tested COMMIT in multiple scenarios using both synthetic

and in-vivo data experiments. On one hand, we quantitatively

assessed its performance using the popular FiberCup phan-

tom [36] as its ground-truth is known. Fig. 3 shows the 12

regions of interest (ROIs) delineating the 7 true bundles and

the WM mask used for tracking. For compactness, the 3 orange

sub-bundles are shown as one. For the scope of this study, we

used the dataset acquired with 64 diffusion directions on a

shell at b = 1500 s/mm2 and 3mm isotropic resolution.

1
2

5

6 7

8

9

10

11

12

3

4

Fig. 3. The FiberCup data. Ground-truth, tracking mask and regions of
interest (1–12) used throughout the experiments.

On the other hand, we demonstrated the efficacy and the

benefits of COMMIT also in case of in-vivo human brain data

using a publicly-available dataset5. This data was acquired

from a healthy subject on a 3T MRI system (GE Signa

Excite HDx, Milwaukee, WI) with maximum gradient strength

Gmax = 40mT/m and using the following imaging protocol:

24 images at b = 700 s/mm2 with G = 23.7mT/m, 48 at

b = 2000 s/mm2 with G = 40mT/m, 9 with no diffusion

weighting (b=0), spatial resolution 1.875 × 1.875 × 2.5mm3

and using the same TR/TE = 12 400/86.6ms and δ/∆ =
27.7/32.2ms for all images. The data was not normalized to

the reference b=0 image. Therefore, all images have been cor-

rected for nonuniform intensity using the N4 algorithm [37];

the bias field was estimated from the average b=0 volume

and, subsequently, all diffusion images were corrected using

4Available online: www.camino.org.uk
5Available online: www.nitrc.org/frs/?group id=716

http://suvrit.de/work/progs/nnls.html
http://www.cs.ubc.ca/~mpf/spgl1
www.camino.org.uk
www.nitrc.org/frs/?group_id=716
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Fig. 4. Qualitative evaluation on the FiberCup phantom. The tracts reconstructed with our approach (bottom plots) are visually compared to those recovered
by the state-of-the-art global tracking algorithm, i.e. GIBBS (top plots). Each true bundle of the ground-truth (Fig. 3) is analyzed separately; the bundle 5 is
actually composed of three separate sub-bundles which are here reported as one for compactness. The blue arrows highlight the spurious tracts reconstructed.

this information. Finally, a WM mask was obtained from a

high-resolution T1-weighted image using Freesurfer6.

III. RESULTS AND DISCUSSION

A. Quantitative evaluation on realistic phantom

COMMIT is a framework that combines an existing trac-

togram with the microstructure features of the tissue and,

as such, it cannot be considered as a proper tractography

algorithm. Nevertheless, as a first experiment, we investigated

whether this framework could be exploited to achieve the

tracking quality of advanced global techniques using, instead,

simpler and faster algorithms in combination with COMMIT as

post-processing. To this aim, we compared the performance of

this approach with the state-of-the-art global algorithm of [13],

hereafter termed GIBBS, as this latter was ranked first in a

recent study evaluating several tractography algorithms [3]. To

estimate the candidate tracts we implemented a front-evolution

algorithm similar to [10], from now on termed GEODESIC

(see Appendix); this choice was motivated by three main rea-

sons. First, this family of methods are very efficient, versatile

and robust to noise. Second, the reconstructed pathways satisfy

the important anatomical constraint to originate in the gray

matter (GM) and develop in the WM. Third, it is virtually

possible to recover a unique pathway for any pair of locations

by properly tuning the parameters of the algorithm. Finally,

in this case the local forward-model consisted of a single

anisotropic tensor for the contribution of the fibers, estimated

from the data as in [27], no hindered compartment and an

independent isotropic contribution at the voxel level.

Fig. 4 presents the results of the qualitative comparison of

the tractograms reconstructed with GIBBS (top row) and using

COMMIT in combination with GEODESIC (bottom row), i.e.

