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Commitment of Electric Power Generators under Stochastic Market Prices  

Abstract 

 A formulation for the commitment of electric power generators under a deregulated 

electricity market is proposed. The problem is expressed as a stochastic optimization 

problem in which the expected profits are maximized while meeting demand and 

standard operating constraints. First, we show that when an electric power producer has 

the option of trading electricity at market prices, an optimal unit commitment schedule 

can be obtained by considering each unit separately. Therefore, we describe solution 

procedures for the self-commitment of one generating unit only. This description is given 

for three certainty-equivalent formulations of the stochastic problem. The procedures 

involve application of optimization methods, statistical analysis, and asymptotic 

probability computations. The optimization problem uses Schweppe's definition of hourly 

spot price to drive self-commitment decisions. Under the assumption of perfect market 

competition, the volatility of hourly spot price of electricity is represented by a stochastic 

model, which highlights its dependence on demand, generating unit reliabilities, and 

temperature fluctuations. The exact computations become very time-consuming for large 

systems; we therefore use several approximation methods (normal, Edgeworth series 

expansion, and Monte Carlo simulation) for computing the required probability 

distributions. Dynamic programming is used to solve the stochastic optimization 

problem. Numerical examples show that for a market consisting of 150 generating units, 

the self-commitment problem can be accurately solved in a reasonable time. 
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1. INTRODUCTION 

Electric power consumption varies with time reflecting the predictably cyclical nature 

of human activities. The demand for electricity is higher during the day and early 

evening, weekdays and the summer or winter seasons as compared to the late night and 

early morning, weekends and fall or spring seasons. Also, electricity is a non-storable 

commodity and needs to be produced at the same rate at which it is consumed. In order to 

run the electric power generation system economically so as to reliably meet the demand, 

it is thus necessary to switch the generating units on and off at appropriate times.  The 

generating units cannot however be turned on and off in a haphazard manner. Besides the 

start-up costs, one also needs to consider certain operating constraints that dictate how 

frequently and in what manner the units can be turned on and off. They are, for example: 

minimum up time, minimum down time, minimum capacity, maximum capacity, and 

ramping rate. The decision problem of optimally scheduling the operation of these 

machines is known as the unit commitment problem (UCP). [Wood and Wollenberg 

(1996)]. 

The UCP has both combinatorial and continuous non-linear optimization components, 

and the problem is usually very complex to solve because of the non-linear objective 

function and many variables and constraints. Much of the computational difficulty of this 

problem arises from the coupling constraint requiring that the total production from all 

the generating units under consideration equal electricity demand for every hour. The 

number of generating units and the number of hours in the time horizon roughly 

determine the problem size. Well-known mathematical programming techniques such as 

integer programming, dynamic programming, branch and bound, Benders decomposition, 
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and Lagrangian relaxation have been used to solve the UCP. For small problems, they 

can provide the optimal solution in a reasonable amount of time. However, for large 

problems, the computational time required to find the optimal solution becomes 

prohibitive. In such cases, the solution space is only partially searched and therefore there 

is no guarantee that the optimal solution can be found. Meta-heuristic methods such as 

simulated annealing, tabu search, and genetic algorithms have also been used for solving 

these large and highly complex problems. The interested reader can refer to Sheble and 

Fahd (1994) and Sen and Kothari (1998) for a synopsis of the literature on the topic of 

unit commitment. 

Within a regulated framework, an electric utility serves the customers of a certain 

region under tariffs calculated to guarantee the recovery of its costs. In this situation, a 

power generating utility solves the UCP to obtain an optimal production schedule of its 

units to meet customer demand. The optimal schedule is found by minimizing the 

production cost over a given time interval while satisfying the demand and the set of 

operating constraints. The minimization of the production costs assures maximum profits 

because the power generating utility has no option but to reliably supply the prevailing 

demand. The price of electricity over this period is predetermined; therefore, the 

decisions on the operation of the individual units have no effect on the firm’s revenues.  

Under deregulation [Galiana and Ilić (1998) and Federal Energy Regulatory Commission 

(1996)] the price of electricity is however no longer predetermined. The unit commitment 

decisions in this situation are based on the expected market price of electricity rather than 

on the demand although these variables are usually correlated. Thus far, the hourly 

market prices of electricity have shown evidence of being highly volatile [Citizens Power 
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(1997)]. The UCP now requires a stochastic formulation that includes a representation of 

the electricity market.  

In a recently published monograph, Allen and Ilić (1999) have described the new 

formulation of the unit commitment problem that will be needed for the deregulated 

environment. They have attempted to obtain the stochastic characteristics of the market 

prices directly from available data on market-clearing prices, load, and covariates 

(mainly, temperature) that affect the prices. In other relevant literature, Takriti et al. 

(2000) have introduced a stochastic model for the UCP in which the uncertainty in the 

demand and prices of fuel and electricity are modeled using a set of possible scenarios. 

However, generating representative scenarios and assigning them appropriate 

probabilities remains a challenge. Tseng (2001) uses Ito processes to model the prices of 

electricity and fuel. These three approaches require observation of market prices and 

fitting a model that can describe their expected behavior. These models may require 

many years worth of data, which may not be available any time soon. Deregulated 

markets have been in operation for just a few years. Besides, under deregulation the cost 

structure of the supply side of an electricity market could change drastically. Generating 

units also have the potential to fail. The implication is that the set of generating units 

participating in a particular market at a given week or month can be quite different from 

those that participated in previous periods. To overcome these difficulties, we have taken 

a bottom up engineering economic approach to forecasting market prices based on 

process representations of electricity production and consumption. The main advantage 

of bottom up models is that they can be used to represent non-stationary systems (e.g., in 

which fuel prices differ from the past), and can more easily be used to consider scenarios 
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in which the system's structure has been changed (e.g., entry of additional generators). 

Our price model assumes that an electricity market for a region can be seen as one large 

electric power system. Under perfect competition, the hourly spot price is equivalent to 

the hourly marginal cost of the power generation system (Schweppe et al. 1988). We 

represent the generating units participating in the market via a production-costing model 

[Baleriaux et al. (1967) and Kahn (1995)] and deduce from it the statistical behavior of 

the hourly marginal cost of the system.  Rather than fitting a statistical model to observed 

electricity prices, we determine the stochastic behavior of the prices via modeling two 

stochastic processes (supply and demand) underlying the hourly spot price of electricity. 

The production-costing model, which has been extensively used by the regulated utility 

industry for the purpose of forecasting costs of electricity production, uses the 

assumption that the generating units are dispatched in accordance with an economic merit 

order. That is, in order to meet the demand, the unit with the lowest marginal cost is 

loaded first, followed by the next unit with the lowest cost, and so on. Although this 

assumption neglects unit commitment constraints, it is generally believed that this 

approximation provides very good estimates. Additional justifications for the use of this 

model to represent market prices are given in section 2.2.  

The main advantage of this bottom up modeling approach is that the stochastic 

processes corresponding to the supply side of the market use parameters that pertain to 

the individual generating units only. These parameters such as mean time to failure, mean 

time to repair, and capacity are insensitive to decisions made in an attempt to alter the 

price of electricity. Initial estimates of these parameters can remain valid during long 

periods and therefore no calibration with historical data is required.  Similarly, initial 
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estimates of parameters of the stochastic process corresponding to the demand side of the 

market can also remain valid during a long period of time. The reason is that the demand 

for electricity is more susceptible to changes in the ambient temperature, hour of the day, 

and day of week rather than to changes in the market structure.  

Assuming perfect competition and absence of market power, we equate the spot price 

of electricity for a given hour to the marginal cost of the last unit (marginal unit) used to 

meet the demand prevailing at this hour. Recent developments in California as well much 

of the literature on price models may cast doubt on this assumption. Thus, the price 

model depicted here should be regarded as a first approximation. Eventually, it will be 

necessary to introduce in our model the oligopolistic structure of the electricity market. 

However, when the supply situation is not too tight in relation to the demand and/or the 

number of generators participating in the market is not too small, this model should 

provide quite accurate results [Rudkevich et al. (1998)]. We determine the probability 

distribution function of the hourly spot price based on the stochastic process governing 

the marginal unit. This in its turn depends on the demand and the alternating renewal 

processes describing the availabilities of the generating units participating in the market. 

