To appear in AAAI-96

Commitment Strategiesin Hierarchical Task Network Planning*

Kutluhan Erol**
kutluhan@i-a-i.com

Reiko Tsunetof
reiko@cs.umd.edu

7Dept. of Computer Science
University of Maryland
College Park, MD 20742

Abstract

This paper compares three commitment strategies for
HTN planning: (1) a strategy that delays variable bind-
ings as much as possible; (2) a strategy in which no
non-primitive task is expanded until al variable con-
straints are committed; and (3) a strategy that chooses
between expansion and variable instantiation based on
the number of branchesthat will be created in the search
tree. Our results show that while there exist planning do-
mains in which the first two strategies do well, the third
doeswell over abroader range of planning domains.

Introduction

Two of the decisions that most Al planners must make
are what order to perform the steps in, and what val-
ues to use for any variablesin the plan. The planner’s
commitment strategy—itsstrategy for when and how to
make these decisions—has long been known to play a
great rolein the efficiency of planning.

Thispaper comparesthere ativeperformance of three
variable commitment strategies for Hierarchical Task
Network (HTN) planning:* theReluctant VariableBind-
ing Strategy (RVBS), which delays variable bindingsas
much as possible; the Eager Variable Instantiation Strat-
egy (EV1S), inwhich no non-primitivetask is expanded
until all variable constraints are committed; and the Dy-
namic Variable Commitment Strategy (DVCS), which
chooses between expansion and variable instantiation
based on the number of branches that will be created in
the search tree.

*This research was supported in part by grants from
NSF (IRI-9306580 and EEC 94-02384), ONR (N00014-J-91-
1451), AFOSR (F49620-93-1-0065), the ARPA/Rome L abo-
ratory Planning Initiative (F30602-93-C-0039), the ARPA 13
Initiative (NO0014-94-10907) and ARPA contract DABT-95-
C0037. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the funders.

We concentrate on variable assignment strategies because
previous work suggests that these have a great effect on the
performance of planning systems (see the next section).

iIngtitutefor Systems Research
University of Maryland
College Park, MD 20742

JamesHendler i
hendler@cs.umd.edu

Dana Nauii
nau@cs.umd.edu

**|ntelligent Automation, Inc.
2 Research Place
Rockville, MD 20850

Our results show that there are planning domains in
which EVIS does well, and planning domains where
it does poorly. The same is true for RVBS. However,
DVCS, which can choose between eager variable com-
mitment and reluctant variable commitment depending
on what looks best for thetask at hand, doeswell over a
broader range of planning domains.

Previous Studiesof Commitment Strategies

Commitment strategies have long been acknowledged
to be important in Al planning, but only recently have
researchers begun to analyze them rigorously (Barret
and Weld 1994; Minton et al. 1991; Veloso and Stone
1995; Yang and Chan 1994). The studiesthat we know
of al deal with STRIPS-style planning.

Kambhampati et a. (1995) have compared sev-
eral domain-independent partia-order planners includ-
ing UA (Minton et al. 1991), SNLP (Barret and Weld
1994), Tweak (Chapman 1987), and UCPOP (Penberthy
and Weld 1992), and several other “hybrid” planning al-
gorithms. In their experiments, the performance was
affected more by the differences in tractability refine-
ments than by the differences in protection strategies.

If avariable has 100 possible values, instantiating it
will create 100 branchesin the search space—and aplan-
ner might need to backtrack on all 100 branchesfor other
unrelated reasons. To address such problems, Yang and
Chan (1994) suggested maintaining the domains of the
variablesinstead of binding them to constant values. In
their experiments, extending SNL P to usethistechnique
improved its performance in most cases.

Based on this past work we decided to concentrate
on exploring the effects of variable commitments for
HTN planning, to seeif it also had a strong performance
effect, asindicated in these experimentson partial-order
planning. Preliminary work indicated it had a large
effect, and the work described in this paper is aimed at
analyzing this effect and exploring what commitment
strategies work best in which domains.

1. Input aplanning problem

P=<d: god, tn, I: initial state, D: domain>.