GEODESIC + COMMIT. For each of the true fiber bundles

6Available online: http://surfer.nmr.mgh.harvard.edu

present in the ground-truth we reported all the reconstructed

tracts which originate from one of the ROIs identifying each

bundle (reported in yellow in each plot). No post-processing

such as filtering or clustering has been done on the resulting

tracts. In case of COMMIT, pathways that were assigned a

null weight are not displayed. Looking at the plots we can

easily appreciate how GIBBS estimates lots of false positives

fibers which are not in the ground-truth (pointed by blue

arrows). On the contrary, the tractograms reconstructed with

the combination GEODESIC + COMMIT look much cleaner

and contain less spurious fiber-tracts. This is more evident

looking at the plots corresponding to the bundles 3 and 5. We

observe that both methods still have troubles disentangling

the kissing configuration of the bundles 1 and 3, which might

probably require optimized acquisitions or more anatomical

priors for their proper characterization as the current data does

not allow to separate them. Inspecting carefully the plots, the

tractograms reconstructed with our approach may appear more

scattered as compared to GIBBS. However, it is important

to remember that COMMIT assigns a global weight to each

tract in the candidate set, i.e. xi, which is not reported in the

figures. As GIBBS implicitly assigns a constant weight to each

pathway, the algorithm has to recover multiple instances of the

same tract to obtain the same effect and so the tractograms

appear denser.

These results indeed demonstrate that, using COMMIT, it is

possible to attain the tracking quality of global tractography

using simpler non-global algorithms. Concerning the compu-

tational cost of the two approaches, it is worth noting that,

to obtain the tractograms in Fig. 4, GIBBS required about 44
minutes using optimal parameters whereas our approach took

less than a minute (≈ 25 seconds), including the estimation

of the candidate fibers with GEODESIC and the subsequent

optimization stage with COMMIT. All the experiments were

conducted on a standard laptop equipped with 8 GB of RAM

http://surfer.nmr.mgh.harvard.edu
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without using any kind of parallel computing. Our findings

can thus have several implications in a clinical perspective,

where faster but less accurate tracking algorithms are usually

preferred due to stringent time constraints.

The following quantitative analysis might shed some light

to understand the reasons for this gap. Table I reports the

scores computed using the Tractometer methodology pro-

posed in [38], which is an evaluation system for tractography

pipelines with a particular emphasis on global connectiv-

ity. Results are reported both for the tracking algorithms

alone, i.e. GIBBS and GEODESIC, as well as when applying

COMMIT afterwards, i.e. GIBBS + COMMIT and GEODESIC

+ COMMIT. As GIBBS implements a stochastic process, its

scores are reported as an average over a series of 10 runs.

All methods successfully recover all 7 Valid Bundles (VB);

however, a high number of Invalid Bundles (IB), a.k.a. false

positives that connect unexpected ROIs, are also reconstructed

by the two tracking methods: on average 12.5 with GIBBS

and 6 with GEODESIC. On the contrary, the number of

false positives is drastically reduced when applying COMMIT,

respectively 1.7 and 1. In addition, it is worth to observe that of

all the tracts recovered by GIBBS, 76.5% do not connect two

ROIs and are therefore discarded as anatomically impossible;

as a consequence, the support is represented only by the

remaining 23.5% of the tracts and the risk of false negatives

might be rather high. On the other hand, with GEODESIC

no such No Connections (NC) are recovered. This analysis

could explain the big gap in the execution times of the two

methods, for GIBBS putting a lot of effort in constructing lots

of fibers that later will have to be discarded. This can be further

emphasized by comparing the percentage of Valid Connections

(VC) and Invalid Connections (IC), which are the number of

tracts connecting expected and unexpected ROIs, respectively.

The combination GEODESIC + COMMIT recovers 97.9% of

VC and 2.1% of IC, while GIBBS obtains only 19.8% of

VC and 3.7% of IC. For a fair comparison of the actual

performances, though, we ought to normalize the scores by

the total number of connecting fibers, i.e. 1 − NC. By doing

this it turns out that GIBBS actually recovers 84.3% of VC and

15.7% of IC and its performances are closer to COMMIT. Per

contra, our approach requires much less time and, as opposed

to stochastic methods, guarantees convergence to the optimal

configuration.

VB IB NC VC IC Time

(num) (num) (%) (%) (%) (min)

GIBBS 7 12.5 76.5 19.8 3.7 43.6

GIBBS + COMMIT 7 1.7 76.5 21.9 1.6 43.8

GEODESIC 7 6 0 84.2 15.8 0.2

GEODESIC + COMMIT 7 1 0 97.9 2.1 0.4

TABLE I
QUANTITATIVE COMPARISON OF COMMIT AND GIBBS USING THE SCORES

PROPOSED IN [38] : VALID BUNDLES (VB), INVALID BUNDLES (IB), NO

CONNECTIONS (NC), VALID CONNECTIONS (VC), INVALID CONNECTIONS

(IC). RESULTS FOR GIBBS ARE REPORTED AS AN AVERAGE OVER A

SERIES OF 10 RUNS. BEST SCORES ARE MARKED IN BOLD.