In our stochastic model of the marginal unit, we make the same assumptions as used in 

the probabilistic production-costing model proposed by Ryan and Mazumdar (1990) 

which was adopted by Lee, Lin and Breipohl (1990) for the purpose of computing the 

variance of production costs over a given time interval. This model represents a 

stochastic process based enhancement of the original Baleriaux model of production 

costing. It assumes that the operating state of each generating unit participating in the 

market follows a two-state continuous-time Markov chain. The two states are  “available” 
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and “unavailable”. The assumption that times to failure and repair are exponentially 

distributed is commonly used to model the reliability of a component in the power 

systems literature [Billinton and Allan (1992)].  The information on the mean time to 

repair, mean time to failure, capacity, and marginal cost of each unit required to 

characterize these processes is assumed available. The hourly demand is represented by a 

Gauss-Markov process [Breipohl et al. (1992)]. Valenzuela and Mazumdar (2000) have 

recently reported on the statistical analysis of hourly load data covering a region of the 

Eastern United States. They have shown that when the effect of temperature is suitably 

subtracted from the hourly load, such a process can represent the demand quite 

accurately.  

We also propose a formulation for the unit commitment problem for an electric power 

producer, which owns a number of generating units in a deregulated market and consider 

computationally efficient procedures to solve it. We express the decision problem as a 

stochastic optimization problem in which the decisions on the operation of the individual 

generators do not affect the price of electricity (lack of market power). The objective is to 

maximize expected profits, and the decisions are required to meet standard operating 

constraints. We first show in section 2 that when the market price of electricity is 

considered exogenous to the unit commitment decisions and the demand constraints are 

the only coupling constraints, the optimization problem (for a generation company acting 

as a price-taker in a PoolCo-type electricity market) decomposes in a straightforward 

manner into as many sub-problems as the number of generating units owned by the 

company. Therefore, the optimal solution of a UCP with M units can be found by solving 

M uncoupled sub-problems. In the recent literature, it has been tacitly assumed that the 
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UCP under deregulation can be solved by considering one unit at a time [Allen and Ilić 

(1999), Rajaraman et al. (2000)].  Here, we furnish a formal proof of this fact that 

highlights the implicit conditions under which this assumption holds. Much of the 

computational difficulty of the standard UCP arises from the coupling constraint 

requiring the total production from M units to equal electricity demand for every hour. 

The feature of decomposability into sub-problems for the deregulated market 

considerably reduces the computational burden. This section gives dynamic programming 

solutions for three different models representing the UCP.   

Our model differs from other stochastic formulations of the unit commitment problem 

with regard to the load and operating constraints, the manner in which the spot market is 

modeled, and the solution technique. The model proposed by Carpentier et al. (1996) 

does not include start-up costs and uses the Augmented Lagrangian Relaxation technique 

to decompose the problem. Although, they do not include the feature of buying from or 

selling energy to a spot market in their model to correct energy imbalances, they add a 

penalty term associated with the discrepancy between generation and demand. In their 

model, the penalty represents the cost of bringing on-line expensive generation. Another 

stochastic model has recently been proposed by Takriti and et al. (2000). Their model 

includes fuel constraints in addition to the operating constraints considered in our 

formulation. The spot market is modeled as two generating units. One unit represents the 

transaction of buying from the pool and the other unit selling to the pool. They have 

assumed that the cost functions of these two units are linear with different cost 

coefficients, e.g. they assume that the price at which energy is bought is different at 

which it is sold. Unlike our model, load constraints are here set as inequalities (total 
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power produced greater than or equal to the demand). They have used Lagrangian 

relaxation and Bender's decomposition to solve the optimization problem.   

Section 3 describes the stochastic model based on which the probability distribution 

for the marginal unit at different hours is obtained. This leads to the derivation of the 

probability distribution for the hourly spot price. The model incorporates information on 

the demand as well as how the prevailing temperature influences it. The dynamic 

programming algorithm that we use to solve the unit commitment problem requires the 

computation of the bivariate probability function of the marginal units at two different 

hours. This computation is however not easy. The difficulty arises from the need to 

account for the stochastic behavior of the demand for electricity and the 2N possible 

availability states of a market comprising N generating units. Experimental results for a 

power generating system of 15 units showed that the exact computation of the bivariate 

probability function is prohibitively time-consuming. Therefore, we evaluate several 

approximation methods including the normal, cumulant based approximation (Edgeworth 

or Gram-Charlier expansions), large deviation, and Monte Carlo approximation methods. 

These approximations have been used in a univariate context with much success in 

power-system reliability and production costing computations [Stremel et al. (1980), 

Caramanis et al. (1983), Rau et al. (1980) and Mazumdar (1988)] in which similar 

difficulties arise. Iyengar and Mazumdar (1998) have provided bivariate generalizations 

of these formulas and used them for approximate evaluation of composite power system 

reliability. The application of the method of cumulants requires computation of the 

cumulants of several orders for the appropriate distributions.  To evaluate the large 

deviation approximations, the solution of a non-linear system of equations becomes 
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necessary. Section 4 describes the numerical example used to describe the market. In 

section 5, we compare the computational accuracy and efficiency of the different 

approximation schemes that were examined.   
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2. A STOCHASTIC FORMULATION OF THE UNIT COMMITMENT 

PROBLEM FOR A POWER PRODUCER UNDER DEREGULATION 

We consider an electric power producer with M generating units and assume that the 

producer wishes to schedule its units to maximize profit over a short time period of 

length T hours.  We assume that the producer obtains its revenues by selling power at 

pre-negotiated prices based on long-term bilateral contracts and selling electric power at 

market prices to the power pool that serves as a market.  That is, if at a particular hour the 

power supplier produces electricity with its generating units, it is then willing to take the 

price prevailing in the market at this hour (price-taker). We also assume lack of market 

power, e.g. the power supplier's decisions do not affect the market prices. The M 

generating units are assumed to remain available during the time interval of interest. 

Recently other formulations have been proposed for the unit commitment problem for the 

new deregulated environment, which make somewhat different assumptions. For 

example, Baillo et al. (2000) have proposed a model that explicitly considers the ability 

of the generating company to affect prices with its decisions on the amount of its power 

output. 

2.1. Modeling the Operation of Generating Units 

In determining an optimal commitment schedule, there are two decision variables, Pk,t 

and vk,t. Pk,t denotes the amount of power to be generated by unit k at time t, and vk,t is a 

control variable whose value is chosen to be “1” if the generating unit k is committed at 

hour t and “0” otherwise. (Of course, if vk,t = 0, then Pk,t = 0).  The cost of the power 

produced by the generating unit k depends on the amount of fuel consumed and is 
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typically approximated by a quadratic cost function CFk(p) [Wood and Wollenberg 

(1996)]: 

                       CFk(p) = a0,k + a1,k p + a2,k p2 ,         (1) 

where p is the amount of power generated. The start-up cost at hour t, which for thermal 

units depends on the temperature of the boilers, is given by a known function )( 1,, −tktk xS . 

The value of xk,t-1 specifies the consecutive time intervals during which the unit has been 

on (+) or off (-) at the end of the hour t-1. For example, x1,7 equaling +4 indicates that at 

the end of hour 7 the generating unit number 1 has been up for 4 hours. In addition, a 

generating unit must satisfy certain operating constraints. The power produced by a 

generating unit must be within certain limits. When the kth-generating unit is running, it 

must produce an amount of power between Pk
min and Pk

max (MW). If the generating unit 

is off, it must stay off for at least tk
dn hours, and if it is on, it must stay on for at least tk

up 

hours.   