2. Initialize OPEN-LIST to contain only d.

3. If OPEN-LIST is empty, then

halt and return “NO SOLUTION.”

4. Pick atask network tn from the OPEN-LIST.

5. If tnisprimitive, its constraint formulais TRUE,
and tn has no committed-but-not-realized
constraints, then return tn as the solution.

. Pick arefinement strategy R for tn .

. Apply Rtotn and insert the resulting set of
task networksinto OPEN-LIST.

. Gotostep 3.

~N o

oo

Figure 1: High-level Refinement-Search in UMCP

HTN Planningand UMCP

The most recent and most comprehensive effort at pro-
viding a genera description of HTN planning is Erol’s
UMCP dgorithm (Erol 1995). Since UMCP provides
the basis for our work, it is summarized bel ow.

One way to solve HTN planning problemsis to gen-
erateall possibleexpansionsof theinput task network to
primitivetask networks, then generate al possible vari-
able assignments and total orderings of those primitive
task networks, and finally output those whose constraint
formulae evaluate to true. However, it is better totry to
prune large chunks of the search space by eiminating
in advance some of the variable bindings, orderings or
methods that would lead to dead-ends. To accomplish
this UM CP uses a branch-and-bound approach.

A task network can bethought of asan implicit repre-
sentation for the set of solutionsconsi stent with that task
network. UMCP works by refining a task network into
a set of task networks, whose sets of solutionstogether
make up the set of solutions for the original task net-
work. Those task networks whose set of solutions are
determined to be empty are filtered out. In this aspect,
UMCP nicely fits into the genera refinement search
framework described in (Kambhampati et al. 1995).

Figure 1 contains a sketch of the high-level search
algorithmin UMCP. Search isimplemented by keeping
an OPEN-LIST of task networksinthe search space that
are to be explored. Depth-first, breadth-first, best-first
and various other search techniques can be employed
by altering how task networks are inserted and selected
from the OPEN-LIST. Step 5 checks whether tnisaso-
[utionnode; if all tasksintn are primitive, the constraint
formulaistheatom TRUE, and thelist of constraintsthat
have been committed to be made true but not yet made
true is empty, then all task orderings and variable as-
signments consistent with the auxiliary data structures
associated with tn solve the origina problem. Those

plans can be easily enumerated. If tnis not a solution
node, then it is refined by some refinement strategy R,
and the resulting task networks are inserted back into
the OPEN-LIST.

Three types of refinement strategies used in UMCP
are task reduction, constraint refinement, and user-
specific critics. Task reduction involves retrieving the
set of methods associated with a non-primitivetask in
tn, expanding tn by applying each method to the cho-
sen task and returning the resulting set of task networks.
Constraint refinement invol ves sel ecting a group of con-
straints and making them true by adding ordering or
variable binding restrictionsto the task network. User-
specific critics are domain-dependent strategies that a
user can specify to improve the planner’s performance.

Commitment Strategiesin HTN Planning

In many planners, the commitment strategy is built into
the search algorithm and cannot be modified by the user.
For example, Tate's Nonlin system (Tate 1977) planner
(and numerous planners based thereon) expanded tasks
in abreadth-first manner: variableswere instantiated by
constantsimmediately after they were introduced to the
plan if they unified with constants, and all constraints
were applied before the next task expansion.

Morerecent HTN-styleplanners(e.g., O-Plan (Currie
and Tate 1991)) use more sophisticated commitment
strategies. The O-Plan system uses a number of criteria
to decide when an entry initsagenda (list of thingsto be
done) isready torun. Thecriteriainvol ve knowledge of
how the plan isevolving and how potential interactions
can be avoided.

In addition to the default automatic commitment
strategies supplied by the system, plannerslike UMCP,
O-Plan and SIPE-2 alow usersto interact withthe plan-
ning process to control commitments interactively. In
the current implementation of UMCP, the system sug-
gests the next process to the user at each decision point.
The user can confirm the process suggested by the sys-
tem, or can choose any other process applicable to the
task network that the system is currently working on.