B. Qualitative evaluation on in-vivo data

In the previous section we have shown that, indeed, the

quality of the tractograms can be substantially improved by

considering the microstructural properties of the tissue with

COMMIT. In this section, we evaluated the effectiveness of our

framework for microstructure informed tractography also in

case of in-vivo data. However, as the ground-truth is unknown,

we investigated the biological plausibility of the tractograms

with respect to the actual underlying tissue structure, before

and after optimization with COMMIT. In our experiments, we

found that the front-evolution algorithm used in the previous
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Fig. 5. Parameter maps estimated using COMMIT. Subplot A reports the voxelwise density of tracts recovered with GIBBS in two representative slices of the
brain before optimization, whereas in B we show the maps for the intra-cellular, extra-cellular and isotropic compartments after optimization with COMMIT

using A as input. Interestingly, the sum of these three compartments (rightmost plot) consistently converges to unity in all voxels although it was not imposed
in the optimization. The areas highlighted in magenta point to the regions where the improvements with COMMIT are more evident.

http://scil.dinf.usherbrooke.ca/tractometer/
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section does not provide a suitable set of tracts to build the

linear operator A also in case of in-vivo data, probably due to

the higher complexity of real brain connections; on the other

hand, GIBBS seemed to offer a valid support for COMMIT.

For this reason, in this first experiment with in-vivo data

we have adopted GIBBS to estimate the input set of tracts

and we will investigate in detail the effect of using other

tracking algorithms in Section III-D. For the local forward-

model we considered two restricted contributions for each tract

and we used the Gaussian Phase Distribution approximation

assuming a longitudinal diffusivity d‖ = 1.7× 10−3 mm2/s
and two distinct axon radii R ∈ {0.5, 5} µm. In addition, in

each voxel, we included one hindered contribution for every

unique fiber population and we adopted the Zeppelin model

assuming a perpendicular diffusivity d⊥ = 0.5× 10−3 mm2/s
and same d‖. Lastly, two independent compartments with

isotropic diffusivity d ∈ {1.7, 3.0}×10−3 mm2/s were added

to account for partial volume with GM and CSF, respectively.

In Fig. 5A we computed the density of the tracts in two

representative slices of the brain, in a similar way to the

track-density imaging (TDI) technique [39], assigning a fixed

volume per unit length of the tracts; this is in fact an im-

plicit assumption in all tractography algorithms. Analogously,

Fig. 5B reports the intra-cellular, extra-cellular and isotropic

maps after computing the actual contributions of all the com-

partments with COMMIT and then summing the corresponding

weights in each voxel, i.e. f IC, f EC and f ISO. The tracking

time with GIBBS was ≈ 12 hours and the optimization

time with COMMIT ≈ 13 minutes. Comparing the images

before and after optimization, we can notice that the spatial

distribution of the raw fiber-tracts does not follow the expected

pattern of neuronal density as found in previous studies [40],

[41]. On the other hand, the maps estimated after COMMIT

indicate a spatial distribution which appears more biologically

plausible and in agreement with the known brain anatomy.

In fact, the intra-cellular map shows the highest values in the

major WM bundles, e.g. corpus callosum and corticospinal

tract highlighted in magenta in upper plots, an homogeneous

distribution in crossing areas, e.g. corona radiata indicated

in lower plots, and a decreased contribution approaching the

GM. Conversely, the extra-cellular map reveals the lowest

contributions in areas of highly-packed bundles, increased

values at the boundary with GM and an homogeneous pattern

elsewhere. Isotropic contributions occur mostly at interfaces

with GM and CSF regions, as expected.

Finally, it is worth noting that the sum of the compartments

appears to consistently converge to unity (1.001 ± 0.155,

mean ± standard deviation) even though this constraint was

not imposed in the optimization. This result represents a

reassuring indication that the model is appropriate and it

leaves, as well, significant room for improvement in the future

through the explicit incorporation of such physical constraint

in every voxel. Besides, the careful reader might have noticed

that this physical property is not perfectly met in few voxels

close to GM or CSF. In these regions, inaccuracies in the

segmentation of WM can cause fibers to stop prematurely or

extend inside GM. In the first case, WM voxels that are not

properly covered by the tracts do not possess a valid support

for COMMIT to accurately model the signal in the voxel.