2.2. Decomposition into Sub-problems 

The objective function is total profit, revenue minus cost, over the interval [1,T]. The 

revenue during hour t is obtained from supplying the quantity stipulated under the long-

term bilateral contracts and by selling surplus energy  (if any) to the power pool at the 

market price, mt ($/MWh). As we have mentioned in section 1, mt is a stochastic process 

and therefore the total profit over the interval [1,T] is a random variable. The cost 

includes those of producing the energy, buying shortfalls  (if needed) from the power 

pool, and the startup costs. Defining the amount to be sold under the bilateral contract by 

lt (MWh), the contract price by R ($/MWh) and the amount of energy bought or sold from 
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the market by Et, we solve the stochastic optimization problem by maximizing the 

expected profit over the period [1,T]. (A positive value of Et indicates that Et (MWh) is 

bought from the power pool and a negative value indicates that -Et (MWh) is sold to the 

pool.)  The objective function (maximum expected total profit) is given by: 







 −+−−∑ ∑

=
−−

=

T

t
tktktktk

M

k
tktttEPv

vvxSPEmRl
ttktk 1

,1,1,,
1

,k,,
})]1)(()([CF{EMax

,,

.    (2) 

Here, we are making the assumption that the process of buying from or selling to a power 

pool in response to a price signal does not require a positive lead-time. This assumption is 

supported by the example of several markets that have evolved during recent years in 

which imbalances are adjusted on a real time basis. For example, the Independent System 

Operator of the California market (Cal-ISO) has established a real-time market, in which 

imbalances can be corrected on ten minutes notices based on spot prices. At any given 

time, Cal-ISO dispatchers adjust generation to match California's demand. Market traders 

receive either payments (at spot prices) for extra generation they supply or are billed (at 

spot prices) for the extra energy they need to meet the demand of their customers. Other 

markets such as the Pennsylvania-New-Jersey-Maryland (PJM) and that of England and 

Wales also provide mechanisms for near real-time clearing and settlement of the 

imbalances between the contractual and physical positions.   

Since the quantity ltR is a constant, the optimization problem reduces to: 

  






 −+−−∑ ∑

=
−−

=

T

t
tktktktk

M

k
tkttEPv

vvxSPEm
ttktk 1
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1

,k,,
})]1)(()([CF{EMax

,,

  (3) 

subject to the following constraints (for t=1,…,T and  k=1,…,M) 
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Load:                      t

M

k
tkt lPE =+∑

=1
,                       (4) 

Capacity limits:     v P P v Pk t k k t k t k,
min

, ,
max≤ ≤                      (5)        

Minimum down time: v t xk t k
dn

k t, ,I( )≤ − − + ≤ ≤ −−1 1 11              (6) 

 Minimum up time:    v x tk t k t k
up

, ,I( )≥ ≤ ≤ −−1 11             (7) 

 where I( )x
x
x=





0   if    is  false
1    if     is  true 

 ,  Pk,t ≥ 0, Et unrestricted in sign, and  vk,t ∈ {0,1}. 

The quantity xk,t must satisfy the state equation: 


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tktk

tktktk
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k

tk
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vx
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x                         (8) 

and the equality:               




<
>

=
0 if   0
0 if   1

,

,
,

tk

tk
tk x

x
v                                                                    (9) 

The parameter cold
kt  is the number of hours that it takes for the boiler to cool down. 

Additional constraints such as ramp constraints that account for the fact that units cannot 

change their output too rapidly can be easily added to this model. For example, ramp 

constraints can be written as: inc
ktktk PP ∆+≤ −1,,  and dec

ktktk PP ∆−≥ −1,, , where inc
k∆  and 

dec
k∆ are the maximum ramp rates (in MW/h) for increasing and decreasing energy output, 

respectively. 
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After substituting in the objective function, ∑
=

−=
M

k
tktt PlE

1
, , obtained from Equation 4, 

we can rewrite Equation 3 as follows: 



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which after removing the constant terms is equivalent to: 

   



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subject to the operating constraints (5), (6), and (7). Because these constraints refer to 

individual units only, Equation 11 shows that the optimization problem is now separable 

by individual units. The optimal solution can be found by solving M de-coupled sub-

problems. Thus, the sub-problem for the kth unit (k=1,..,M) is: 







 −+−∑

=
−−

T

t
tktktktktktktPv

vvxSPPm
tktk 1

,1,1,,,k,,
)]1)(()(CF [  E Max

,,

,            (12) 

subject to operating constraints of the kth unit. Equation 12 is similar to the sub-problem 

obtained in the standard version of the UCP [Bard (1988)] using the Lagrangian 

relaxation method, except that the values of the Lagrange multipliers are now replaced by 

the market price of electricity and the expected value is being maximized. 

2.3. Spot Market Model under Perfect Competition 

The basic theory of spot market pricing of electricity, under perfect competition, was 

developed by Schweppe et al. (1988). They stated that the hourly spot price could be 

viewed as the sum of individual components accounting for: (a) fuel and maintenance 
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costs, (b) quality of supply, which is the amount of price raised in order to ration limited 

supply since otherwise demand would excess supply, and (c) costs to compensate for 

transmission losses and capacity limitations. If transmission and distribution network 

costs are ignored, a mathematical expression for the optimal spot price at time t is: 

)(
)]([

)(
)]([

tu
tuG

tu
tuG QSFM

t ∂
∂

+
∂

∂
=ρ       (13) 

GFM(.) is the total fuel and maintenance cost of generation and GQS(.) is the generation 

quality of supply costs incurred to provide reliable energy to customers. The quantity u(t) 

is the load at time t. The two terms in the right-hand side of Equation 13 are the dominant 

costs. When generation capacity limits are being approached, the cost of quality of supply 

becomes predominant.  In the following formulation, we assume that the supply is not too 

tight in relation to the demand, and the spot price is obtainable from the first term of 

Schweppe’s equation. To determine the probability distribution of the hourly spot price, 

we use the Ryan-Mazumdar production-costing model and Schweppe's definition in 

Equation 13. Under these conditions, the spot price at a specific hour t, can be taken to be 

equal to the marginal cost ($/MWh) of the last unit used to meet the demand prevailing at 

this hour. Support for this conclusion is also obtained from Rudkevich et al. (1998) who 

have shown from a Nash equilibrium standpoint that when the number of units 

participating in the market is not too small the market-clearing price can be approximated 

by the marginal cost of this last unit.  The Ryan-Mazumdar production-costing model 

assumes that the generating units are dispatched in accordance with an economic merit 

order determined by their marginal costs. The last unit, in the loading order, used to meet 

the demand is the marginal unit and is represented by the index J(t). For instance, if we 

assume that the market consists of the eight units listed in Table 1 and the demand is 950 
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MW, the marginal unit would be the 4th unit (J(t) is equal to 4). The model also assumes 

that the marginal operating cost of each unit is a constant quantity denoted by di 

($/MWh), marginal cost of the ith unit in the loading order.  

 The model we use to forecast prices (fixed loading order, constant marginal cost) 

may appear to be inconsistent with how we solve the single generator’s unit commitment 

problem (integer programming problem with quadratic cost function.) The reason for this 

is that constructing a market model considering every market participant’s optimal 0-1 

decisions under uncertainty is not practical, so we have developed a continuous, 

computable approximation. If we were to develop a market model that explicitly 

represented integer decisions, then we would have to face the very real problem of 

duality gap. Under these circumstances, the market model could not guarantee that it 

could find a set of market clearing prices.   

When the optimization sub-problem is solved for a particular unit, we assume that the 

market consists of N generating units (N will be much larger than M). The generating unit 

for which the sub-problem is solved is excluded from the market. Excluding a unit from 

the market does not influence the spot price because of the existence in all likelihood of a 

number of generating units with almost equal marginal costs, ready to produce if any of 

the infra-marginal (or marginal) units is unavailable. Since the objective functions from 

the optimization sub-problems (Equation 12) have a similar structure for each value of k 

(k=1,..,M), we will drop the sub-index k from the variables Pk,t, xk,t, and vk,t.  If the ith unit 

has a marginal cost di ($/MWh), the market price, mt, is equal to dJ(t). The quantities J(t) 

and dJ(t) are random variables that depend on the prevailing demand and the operating 

states of the generating units. We re-write Equation 12 for one generating unit as follows: 
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
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



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where we have replaced mt by dJ(t) and removed the index k. Equation 14 is also subject 

to the operating constraints: capacity limits, minimum up time, and minimum down time 

of this generating unit.  

In the next subsections, we describe three certainty-equivalent models for this 

stochastic optimization problem. Model 0 is a naive model that assumes that both 

commitment decisions (vt) and operating decisions (Pt) are made at the start of the day, 

and decisions are not adjusted in response to price conditions.  Model 1 assumes that 

commitment decisions (vt) are made ahead of time and adhered to for the entire day, but 

operating decisions (Pt) can be adjusted in real time as prices are realized.  Model 2 

assumes that both vt and Pt can be adjusted in real time in response to price movements.  