Below, we discuss some of the considerationsthat go
into choosingacommitment strategy for HTN planning.

o Expand first or refine constraintsfirst? Thisisanal-
ogousto the question of when to make commitments
in STRIPS-style planning. A “least commitment”
strategy would postpone constraint refinements un-
til the planner gets a primitive task network. Since
some state constrai nts and ordering constraints might
not be fully realized while the task network has non-
primitive tasks, this approach will eiminate the re-
dundancy of working on the same constraints multi-
pletimes. Ontheother hand, earlier constraint refine-
ment hel ps prune the search space. Thisisespecialy

important if the planner is doing depth-first search as
the search might keep failing for the same reason.

¢ Which non-primitive tasks to expand? This corre-
sponds roughly to goal selection in STRIPS-style
planning. One can do depth-first expansion (i.e., ex-
pand the most recently generated task first), breadth-
first expansion, or any other systematic expansion
method. If two tasksin atask network are known to
beindependent, it will be moreefficient if the planner
solves onetask first in depth-first way and then deals
with the other, so that it only has to backtrack over
expansions of one task at atime.

¢ Instantiatevariables or maintain various constraints
like CSP? Yang and Chan (1994) argued the advan-
tage of using deferred variable commitments. To de-
lay variable bindings, they presented a CSP-likevari-
able maintenance method that lets the planner post-
ponevariableinstantiationuntil absolutely necessary.
UMCP uses a similar technique; refining variable or
state constraintsin UM CP either trimspossible value
lists or records variable distinctions.

While Yang and Chan’'s argument appliesto UMCR,
thereare certain domainswhich can useearly variable
instantiation handily. For instance, the n-puzzle is
a highly complex domain since moving atile to a
desired location involves moving other tilesand thus
might ruin other effects we want to preserve. It is
easy to prune the search if the planner instantiates
variables into constants because then it can detect
redundant moves.

¢ How to handle constraints in digunctive formulas?
Refining digunctive constraint formul as means mak-
ing definitedecisionsat the point of search. Sincefor-
mula simplification sometimes eliminates some con-
straintsin the formula, there might be no digunctions
after some expansions and other refinements. How-
ever, if the planner has the right heuristics for the
domain, early refinements of digunctions have the
same benefits as eager commitment.

In general, which commitment strategy is best can
depend both on the problem domain and on the par-
ticular planning problem being solved in that domain.
However, the following argument suggests that certain
kinds of commitment strategies should be likely to do
well across awide variety of problem domains:

Inthe search treefor an HTN planner such as UMCR,
each node represents a partia plan, and each edge rep-
resents a refinement made by the planner. If the search
is systematic and does not prune nodesthat lead to valid
plans, then there should be the same number of solution
nodes in the tree regardless of what commitment strat-
egy we use. Suppose one commitment strategy does
most of its branching near the top of the tree, and an-
other does most of its branching near the bottom of the

% (ny)
e &

23 o

Figure 2: Two search trees with the same height h and
the same set of solutions {s, ;, S3}. The one with the
branch at the top of the tree has 3h+1 nodes. The one
that with the branch at the bottom has h+3 nodes.

tree. If both trees have roughly the same height, then
the second tree should usually have fewer nodes than
thefirst tree (e.g., see Figure 2).

The above argument is not conclusive—for depend-
ing on how good the planner isat pruning unpromising
solutionsfrom the search space, the size and shape of its
search tree is determined more by the set of candidate
solutions (which is a superset of actua solutions) than
the set of solutionsitself. However, the intuition seems
sound that a commitment strategy that triesto minimize
the branching factor will dowell. We hypothesized, and
our experiments show, that we could exploit thisfeature
as discussed in the next section.