Conversely, those GM voxels that are (incorrectly) traversed

by the tracts are included in the optimization but COMMIT is

unable to fit correctly the model as it is intrinsically a pure

WM model.

C. Local vs global fit

As previously stated, nonlinear procedures are normally

required to fit multicompartment models to the data and extract

microstructure properties of the tissue. Nonlinear approaches

offer in fact a high degree of control over the functions to fit

and produce very accurate estimates but, per contra, they are

computationally very intensive. In this section, we tested the

efficacy of using linear methods to fit these models.
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Fig. 6. Local vs global fit. The intra-cellular volume fraction map (top row)
is reported in a representative slice as estimated by: NODDI (left column),
COMMIT (right) and a voxel-by-voxel NNLS fit (middle) using the same local
forward-model as COMMIT but solving each voxel independently, i.e. without
using the regularization provided by the input fiber-tracts. The accuracy of
the fit is also reported (bottom row) by means of the NMSE between the
measured and estimated dMRI signal in each voxel.

Fig. 6 compares the maps of the intra-cellular compartment

as estimated by COMMIT and by a voxel-by-voxel NNLS

fit that uses the same local forward-model but solves each

voxel independently, i.e. without exploiting the regularization

provided by the tracts. For reference, we adopted the voxelwise

fitting results from [21] as pseudo ground-truth, hereafter

referred as NODDI, as this model has been shown to produce

parameter maps consistent with brain anatomy [40], [41]. The

accuracy of the fit in each voxel was quantified by means

of the normalized mean-squared error (NMSE) between the

measured and the reconstructed signal, defined as

NMSE =
||S(q)− S̃(q)||22

||S(q)||22
=

∑

i[S(qi)− S̃(qi)]
2

∑

i S(qi)
2

, (7)

where S(qi) and S̃(qi) are, respectively, the measured and

estimated signal at q-space position qi for i ∈ {1, . . . , nd}.

Results clearly indicate that the simple voxelwise linear-

fit is not suitable to produce reasonable estimates. The intra-

cellular compartment appears unnaturally high (≈ 0.9–1.0)
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and its spatial distribution does not resemble the anatomically-

correct pattern appreciable in the νic map of NODDI (left). It is

interesting to observe that fitting errors are definitely smaller

than in NODDI, but this result clearly points to overfitting.

Actually, it turns out that in the majority of the voxels, the

local linear system to be solved is under-determined and hence

the problem has too many independent parameters for the data

available locally. On the contrary, solving the problem globally

and exploiting the input tracts as prior knowledge on brain

structure permits to recover biologically plausible estimates

also using a linear approach. The trajectories of the tracts act

as a spatial regularization term that effectively reduces the

degrees of freedom of the linear problem. A close inspection

of the figure reveals that COMMIT exhibits the expected pattern

of neurite density (borrowing the terminology in [21]) as

shown by NODDI and previous studies [40], [41], i.e. higher

contributions in major WM bundles, decreased values ap-

proaching the GM and homogeneous elsewhere. Interestingly,

the fitting errors in COMMIT are comparable to NODDI, i.e.

0.92%±0.53% for the former and 0.89%±0.53% for the latter,

suggesting that the spatial regularization provided by the tracts

successfully prevented overfitting. NODDI showed superior

fitting results (lower NMSE) in areas with highly-packed

axons, e.g. corpus callosum, and in proximity of GM, whereas

COMMIT seemed to perform better in locations with crossing

fibers. This result finds a natural explanation in the intrinsic

differences between the two approaches: NODDI models both

WM and GM but assumes a single fiber compartment in

each voxel, when in fact COMMIT is intrinsically a WM

model but can successfully handle multiple fiber populations.

Yet, despite these differences, NODDI served the purpose of

an independent technique to highlight and compare known

anatomical patterns of neurite density in the final maps and

point out overfitting situations.

Notably, our findings might have important implications for

the next generation of algorithms for voxelwise microstructure

imaging. In fact, the time required to estimate the maps in

Fig. 6 on the whole brain was around 9–10 hours (with 4 cores)

with NODDI, whereas only 13 minutes (1 core) were needed

with COMMIT (excluding the time for the tracking) and only 2

minutes (1 core) with the voxelwise NNLS approach. NODDI

uses a complex fitting procedure based on Gauss-Newton

nonlinear optimization (implemented in Matlab) that produces

very accurate results at the price of high computational time.