Model 1 is how most units operate; however, these three models permit the evaluation of 

the option value of the asset as we move from model 0 to model 1 to model 2. The 

expected profit should be higher as we move from model 0 to 1 to 2.  Model 0 is the least 

computation intensive while model 2 is the most. Although we believe that model 0 

should not be used in practice, we retain it to ascertain how its results compare with those 

of models 1 and 2.  

At the time of determining the commitment schedule for the next T hours, hour zero, 

the demand for electricity at previous hours is assumed known. Additionally, we assume 

that the last unit used to meet the demand at hour zero is also known and it is denoted by 

j0.  Since the marginal unit at time t is correlated with the marginal unit at any other time 

s, knowing the index of the marginal unit at time zero reduces the variance of the 
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marginal unit at future hours.  If the marginal unit at hour zero is not known, then we use 

simple expectation instead of conditional expectation.  

2.4. Model 0: Expected-Value Solution 

We first provide the expected value solution of Equation 14, in which the random 

variable dJ(t) is replaced by its expected value given that j0 is known. The objective 

function is: 

 ∑
=

−− −+−=
T

t
ttttttJtPv

vvxPjdPj
tt 1

110)(,0 )]1)((S)(CF[]|[EMax]|profit[EMax    (15) 

This equation is subject to the operating constraints (5), (6) and (7). We solve this 

maximization problem using dynamic programming. We define the function rt(vt) by the 

following equation: 

})]CF())0(|)(Pr([Max{)(
N

1j
0 ttjt

P
tt vPjJjtJdPvr

t

−=== ∑
=

      t=1,…,T  (16) 

This function denotes the maximum profit at hour t excluding start-up costs given the 

expected value of the spot price at this hour. The value of vt denotes whether the unit is 

“on” or “off” at hour t. Notice that vt is determined by xt. We also define the recursive 

function )(F 1−tt x to be the optimum expected profit from hour t to hour T of operating the 

generator that is in state 1−tx  at the end of hour t-1. Thus, the expression for hour t is: 

)}(F)(S)1()(r{Max)(F 1111 ttttttttvtt xxvvvx
t

+−−− +−−=                                  (17) 

subject to the operating constraints. Since both the revenues and costs of decisions taken 

beyond the scope of the model are irrelevant, we set the expected incoming profit at time 

T+1 to be zero (FT+1(xT+1)=0).  
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2.5 Model 1 

Here, we assume that the owner of the generating unit makes unit commitment 

decisions (vt) ahead of time for the entire period [1,T] and adheres to them, but operating 

decisions (Pt) are adjusted in real time as prices are realized. The objective function is: 

∑
=

−− −−−=
T

t
ttttttJtPv

vvxjPdPj
tt 1

110)(,0 )}1)((S]|)(CFE[{Max]|profit[EMax    (18) 

Here, we also use dynamic programming to obtain the optimal solution. We define the 

function gt(vt,j) by the following equation: 

})]CF([Max{),( ttjt
tP

tt vPdPjvg −=                               t=1,…,T                    (19) 

This function denotes the maximum profit at hour t excluding start-up costs given that the 

jth unit is determining the spot price. For a quadratic fuel cost function, the value of 

gt(vt,j) is: 

ttjttt vPaaadPjvg ])([),(
2*

201
* −−−=  ,                                                       (20) 

where }),,
2

(Min{Max maxmin

2

1* PP
a

ad
P j

t

−
= , a0, a1, and a2 are the coefficients of the fuel 

cost function (see Equation 1). Notice that Pt
* depends on the value of dj, which is a 

random variable. In this model, the expression for Ft(xt-1) is: 

)}(F)(S)1()],(g])0(|)([Pr[{Max)(F 1110
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The optimal commitment schedule is given by the solution of F1(x0). Equation 21 is 

subject to the operating constraints (5), (6), and (7), which do not include ramp rate 

limits. Ramp rate constraints can be particularly important under this model for large 

units. Ramp rate constraints can be accommodated by adding the ramp rate constraints 
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and considering the variable Pt as a state variable. The profit to go function would be in 

this case ),(F 11 −− ttt xP , a function of 1−tP and 1−tx .   

Notice that to solve models 0 and 1, the following conditional probabilities need to be 

computed.  

Pr
Pr and

[ ( ) ( ) ]
[ ( ) ( ) ]

Pr[ ( ) ]
J t j J j

J t j J j
J j

= = =
= =

=
0

0
00

0

0

  (22) 

Thus, the joint probability distribution of J(0) and J(t), and the marginal probability 

distribution of J(0) are needed. The marginal probability distribution of J(0) can be 

computed from the bivariate distribution using the following equation: 

∑
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====
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1
00 ])0(and)([Pr])0([Pr

j
jJjtJjJ    (23) 

2.6 Model 2 

Model 2 assumes that both vt and Pt can be adjusted in real time in response to price 

movements.  Unlike model 1, the power producer here determines, at each hour, whether 

to self-commit its generating unit the next hour by maximizing the future expected total 

profit over a period of length T. Thus, the objective function is: 







 −+−= ∑

=
−−−

T

t
ttttttJttJtJPv
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This equation is subject to the operating constraints. We define the recursive function 

Ft(jt-1, xt-1) to be the optimum total expected incoming profit from hour t  to hour T of 

operating the generator that is in state xt-1 when the marginal unit at time t-1 is jt-1. Thus, 

the expression for hour t is: 
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  (25) 

As in the previous model we set FT+1(jT+1, xT+1) = 0. The value of ),( ttt jvg  is obtained as 

before from equation (20). The optimal commitment policy is given by the solution of 

F1(j0, x0).  To solve model 2, we need to compute the following conditional probabilities.  

])(Pr[
])(and)1([Pr])()1([Pr

itJ
itJjtJitJjtJ

=
==+

===+   (26) 

Thus, the joint probability distribution of J(t) and J(t+1), and the marginal probability 

distribution of J(t) are needed. 
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3. STOCHASTIC MODEL FOR THE MARGINAL UNIT 
In the stochastic model for the marginal unit we use the production-costing model 

proposed by Ryan and Mazumdar (1990) which itself is based on the model proposed by 

Baleriaux et al. (1967). This model has been used in estimating the mean and variance of 

production cost [Mazumdar and Kapoor (1995), Ryan and Mazumdar (1990), Lee, Lin 

and Breipohl (1990), Shih, Mazumdar, and Bloom (1999)] and the marginal cost [Shih 

and Mazumdar (1998)] of a power generating system.  

3.1. Stochastic Model of the Market 

For a market with N generating units, the model uses the following assumptions:  

1. The generators are dispatched each hour in a fixed, merit order of loading based on 

marginal costs, which depends only on the demand and the availability of the 

generating units. Thus the unit with the lowest marginal cost is loaded first followed 

by the next most inexpensive unit, and so on. Unlike the unit that is being considered 

for being committed we do not take into account the operating histories of the 

generating units participating in the market. 

2. The ith unit in the loading order has a capacity ci (MW) and marginal cost di 

($/MWh).  

3. After adjusting for the variations in the ambient temperature and periodicity, the 

demand at time t, u(t), is assumed to follow a Gauss-Markov process [Breipohl et al. 

(1992) and Valenzuela et al. (2000)] with u(t) and u(r) following a bivariate normal 

distribution for any pair (r,t) with E[u(t)]=θt and Cov[u(r), u(t)]=σr,t, where θt and σr,t 

are assumed to be known. (Data analysis given in Valenzuela and Mazumdar (2000) 

validates this assumption.) 
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4. The operating state of each generating unit i follows a two-state continuous-time 

Markov chain in the steady state, Yi(t) ∈ {0,1}, with failure rate λi and repair rate µi. 

The steady state unavailability index or the forced outage rate qi is related to these 

quantities by the equation qi =λi /(λi +µi). We define ii qp −= 1 . 

5. For i ≠ j, Yi(r) and Yj(t) are probabilistically independent for all values of r and t. Each 

Yi(t) is independent of u(t) for all values of t.  