Experiments

Although the argument at the end of the previous sec-
tion is not conclusive, it suggests that a planner will do
better if its commitment strategy keeps the branching
factor near the top of the tree is as small as possible.
One way to do this is to choose, a each node of the
tree, the expansion or refinement option that yields the
smallest number of aternatives. To test thishypothesis,
we created an implementation of such a*“dynamic com-
mitment” strategy and compared it experimentally with
implementations of a*“least commitment” strategy and
an “eager commitment” strategy. More specifically, the
commitment strategies are as follows:

o Eager VariableInstantiation Strategy (EVI1S)
Thisisan HTN version of the eager variable com-
mitment strategy described earlier. Don't expand
any non-primitive task until al variable constraints
are committed. Instantiate variables into constants
whenever necessary to resolve constraints.

¢ Reluctant Variable Binding Strategy (RVBYS)
Thisisbasically theoppositestrategy. Delay instanti-
ating variables as much as possible. Expand al tasks
before making any variable binding constraints.

Method for toptask()
Expansion: (ctask v1v2)
Congtraints: vi#£v2, (obj v1), (obj v2)

Method 1 for ctask(v1v2)
Expansion: (ptasklvlv2) | "
Congtraint: (typev2tl)

Method 10 for ctask(v1 v2)
Expansion: (ptask10v1v2)
Congtraint: (typev2 t10)

Figure 3: Methodsfor Domain A

EVIS RVBS DVCS
6 6 6
5 5 5
o4 o4 o4
S S S
[= [
] 3] 3 o} 3
o o o
O2 O2 O2
! Yoo ot s e !
NN N WAL AN AN A
0

0

0

20 40 60 80 100 20

Problem Number

Problem Number

60 80 100 20 40 60 80 100

Problem Number

Figure 4: CPU time (in seconds) in Domain A

¢ Dynamic Variable Commitment Strategy (DVCYS)
Thisstrategy attemptsto minimizethe branching fac-
tor as discussed earlier. Suppose T is the task net-
work at the current node in the search space. For
each variable x in T, let v(x) be the number of pos-
sible values for v; and for each task t in T, let
m(t) be the number of methods that unify with t.
Let V = min{v(z) : xisaveriableinT}; and let
M = min{m(t) : tisatakinT}. If V < M, then
choose to instantiate the variable x for which v(x) is
smallest. If M < V, then choose to expand the task
t for which m(t) is smallest. Although this decision
criterion may seem more complicated than EVIS and
RVBS, the overhead involved in computing it is neg-
ligible.

When M = V, we favor expansions over instantia-
tions because further refinements might constrain the
possible value set but not limit the number of meth-
ods. Unless the task network is pruned, expansion
will eventually take place with same number of meth-
ods. On the other hand, it is possible to instantiate
avariable with less number of possible values if the
instantiationis delayed.

We compared the EVIS, RVBS, and DV CS commit-
ment strategies by using them in the UMCP planner on
randomly chosen problems in three different planning
domains. The three planning domains—and our exper-
imental results in those domains—are described bel ow.

The experiments were run using Allegro Common
Lisp on a SUN Sparc station, and running UMCP with
adepth-first search strategy. For each problem and each
commitment strategy, we counted both the CPU timeand
the number of nodes (i.e., the number of task networks)
generated. Since both measurements gave similar re-
sults, below wewill only discuss the CPU time.

4

Domain A

In Domain A the goal is to find a way to accomplish
a O-ary task (toptask). As shown in Figure 3, (toptask)
expands into a 2-ary task (ctask v1v2), where vl and v2
are variables; and there are ten different methods for
expanding (ctask v1v2). Theinitia state isthe set

{ (0bj obj1), (0bj 0bj2), - - -, (obj 0bj10), (type o)},

whereo € {obj1, ..., 0bj10} andt € {t1,...,t10}. Dif-
ferent planning problems are specified by choosing dif-
ferent values for 0 and t. Since the initial state has
exactly onetypeliteral, thereis only one successful way
to bind the variable v2 and expand the task (ctask v1 v2).
The planning problem isto find the way that works.

We compared EVIS, RVBS, and DVCSin Domain A
by running them on a suite of 100 randomly generated
problems. Figure 4 shows the performance of UMCP
with the three commitment strategies. There is exactly
onesolutionfor each problem. For each problem, RVBS
and DVCS aways find this solution after creating 14
task networks. Depending ontheproblem, EVIS creates
between 24 and 114 task networks. UMCP's average
CPU times were 2.88 secondsusing EVIS, 0.71 seconds
using RVBS, and 0.66 seconds using DVCS.