Our results clearly show that convex optimization might be

used as a means to drastically reduce the complexity of this

class of reconstruction algorithms, but regularization seems

mandatory to prevent overfitting. Hence, future research will

be conducted to investigate more local forms of regularization,

i.e. using a neighborhood instead of the whole trajectories, that

might improve the stability of the fit at the voxel level and

avoid overfitting.

D. Importance of the input set of candidates

The previous sections have shown that GIBBS offers a

valid support to regularize the problem (3) and that the

individual contributions of the tracts estimated with COMMIT
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Fig. 7. Dependence on the input tracts. The map of the restricted compart-
ment is shown, before and after optimization with COMMIT, for candidate
tracts estimated with GIBBS (left column), a classical streamline algorithm
(middle) and the front-evolution approach used in Section III-A (right).

are distributed accordingly to known brain anatomy. In this

section, we evaluated the efficacy of using other tractography

algorithms to build the input set of candidates. A large

number of different techniques have been proposed to date

in the literature [3]–[5] and an exhaustive evaluation would

be prohibitive. Hence, without loss of generality, we selected

three representative algorithms with the aim to highlight

specific characteristics of each tractograhy class: the global

approach used in the previous experiments, i.e. GIBBS, the

front-evolution algorithm we employed in Section III-A, i.e.

GEODESIC, and a classical line-propagation method, hereafter

STREAMLINE. This latter is an in-house implementation [42]

of the deterministic algorithm described in [43], which con-

siders multiple local diffusion directions and multiple random

seed points within each voxel and a maximum turning angle of

60 degrees. A summary of the three algorithms can be found

in Table II.

GIBBS STREAMLINE GEODESIC

Tracking Time 12 hours 3 minutes 25 minutes

Number of Tracts 85× 10
3

1061× 10
3

540× 10
3

Optimization Time 13 minutes 28 minutes 39 minutes

Anatomical Plausibility High Low Medium

TABLE II
SUMMARY OF THE THREE EVALUATED TRACTOGRAPHY ALGORITHMS FOR

CONSTRUCTING THE INITIAL SET OF TRACTS AS INPUT TO COMMIT.

Fig. 7 compares the three tracking methods with respect

to their ability to provide a valid support for combining

tissue microstructure estimation with tractography. The map

of the intra-cellular compartment is shown before and after

optimization with COMMIT. In this experiment, we used the

formulation (6) to solve the inverse problem, as STREAMLINE

and GEODESIC recover a higher number of tracts than GIBBS

and using (5) turned out to be inappropriate. As one can

see, neither STREAMLINE nor GEODESIC seem to provide
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Fig. 8. COMMIT as a means to study the effects of under-sampled data. The map of the restricted compartment is shown in the top row of A as a function
of the number of under-sampled measurements considered in the optimization. The accuracy of the fit is also reported (bottom row) as the NMSE between
the measured and estimated dMRI signal. Subplots B and C summarize, respectively, the time required for COMMIT to converge and the accuracy of the fit.

a set of candidates as good as GIBBS. This latter estimates

the tracts using an energy-minimization procedure which,

albeit being computationally expensive (≈ 11–12 hours),

produces streamlines that have been placed to fit the signal.

STREAMLINE, on the contrary, constructs the pathways using

a greedy approach. The input set is estimated much faster (≈
3 minutes) but, despite showing a pretty uniform coverage

of the WM, the spatial distribution of the neurite density

after optimization does not match known anatomy. A possible

reason could be due to the well-known tendency of these

local methods for retrieving a lot of similar pathways and,

at the same time, for missing many existing ones, i.e. false

negatives. As a consequence, this input set of trajectories

cannot represent a valid support that includes all the true

bundles and, consequently, COMMIT is unable to accommodate

the weights accordingly to the underlying axonal structure. On

the other hand, front-evolution approaches can mitigate this

limitation of local methods, as they can virtually construct

a unique pathway for any pair of locations in the brain.