3.2. Bivariate Probability Distribution of the Marginal Unit 

To derive an analytical expression for the bivariate probability mass function of the 

marginal units J(r) and J(t), we first note that the events { 0)()(
1

>− ∑
=

n

i
ii tYctu }and 

{ ntJ >)( } are self-evidently the same, given the definition of loading order, for all 

values of t.  The bivariate probability mass function of the marginal units J(r) and J(t), 

can be obtained as follows: 
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Since the events { u r c Y r u t c Y ti i
i
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{ ntJmrJ >> )( and )( } are equivalent, the following equality is obtained: 
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Therefore, to compute the bivariate probability mass function of J(r) and J(t), we need to 

compute the probability that { u r c Y r u t c Y ti i
i

m

i i
i

n

( ) ( ) ( ) ( )− > − >
= =
∑ ∑

1 1
0 0and }, which we 

denote by  pmn(r, t). For models 0 and 1, we need to evaluate just pmn(0, t), while for 

model 2 we need  pmn(r, r+1) (1≤ m, n ≤ N , 0 ≤  r ≤ T-1, and 1≤  t  ≤  T). 

3.3. Exact Computation of pmn(r, t) 

The exact value of pmn(r, t) can be computed using conditional probabilities. The 

probability is conditioned by the values of Yi(r), i=1,..,m and Yj(t), j=1,..,n. In order that 

we may use steady-state formulations, we assume that the firm knows the index of the 

marginal unit at time zero only but it does not know the state of the individual generating 

units, Yi(t). First we define the vectors Yr=[Y1(r), Y2(r),. ,Ym(r)] and Yt=[Y1(t), Y2(t),…. 

,Yn(t)]. We also define an outcome of Yr by yr and an outcome of Yt by yt, where yr 

=[y1(r), y2(r),….,ym(r)] and yt =[y1(t), y2(t),…. ,yn(t)]. Denote the sample space of [Yr, Yt ] 

by  Ω= Ωr×Ωt. Notice that there are 2m+n individual outcomes in the sample space Ω. 

Defining  

∑
=
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1
)()()(   and  ∑

=
−=

n

j
jjn tyctutX

1
)()()(  ,  (29) 

where yi(r) and yj(t) are fixed, we obtain the expression for pmn(r, t) to be: 

( ) ],Pr[),(),(),(),( 2 ttrr
y y
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rr tt
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Ω∈ Ω∈

ρ                         (30) 

Here, Φ2(x,y,ρ) is the cumulative distribution function of the bivariate normal 

distribution with zero means, unit variances,  correlation coefficient ρ, and 
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The probability Pr[Yr=yr , Yt=yt] can be computed from the following equation: 
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where if m ≤ n, the value of w is equal to t; otherwise, w is equal to r.  The 

expression Pyi ( ), ( )r y ti
 is the joint probability of the random variables yi(r) and yi(t) of the 

generating unit i. It is given by Ross (2000), chapter 6: 
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where δi = λ i +µ i.  

To explain Equation 34, we assume n < m. The random vectors Yr and Yt denote, 

respectively, the state of the first n and m generating units in the loading order. In 

Equation 34, the first term calculates the joint probability of the states of the first n 

common generating units. The second term calculates the probability of the states of the 

remaining generating units. The multiplication of these probabilities follows from the 
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assumption of independence among generating unit states.  It is obvious that the 

computation of the exact value of the probabilities in Equation 30 will be extremely time-

consuming for large N. Three approximation methods are next examined: normal, large 

deviation, and Edgeworth approximations.  

3.4. Normal Approximation of pmn(r,t) 

Using the central limit theorem, the joint distribution of )(rX m   and  )(tX n  (unlike 

Equation 29, yi(r) and yj(t) are random variables here) can be approximated by a bivariate 

normal distribution. Thus, 
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3.5. Edgeworth  (Gram-Charlier) Approximation of pmn(r,t) 

The normal approximation may not be very accurate when computing the tail 

probabilities. Moreover, for small values of j, the central limit theorem may be 

inaccurate. An alternative approach is to make small corrections to the normal 

approximation by using the Edgeworth expansion. The use of the Edgeworth expansion 

in evaluating power generating system reliability indexes is known as the method of 

cumulants [Stremel et al. (1980) and Rau et al. (1980)]. The approximate expression for 

pmn(r,t) using the bivariate Edgeworth expansion for the joint distribution function of 

Xm(r) and Xn(t) in which only the terms involving cumulants up to the third order is 

retained is given by: 
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Here, Kkl is the cumulant of order (k,l) of [Xm(r), Xn(t)], and Hij the bivariate Hermite 

polynomial. Expressions for these quantities are given in [Valenzuela (2000)]. When only 

cumulants up to the third order are considered, the Gram-Charlier and the Edgeworth 

series give identical expansions. 

3.6. Large Deviation Approximation of pmn(r,t) 

When tail probabilities are involved, a better approximation is given by the large 

deviation approximation [Mazumdar and Gaver (1984), Iyengar and Mazumdar (1998)]. 
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Exponential tilting is used here to convert the tail region into a central region and then 

approximate the tilted distribution by a bivariate normal distribution.  

Let the exponentially tilted distribution of X=[Xm(r), Xn(t)] for a given vector 

S=(s1,s2) be: 

),,,;dF(),,,;(dF ),,,;K( trnmetrnm trnm XX SXSS −′=    (43) 

 where F(x;m,n,r,t) is the bivariate c.d.f. of the random vector X, and 

]elnE[),,,;K( XSS ′=trnm   (44) 

Then, the value of p r t m n r tmn ( , ) ( ; , , , )=
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distribution function FS(X;m,n,r,t) as  
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Next, the central limit theorem is used to approximate FS(X;m,n,r,t) by a normal 

distribution Φ2[ ; , ]X B ΣΣΣΣ  with appropriately determined mean vector B and covariance 

matrix ΣΣΣΣ. Thus, we obtain 
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′ Φ≅
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-),,,;(K ),;(dee),( ΣBXXSS trnm
mn trp    (46) 

The constant vector S is now chosen so that the lower limits of the integrals is the 

expected value of the random variable XS whose distribution function is FS(X;m,n,r,t). 

This reduces to the following system of equations (assuming m>n): 
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Let S0 = [s1, s2] denote the roots of equations 47 and 48. Then, Equation 46 can be 

rewritten as 
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Ordering terms, completing squares, and evaluating the integrals gives: 

p r t s s m n r tmn
s s m n r t s s m n r t( , ) ( , , ( , ; , , , ))( , ; , , , ) ( , ; , , , , )≅ +eK G1 2 1 2

2 1 2 1 2
ρ α α ρΦ   (50) 

Expressions for ρ(⋅), G(⋅), α1, and α2 have been derived in [Iyengar and Mazumdar 

(1998)] to be   
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α σ ρσ1 1 2= +m nr s t s( ) ( )   (53) 
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 α ρσ σ2 1 2= +m nr s t s( ) ( )   (54) 

where 

 σm r K s s m n r t( ) ( , ; , , , )= 20 1 2 ,σn t K s s m n r t( ) ( , ; , , , )= 02 1 2 , and ρ ρ= ( , ; , , , )s s m n r t1 2  

The bivariate normal approximation to FS(X;m,n,r,t) is not likely to be very accurate 

in the tails. However, if s1 and s2 are positive the multiplier, exp(-s1x1-s2x2), reduces the 

error of the bivariate normal approximation in the tails in Equation 49. If either s1 or s2 

turns out to be negative, the probability of the complement of the region is approximated 

instead. Three cases are identified: s1 is positive and s2 is negative; s1 is negative and s2 is 

positive; s1 and s2 are negative. The same change of variable previously used in the one-

dimensional case is also used here, which gives the following equations: 

Case 1: if s1 is positive and s2 is negative redefine s2 as - s2 use Equation 55: 

p r t Xmn m
m n r t m n r t( , ) Pr[ ( , , )( ; , , , ) ( ; , , , , )≅ ≥ − −+(r) 0] - eK GS S0 0

2 1 2
ρ α α ρΦ     (55) 