Results show indeed that GEODESIC can estimate the input

tracts in reasonable time (≈ 20–25 minutes) and that the

spatial distribution of neurite density after optimization is more

biologically plausible than STREAMLINE, even though not as

good as when using GIBBS as support. A possible explanation

stems from a peculiarity of geodesic approaches, which can

be seen in Fig. 7, namely the fact that they tend to collapse

different tracts onto the same “optimal path” in some areas

of the brain. As a result, some WM voxels are not properly

covered and bottlenecks can be created in terms of neurite

density, thus failing to provide a suitable support for COMMIT.

An interesting implication of our findings is that the number

of tracts is not crucial to obtain a good support for combining

tractography and tissue microstructure estimation, but rather

the fact that the tracts should account for all true anatomical

bundles and cover homogeneously the WM. Our results also

suggest that probably the optimal initial set of tracts is rep-

resented by a combination of tracking methods; interestingly,

this is also the strategy adopted in [22], in such a way to

borrow the advantages of each technique. The characterization

of the optimal candidate set represents a very important and

interesting study by itself, but it goes beyond the scope of this

paper and will be the subject of future investigation.

E. Studying the effects of under-sampled data in q-space

In the last experiment, we present a potential application

of this new framework as a means to study and optimize

dMRI acquisition protocols and accelerate the acquisitions.

To date, the effects of under-sampled data have been widely

investigated, using the theory of compressed sensing [32],

[33], for diffusion modeling at the voxel level (see [44] and

references therein). On the other hand, compressed sensing has

never been explored so far with the aim to reduce the long scan

time required for mapping the microstructure. Also, the impact

of under-sampled data on the tractograms has never been

addressed. An added value of our formulation is that, in its

basis, it is intrinsically suitable for this kind of investigations.

Fig. 8 gives an example of such an analysis. We used the same

experimental setup of Section III-B but considering subsets

of q-space measurements in the optimization with COMMIT.

Each subset was created using the tool subsetpoints of

Camino in order to obtain gradient directions as evenly spaced

as possible; the same under-sampling rate was used for each

shell. As the problem becomes quickly under-determined, the

BPDN formulation (6) was used to regularize the solutions.

Fig. 8A shows the map of restricted contributions as es-

timated using different under-sampling rates, i.e. from using

all the input measurements (72 samples) to the inclusion of

only 6.25% of them (5 samples), along with the NMSE of the

reconstructed signal. The execution time required by COMMIT

clearly decreases by reducing the number of measurements

considered in the optimization; per contra, as expected, also

the quality of the reconstructions is progressively reduced.

However, no apparent sign of degradation can be observed in
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the reconstructions when discarding 50% of the data (36 sam-

ples), whereas the quality quickly deteriorated with stronger

under-sampling regimes, i.e. higher NMSE and distribution

of the intra-cellular compartment not conform to underlying

anatomy. This finding suggests that, despite the protocol was

already optimized in [21] with the aim to improve the fit of

the NODDI model, the global structure provided by the fibers

could be exploited to either accelerate further the acquisitions

or enhance the quality of the reconstructions. Surely, future

work will be necessary to characterize the notion of sparse

representations of the tractograms and to study more system-

atically the effectiveness of the ℓ1 norm for promoting sparsity

in the fiber-tracts domain. It will be interesting, as well, to

assess the lower bound for data under-sampling that still allows

the estimation of useful characteristics of WM tissue, both in

terms of trajectory and microstructure properties of the tracts.

F. General considerations and future perspectives

The originality of our formulation lies in the possibility to

express tractography and tissue microstructure estimation in a

unified convex problem, which makes it possible for the first

time to deal efficiently with the tremendous computational

complexity of these very high-dimensional problems. As a

proof of concept, we suggested four possible applications of

this novel framework: (i) as a standalone fiber-tracking algo-

rithm with superior performances than state-of-the-art global

approaches, (ii) as a means to combine tractography and tissue

microstructure estimation to recover the effective contribution

of each tract, (iii) as a way for comparing existing tractography

algorithms with respect to the biological consistency of the

estimated tractograms to the underlying neuronal tissue, and

(iv) as a tool to further optimize the acquisition protocols

and improve the reconstructions by exploiting the global

structure in the data imposed by the fibers. Since this new

formulation provides the means to deal with tractography

and tissue microstructure from a different perspective, we

genuinely believe that the range of potential applications of

this framework will not be limited, in the future, to the few

described here.

A strength of COMMIT is that it already showed convincing

results even if we used a simple approach to formulate the

problem and employed non-specialized software that was pub-

licly available to retrieve the solutions. Yet, we expect that the

framework will perform better with a more appropriate incor-

poration of prior knowledge into the model. For example, in

our experiments we used a very simple form of regularization

that enforces the ℓ1 norm on all the coefficients; despite being

very crude and rudimentary, results already showed the ef-

fectiveness of the current implementation. However, ℓ1 should

be more effective if applied only to the coefficients controlling

the tracts, i.e. AIC sub-matrix, whereas Total Variation (TV)

regularization seems to be more adequate for imposing spatial

smoothness of extra-cellular and isotropic contributions across

voxels. We could also set specific bounds on the parameters or

explicitly impose, in each voxel, the physical constraint of unit

sum of all compartments. All these refinements to the model

will surely lead to improved and more robust reconstructions;

from this point of view, thus, our framework has still a lot of

room for improvement.

Finally, as COMMIT relies only on the two operations Ax

and A†y, we expect also a substantial improvement in terms of

execution time with an implementation on graphics processing

units (GPUs). In fact, sparse matrix-vector multiplication is

particularly suitable to benefit from the massive parallelism

offered by GPUs and many solutions have already been

proposed [45], [46]. GPU implementations will enable hybrid

procedures to be developed that alternate COMMIT to short

runs of classical energy-minimization techniques [12], [13],

thus paving the way to obtain a real standalone tractography

algorithm which is truly global and quantitative.

The main limitations of our approach are twofold. In

the first place, the input tracts are static and their position

cannot be adapted and, as a consequence, our formulation is

sensitive to the choice of the algorithm used to estimate the

candidates, as shown in the manuscript. An investigation of

the most appropriate local models and tracking methods to

obtain plausible and robust estimates is indeed required and

it will be the subject of future research. Second, the model

assumes that the microstructural properties of the tracts remain

constant along their trajectories. Our formulation, as well as

all previous approaches, is thus not (directly) suitable in case

of pathologies that might locally alter the properties of the

axons. However, in those situations, we speculate that any

local axonal injury would be rather captured (indirectly) as

altered extra-cellular or isotropic contributions in the voxel

affected by the disease, as in our model these contributions are

spatially independent. Clearly, a comprehensive evaluation of

COMMIT in such pathological conditions is necessary to assess

the applicability of this framework in clinical applications.

IV. CONCLUSION

We have proposed a novel formulation for diffusion MRI

tractography that combines the estimation of local microstruc-

ture properties of the tissue with the versatility of classical

fiber-tracking algorithms in a unified and efficient framework.

Because of its convex formulation, our approach is fast,

accurate and can be used in a wide range of applications.

We demonstrated the feasibility and the effectiveness of our

framework both on synthetic and in-vivo data. Our findings

clearly show that, after optimization with our approach, the

tractograms agree more closely with the known brain anatomy

and suggest that our proposed formulation represents a viable

approach towards quantitative tractography. We believe that

the framework presented in this work could be received with

interest by the diffusion MRI community as it opens new

perspectives for the quantification of brain connectivity.

APPENDIX

SHORTEST-PATH TRACKING

Our front-evolution algorithm is based on the classical

shortest-path algorithm [47]. Fibers are described by paths of

nodes that are arranged on regular distributions of points on

each face of the voxels within WM. The number of points

per face is rather low (e.g. 16 or 25) in order to keep a
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limited memory usage and fast execution. The cost function

for traversing a segment depends on several parameters that

ensure a realistic pathway reconstruction. We account for

fiber bending, deviation from local FOD maxima and segment

length. Instead of adding the segment costs, as in the original

algorithm, we multiply them to penalize paths containing even

a single non optimal segment. Multiple source shortest-path is

used for efficiency purposes (e.g. nodes lying between WM

and a specific ROI) and to recover coherent bundles of fibers.

A common drawback of shortest-path is that, among all valid

paths that end over a ROI voxel, they often share an initial

common part, while other regions are not traversed at all.

This causes a slow convergence in the optimization, since the

problem is severely under-determined. The algorithm actually

traverses every voxel; however many non-optimal paths stop

in the middle of WM and they can be exploited in post-

processing. We then introduce the tree widening procedure to

post-process non-optimal results and to produce a set of paths

that are better spatially distributed. In practice, the algorithm

exploits partial paths and combines them with close-by fibers,

only if this junction causes no strong penalties in terms of

shortest-path costs. The resulting fibers are more uniformly

distributed and there are less shared sub-paths among fibers.
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