Case 2: if s1 is negative and s2 is positive redefine s1 as – s1 and use Equation 56 

p r t X Xmn m n
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2 1 2
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Case 3: if both s1 and s2 are negative redefine s1 as -s1 and s2 as -s2 and use Equation 57 

p r t Xmn n
m n r t m n r t( , ) Pr[ ( , , )( ; , , , ) ( ; , , , , )≅ ≥ − −+(t) 0] - eK GS S0 0

2 1 2
ρ α α ρΦ     (57) 

3.7. Monte Carlo Approximation of pmn(r,t) 

We used Monte Carlo simulation as a benchmark when the exact calculations could 

not be made.  The inputs of the Monte Carlo procedure are the stochastic model of the 
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load and the characteristics of the generating units that comprise the marketplace. Each 

run generates a sample Jk=[jk(0), jk(1),…, jk(T)] of the marginal units for each hour during 

the time horizon of T hours. In the Monte Carlo procedure, Uk=[uk(0), uk(1),…, uk(T)] 

represents a sample of an hourly load profile during hours 0 to  T. The sequence 

[t1,t2,…,tj..]i corresponds to the sampled up and down times of generator i (i=1,..,N). If tj is 

the time at which the generator i fails, then tj+1 denotes the time that the generator i will 

be repaired and made available. The sequence Sq={[t1,t2,..]1, [t1,t2,..]2,….,[t1,t2,...]N} groups 

the sampled up and down times of all N generators covering the period [0,T].The number 

of runs is denoted by K. Since we have used the Monte Carlo simulation as a benchmark, 

we wanted to perform an exhaustive simulation; thus, we arbitrary chose the value of K to 

be 200,000. The bivariate probability mass functions at hours r and t are given by the 

matrix Prt. The entry Prt[jr, jt] denotes the probability that the marginal unit at time r is jr 

and the marginal unit at time t is jt. 

Steps of the Monte Carlo Procedure 

1. Read the parameters pertaining to capacity, cost, failure and repair rates for each 

generating unit as well as the estimated parameters for the load model. 

2. Repeat for k=1 to K.  

2.1 Obtain a load vector Uk by sampling each hour’s load for T hours based on the 

known values of the load for earlier hours and the load model. 

2.2 Sample at time t=0, the initial state (up or down) of each generating unit by 

drawing random samples from a Bernoulli distribution with parameter pi 

(i=1,2,...,N.) 
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2.3 Obtain Sq by generating successive up and down times until time T. For each 

generating unit i draw random samples of uptime from an exponential distribution 

with parameter λi, and draw independent samples of downtime from an exponential 

distribution with parameter µi (i=1,2,...,N.) 

2.4 Using the predetermined loading order among the available units and the sample 

load, determine Jk, the vector of marginal units at each hour during the time 

interval [0,T]. 

2.5 Using the sample values of Jk, increment the corresponding counters of the 

marginal units, Prt[jk(r),  jk(t)] (r,t=0,..,T). 

3. Obtain the bivariate probability mass function of the marginal units at time r and time t 

dividing the values of Prt by K (r,t=0,..T) 
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4. ELECTRICITY MARKET 

For the purpose of forecasting the hourly spot prices, we assume that a complete 

description of the electricity market is obtainable from the data on the N power generators 

participating in the market, the aggregate demand, and the hourly temperature forecast for 

the day of trading. The description of the power generators includes the order in which 

they are loaded by the Independent System Operator, their capacities, energy costs, mean 

times to failure, and mean times to repair. The data for the aggregate demand gives the 

historically observed ambient temperature and the corresponding demand for each hour 

in the region served by the marketplace. A data set that gave the actual ambient 

temperature and the corresponding demand for each hour in a region covering the 

Northeastern United States during the calendar years 1995 and 1996 was used. The last 

day of this data set, September 20, 1996, was chosen as the trading day. The actual 

temperatures on this day were assumed to be the forecast temperatures.  

4.1. The Market: Demand 

The demand is characterized by the model given in Valenzuela and Mazumdar 

(2000). Because the time horizon is so short, only the temperature is considered as a 

predictor variable for the demand. Individual regression equations were fitted for each 

hour of a 24-hour period in which the hourly demand u(t) is the response and the hourly 

temperature τt ( oF ) is the independent variable. The plots of demand versus temperature 

at each hour, as the one shown in Figure 1, suggested the following regression equation:  

)t(x)()65()t(u ttt,2tt,1t,0 +τδ−τβ+τβ+β=    (58) 

where δ τ( )t is defined as: 
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and x(t) is a time series ARIMA (1,0,0)x(0,1,0)120, given by: 

x(t) = x(t-120) +  .879[ x(t-1) - x(t-121)] + z(t)                                   (60) 

z(t) is a Gaussian white noise with mean zero and estimated variance 2
zσ̂ =2032.55. 

 

Figure 1: Demand versus Temperature at 12 Noon. 

Details of the statistical analysis are given in Valenzuela and Mazumdar (2000). 

4.2. The Market: Power Generating System 

In order to compare the computing efficiency and accuracy of the various 

approximations, two hypothetical examples of the electricity market were developed. 

 

System A: Electricity market with eight units 

The 8-unit market was built by selecting eight non-identical units from the 32-unit 

IEEE Reliability Test System (RTS) [APM Subcommittee (1979)]. The resultant system 

and the relevant characteristics of the units, in their loading order, are given in Table 1. It 

is assumed that if the available capacity of the system is not sufficient to meet the 
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demand, electricity can be imported from outside the market at $ 75 per MWh. This 

system is used for comparing results with exact calculations and validating the Monte 

Carlo simulation procedure. It is also used as a building block for obtaining markets of 

larger sizes for which the approximation methods are expected to be much more accurate. 

We do not expect the approximation procedures to provide an accurate enough result for 

a system of this small size. When the exact probability distribution of the marginal unit is 

impractical to compute, the Monte Carlo simulation model is used as a benchmark  

         Table 1: 8-unit market 
Unit 

i 
Capacity 

 
(MW) 

Mean time to 
failure 1/λi 

(hour) 

Mean time to 
repair 1/µi 

(hour) 

Marginal cost 
di 

($/MWh) 
1 400 1100 150 6.00 
2 350 1150 100 11.40 
3 150 960 40 11.40 
4 150 1960 40 14.40 
5 200 950 50 22.08 
6 100 1200 50 23.00 
7 50 2940 60 27.60 
8 100 450 50 43.50 

(Cost of unserved energy d9: $ 75 /MWh). 

 

System B: Electricity market with 150 units 

This system was constructed by selecting 15 units from the IEEE Reliability Test 

System and repeating each unit ten times. The data on demand taken from [Valenzuela 

and Mazumdar (2000)] were also multiplied by a factor of ten. The marginal cost of each 

unit was modified to provide more generality. Defining Ci as the cumulative capacity of 

the first i units:  

,
1

∑
=

=
i

j
ji cC       (61) 

the marginal costs of each unit was assumed to be given by the following function: 
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d C Ci i i= + +6 0 00073 0 000000045 2. .     for  i=1,..,150   (62) 

This function was arbitrary created so that we can have a market with marginal costs 

ranging from $6.26 per MWh to $46.60 per MWh. These values were chosen so that they 

remain close to the original range of the IEEE Reliability Test System. The relevant 

characteristics of the units, in their loading order, are given in Table 2.  

            Table 2: 150-unit Market 
Units 

i 
 

Capacity 
ci 

(MW) 

MTTF 
1/λi 

(hour) 

MTTR 
1/µi 

(hour) 

Marginal cost  
di 

($/MWh) 
1 to 10 350 1150 100 6.26, 6.53, 6.82, 7.11, 7.42, 

7.73, 8.06, 8.40, 8.75, 9.11 
11 to 20 150 960 40 9.26, 9.42, 9.59, 9.75, 9.92, 

10.08, 10.25, 10.43, 10.60, 10.78 
21 to 30 150 960 40 10.95, 11.13, 11.32, 11.50, 11.69, 

11.87, 12.06, 12.26, 12.45, 12.65 
31 to 40 150 960 40 12.84, 13.04, 13.25, 13.45, 13.66, 

13.87, 14.08, 14.29, 14.50, 14.72 
41 to 50 150 960 40 14.94, 15.16, 15.38, 15.61, 15.83, 

16.06, 16.29, 16.52, 16.76, 17.00 
51 to 60 150 1960 40 17.24, 17.48, 17.72, 17.96, 18.21, 

18.46, 18.71, 18.96, 19.22, 19.48 
61 to 70 150 1960 40 19.73, 20.00, 20.26, 20.52, 20.79, 

21.06, 21.33, 21.60, 21.88, 22.16 
71 to 80 200 950 50 22.53, 22.91, 23.29, 23.67, 24.06, 

24.45, 24.84, 25.24, 25.64, 26.05 
81 to 90 200 950 50 26.46, 26.87, 27.28, 27.70, 28.13, 

28.55, 28.98, 29.42, 29.86, 30.30 
91 to 100 200 950 50 30.74, 31.19, 31.64, 32.10, 32.56, 

33.02, 33.49, 33.96, 34.43, 34.91 
101 to 110 100 1200 50 35.15, 35.39, 35.63, 35.87, 36.12, 

36.36, 36.60, 36.85, 37.10, 37.35 
111 to 120 100 1200 50 37.60, 37.85, 38.10, 38.35, 38.60, 

 38.85, 39.11, 39.36, 39.62, 39.88 
121-130 100 1200 50 40.13, 40.39, 40.65, 40.91, 41.18, 

41.44, 41.70, 41.97, 42.23, 42.50 
131-140 50 2940 60 42.63, 42.76, 42.90, 43.03, 43.17, 

43.30, 43.43, 43.57, 43.70, 43.84 
141-150 100 450 50 44.11, 44.38, 44.66, 44.93, 45.21, 

45.48, 45.76, 46.04, 46.32, 46.60 
(Cost of unserved energy d151: $ 75 /MWh). 
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5. COMPUTATIONAL EFFICIENCY AND ACCURACY 
A computer code in C was written to implement the dynamic programming approach 

for solving the unit commitment problems proposed in section 2. The code is used to 

evaluate the accuracy and efficiency of the approximation methods in both finding the 

optimal schedule for turning the unit “on” and “off” and estimating the objective function 

(maximum expected profit). As we have shown in section 2, when driven by the spot 

price of electricity, the optimal unit commitment schedule of M generating units can be 

obtained by solving M de-coupled sub-problems. Therefore, we will give results for 

scheduling a single generator of a power producer given the information about the 

electricity market and the known initial conditions for the generating unit to be 

committed. The characteristics of this generator were patterned after an example taken 

from Wood and Wollenberg (1996), which are reproduced in Table 3. The fuel-cost 

function of this unit was modified to be consistent with the range of the energy costs of 

the individual units comprising the market. The generator is assumed to have been “on” 

for eight hours. As mentioned earlier, this generator is not included in the set of 

generators participating in the market.  

                     Table 3: Unit Characteristics 
Variable Generator G1 
Pmax  250 MW 
Pmin    60 MW 
tup

  5 hours 
tdn

  3 hours 
tcold 5 hours 
Initial State (x0) +8 hours 
Fuel Cost 585.62 + 16.95p + 0.0042p2  $/h 
 
Start-up Cost 





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≤−≤
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= −
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−
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5.1. Computational Efficiency 

The processing time is largely determined by the procedure employed for the 

computation of the probability distribution of the hourly marginal unit. The subroutines 

that use dynamic programming to solve the three model formulations (models 0, 1, and 2) 

take less than two seconds irrespective of the approximation method used. The computer 

time required by the approximation methods is studied by considering markets of 

different sizes. The power generation system with eight units, System A, is used as a 

building block to create 10 markets with sizes that vary from 8 to 80 units with 

increments of eight units. For each case, the probabilities ),0( rpmn (for r=1,..,24) required 

by model 1 are computed and the total processing time is found. The results are plotted in 

Figure 2. The results show that the large deviation method has the worst computational 

performance beyond a certain system size. The increase in the computer time for this 

procedure with increasing system size is a direct result of the computations required to 

solve the nonlinear equations (47) and (48). The sample size (200,000 replicates) of the 

Monte Carlo simulation was kept constant for all the problem sizes. Due to the additivity 

property of the cumulants, the computational time for the Edgeworth approximation 

increases very little. As expected, the time for the Monte Carlo computations increases 

with system size although at a much smaller rate compared to the large deviation 

approximation. These experiments were conducted in a personal computer equipped with 

a 160 MHZ Pentium Processor with 16 Mbytes of RAM. 
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Figure 2: CPU Time versus System Size 

5.2. Accuracy of Approximation Methods in the One-unit Commitment Problem 

To study the accuracy of the approximation methods in solving the single-unit 

commitment problem, we consider model 1. The optimal solution of the proposed one-

unit commitment problem has three components. The first component is the commitment 

schedule of the generating unit. The schedule defines the hours at which the unit should 

be turned "on" or "off". The energy to be generated by the unit at each hour is a second 

component of the optimal solution.  The amount of energy generated at a particular hour 

depends on the operating state of the generating unit and the spot price at this hour. The 

third element is the value of the objective function, which is the maximum expected 

profit over the time horizon. It is important to clearly interpret the accuracy of an optimal 
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solution to the probabilistic unit commitment problem in which an approximation method 

is used in terms of these components. The optimal schedule is interpreted as an 

approximation to the optimal schedule that could in principle (if not in practice) be 

obtained by using the exact computation of the probability distribution of the hourly 

marginal unit. The objective function is an estimate of the maximum expected profit that 

would result when the optimal schedule is executed under the exact probability 

distribution of the hourly marginal unit. It is possible that each approximation method 

provides a different solution to the probabilistic unit commitment problem. These 

solutions may differ based on the solution schedule and/or on the maximum expected 

profit. Therefore, we define two indices to measure the accuracy of a solution obtained 

using an approximation method. The first index measures the accuracy of an optimal 

schedule obtained using an approximation method and the second index measures the 

accuracy of the estimate of the objective function. Monte Carlo simulation is used as the 

benchmark procedure. 

Let Sm denote the optimal schedule obtained using the approximation method m, and 

Fn(Sm) denote the maximum expected profit for the schedule Sm when the approximation 

method n is used in the evaluation of the objective function. We evaluate four different 

approximation procedures: Monte Carlo simulation, normal, Edgeworth, and large 

deviation. They are denoted by M2, M3, M4, and M5 respectively. The exact 

computation procedure is denoted by M1. For instance, SM2 describes the optimal 

schedule obtained using the Monte Carlo simulation output as the approximation to the 

distribution of the marginal unit. The value of the objective function, which is the 

maximum expected profit, for this schedule is given by FM2(SM2). We assume that the 
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Monte Carlo output gives a very accurate estimate of the distribution of the marginal unit, 

and that the solution provided by it is the exact optimal value. Therefore, FM2(Sm) gives 

the exact maximum expected profit when the schedule Sm is executed and Fm(Sm) gives 

an estimate of this value. Using this nomenclature, equation 68 gives the relative error of 

the schedule Sm and equation 69 gives the relative error for the approximation of the 

maximum expected profit. 

E m
S S

SS
M

M
M

m

M
M( )

F ( ) F ( )
F ( )

=
−

×2
2

2

2
2 100%   (68) 

E m
S S

Sp
M

m
m

m

M
m( )

F ( ) F ( )
F ( )

=
−

×2

2

100%   (69) 

Tables 4, 5, and 6 summarize the relative errors of the different approximation methods. 

These tables show that except for the 8-unit market the approximation methods found the 

same optimal schedule as the Monte Carlo procedure. Additionally, the relative errors of 

these methods for the approximations of the maximum expected profit are quite small. 

 

  Table 4:  Accuracy of the Approximation Method for the Expected Profit of Model 1 
                (Normal Approximation Method) 

System 
size 

FM3(SM3) 
($) 

FM2(SM3) 
($) 

FM2(SM2) 
($) 

Es(M3) 
(%) 

Ep(M3) 
(%) 

8 178227 165360 165946 0.3 7.7 
16 168960 168615 168615 0.0 0.2 
24 166325 169106 169106 0.0 1.6 
32 182471 179922 179922 0.0 1.4 
40 179495 179199 179199 0.0 0.1 
48 177877 178501 178501 0.0 0.3 
56 177046 179217 179217 0.0 1.2 
64 183629 183913 183913 0.0 0.1 
72 182683 184366 184366 0.0 0.9 
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  Table 5: Accuracy of the Approximation Method for the Expected Profit of Model 1 
                (Edgeworth Approximation Method) 

System 
size 

FM4(SM4) 
($) 

FM2(SM4) 
($) 

FM2(SM2) 
($) 

Es(M4) 
(%) 

Ep(M4) 
(%) 

8 178636 165946 165946 0.0 7.6 
16 158240 168615 168615 0.0 6.1 
24 151091 169106 169106 0.0 10.6 
32 177718 179922 179922 0.0 1.2 
40 175054 179199 179199 0.0 2.3 
48 173022 178501 178501 0.0 3.0 
56 174467 179217 179217 0.0 2.6 
64 182117 183913 183913 0.0 0.9 
72 182109 184366 184366 0.0 1.2 

 

  Table 6: Accuracy Approximation Method for the Expected Profit of Model 1 
               (Large Deviation Approximation Method) 

System 
size 

FM5(SM5) 
($) 

FM2(SM5) 
($) 

FM2(SM2) 
($) 

Es(M5) 
(%) 

Ep(M5) 
(%) 

8 167128 165946 165946 0.0 0.7 
16 166053 168615 168615 0.0 1.5 
24 169249 169106 169106 0.0 0.1 
32 180624 179922 179922 0.0 0.3 
40 180142 179199 179199 0.0 0.5 
48 179727 178501 178501 0.0 0.6 
56 179590 179217 179217 0.0 0.2 
64 184641 183913 183913 0.0 0.4 
72 184163 184366 184366 0.0 0.1 

 

5.3. Unit Commitment Schedule for Models 0 and 1   

In this example we consider the 150-unit power generation system, System B. It 

provides a more realistic representation of the actual markets to be encountered in 

practice. The problem is to determine an operating schedule of the generator described 

earlier in Table 3 under models 1 and 2 such that the expected profit over the next 24 

hours is maximized. For the purpose of numerical illustration, we assume that the 

marginal unit at time zero is the 61st unit. It is currently determining the spot price, which 

is $19.73 /MWh. Table 7 summarizes the unit commitment decisions under model 0 

obtained using the different algorithms. The schedule produced by the Monte Carlo 
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simulation (200,000 replicates) is to turn the generating unit off during the first four 

hours. Then, the unit is turned back on for the next nineteen hours. It is estimated that the 

execution of this schedule will generate an expected profit of $37,496. The normal and 

Edgeworth approximation methods provided a different schedule. However, after running 

a Monte Carlo simulation with this schedule, we found that the corresponding estimated 

expected profit was $37,387, and thus this solution is very close to the optimal solution. 

The estimated expected profits obtained from these algorithms were $37,355 and 

$37,046, respectively. For model 1, the different methods provided the same schedules 

(see Table 8). 

Table 7: Experimental Results for Model 0 (150-unit market) 
Method Schedule Expected 

Profit ($) 
CPU Time* 

(sec.) 
Monte Carlo   
Simulation 

000001111111111111111111 37,496 65 

Normal  
Approximation 

000001111111111111111110 37,355 22 

Edgeworth  
Approximation 

000001111111111111111110 37,046 55 

*CPU time is based on a 900 MHz Pentium III Processor with 256 Mbytes of RAM. It includes 
computation of probabilities and optimization problem. 
 
 
Table 8: Experimental Results for Model 1 (150-unit market) 

Method Schedule Expected 
Profit ($) 

CPU Time* 
(sec.) 

Monte Carlo   
Simulation 

000001111111111111111111 37,509 77 

Normal  
Approximation 

000001111111111111111111 37,356 23 

Edgeworth  
Approximation 

000001111111111111111111 37,229 56 

*CPU time is based on a 900 MHz Pentium III Processor with 256 Mbytes of RAM. It includes 
computation of probabilities and optimization problem. 

 

5.4. Unit Commitment Schedule for Model 2 

To illustrate the decision process for model 2, we use system A, the electricity market 

with eight units (see Table 1).  The problem is to determine whether to keep the generator 
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on or to switch it off the next hour as information accumulates over each hour. For 

purposes of illustration, we assume that the objective is to maximize the expected profit 

over the next 8 hours. Figure 3 shows the optimal decision policy obtained by solving the 

UCP using the Monte Carlo method for the probability distribution of the marginal unit. 

We give the decisions corresponding to the values of xt within the range {-5,..,-1, 1,..,+5] 

only because the maximum and minimum values of the variable xt are, for this problem, 

determined by the number of hours of a cold start and the minimum up time, which are 

both 5 hours (see Table 3). The optimal policy dictates that for the next hour the owner 

should keep its generator on. If at the next hour (hour 1) the index of the marginal unit 

happens to be greater than four, the generator remains on. Otherwise, the generator is 

turned off and it must remain off for the next three hours, which is the required minimum 

down time.  The execution of this policy gives an expected total profit over the next eight 

hours of $32,628. 

Next, we solve a problem identical to the one given in Section 5.3 but now using 

model 2. The objective is to decide whether to commit the generator for the next hour in 

order to maximize the expected profit over the next 24 hours. We assume the same status 

of the market as in the previous example. Table 9 summarizes the unit commitment 

decision obtained using the different approximations. The policy produced by the Monte 

Carlo simulation (200,000 replicates) dictates, for the next hour (hour one), to turn the 

generator off. It is estimated that the execution of this action will generate an expected 

total profit of $38,600 over the period of 24 hours. The normal and Edgeworth 

approximation methods provide the same action and similar expected profits. 
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Figure 3: Optimal policy showing the states of the generating unit in an 8-unit market 

 

         Table 9: Experimental Results for Model 2 (150-unit market) 
Method Decision for  

hour 1 
Expected 
Profit ($) 

CPU Time* 
(sec.) 

Monte Carlo Simulation OFF 38,600 78 
Normal Approximation OFF 38,599 45 

Edgeworth  Approximation OFF 38,592 111 
*CPU time is based on a 900 MHz Pentium III Processor with 256 Mbytes of RAM. It includes  
  the time of computations of probabilities and optimization part. 

 

Notice that the expected profits increase when we move from table 7 to 9. The reason is 

that the unit commitment decisions corresponding to Table 9 are being made hour-by-

hour, which allows for switching off the generator when the price is unfavorable and 

vice-versa (obviously, following the minimum down and up time constraints). However, 

when the unit commitment decisions corresponding to tables 7 and 8 are made for the 
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complete period of 24 hours, no changes on unit commitment decisions are allowed at 

any hour within this time interval.  The schedules and estimated total profits, however, 

remain comparable.   

 

6. SUMMARY 

In this paper, we have considered a new formulation of the unit commitment problem for 

the deregulated environment. Under the assumption of perfect competition, we show that 

when a producer is able to buy from or sell to a pool his excess demand or supply, the 

unit commitment problem can be solved considering each individual unit separately.  The 

solution method for the new formulation requires the computation of the probability 

distribution of the spot price of electricity. In order to do so, the power generation system 

of the marketplace has been modeled using the Ryan-Mazumdar model (1990) of 

production costing. This model takes into account the uncertainty on the demand and the 

generating unit availabilities. The probability distribution of the spot price, which is 

based on Schweppe's definition, is based on the probability distribution of the marginal 

unit. When more data about the market prices become available, it will certainly be very 

important to verify whether similar conclusions are obtained from a statistical analysis of 

market prices.  

The exact computation of the probability distribution is computationally prohibitive 

for large systems. Three approximation methods were evaluated. From the computational 

experience, it appears that the proposed unit commitment can be accurately solved in a 

reasonable time by using the normal, Edgeworth, or Monte Carlo approximations. The 

large deviation approximation does not appear to be feasible for very large markets. In a 
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sense, it is gratifying that the normal and Edgeworth approximations work so well. In 

order to apply these procedures we do not need detailed information on the component 

distributions; only knowledge of the first few moments suffices.  

For the example illustrated in this paper, the execution of the solutions (commitment 

schedules) obtained for each of the three model formulations, models 0, 1, and 2 appear 

to give similar expected total profits. We intend to further investigate this finding. 
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