EVIS has more trouble than RVBS and DVCS be-
cause it instantiates the variable v2 before expanding
the task ctask, and thistendsto bind v2 to an object that
does not meet the constraint found in the methods of
ctask. On the other hand, RVBS does not instantiate v2
until after enforcing the constraint (typev2t) so it does
not make an instantiation of v2 which eventudly fails.
DV CS chooses to expand ctask before the instantiation
of v2 sincethevauesof V and M arethe same (10), and
thus performsidentically to RVBS.

Method for (toptask)
Expansion: (ctask1 v1v2)
Congtraints: (obj v1), (obj v2)

Method 1 for (ctask1v1v2)

Expansion: (ctask2tv1v2v3)

Congtraints: (typevitl), (typev2tl),| -
(typev3tl), vi£Av2-£v3

Method 3 for (ctask1 vl v2)
Expansion: (ctask2tv1v2v3)
Congtraints: (type v11t3), (typev2t3),

(type v313), v1£Av2-£v3

Method 1 for (ctask2t viv2 v3)

Method 4 for (ctask2t v1v2 v3)

Expansion: (ctask3tv1v2v3)
Congtraints; none

"| Expansion: (ctask3tv1v2v3)
Constraints; none

Method 1 for (ctask3t v1v2v3)
Expansion: (ptask t1v1v2v3)
Congtraints; none

Method 4 for (ctask3t v1v2v3)
"| Expansion: (ptask t3v1v2v3)
Congtraints; none

Figure 5: Methods for Domain B

EVIS RVBS DVCS
8 8 8
7 7 7
6 6 6
£s £s £s
Fa Fa g
2 2 2
Gs Gs Gs
2 2 2
INVA"N VNS VA~ N~ VN~
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Problem Number Problem Number Problem Number
Figure 6: CPU time (in seconds) in Domain B
Domain B Thereason for these resultsisthat when EVISinstan-

Domain B is basically an encoding of the well known
arc-consistency problem (Kumar 1992). Asin Domain
A, thegoal isto accomplish toptask; but the methods are
different. As shown in Figure 5, toptask expands into
ctaskl, ctask1 expandsinto ctask2, and ctask2 expandsinto
ctask3. The methodsfor ctask1 specify that v1, v2 and v3
must have different val ues but the same type. ctask2 and
ctask3 each havefour identical methods, whichincreases
the branching factor when UMCP does task expansion.
Theinitial stateisthe set
{(obj obj1), (obj 0bj2), - - -, (obj 0bj7),

(type obj1ty), (type 0bj2t2), - - -, (type obj7 t7) },
where each t; is one of t1, .. ., t3. Different planning
problems in this domain are specified by choosing dif-
ferent values for each of thet;. The problemisto find
three different objectswhich share the same object type.

In Domain B, we created a suite of 50 problems by
randomly assigning types to each object obj; in theini-
tial state. Each problem had at least one solution. The
results are shown in Figure 6. EVIS and DVCS cre-
ated same number of task networks for each test prob-
lem, and incurred about the same amount of CPU time:
with them, UMCP averaged 1.09 seconds and 1.10 sec-
onds, respectively. RVBSnever did better than EVIS or
DVCS, and usually did much worse. On the average,
UMCP's CPU timewith RVBSwas 2.54 seconds.

5

tiates variables v1, v2 and v3 before expanding the task
ctask2, EVIS can prune the task networks which cannot
satisfy the constrai ntsimposed inthe methodsfor ctask1.
On the other hand, RV BS does not instantiate variables
until they are fully expanded into primitive task net-
works. Thus RVBS generates task networks that would
not be generated by EVIS.

Domain C

As shown in Figure 7, Domain C contains tasks and
methods similar to those from both Domains A and B.
Solving the prablem involves combining methods sim-
ilar to thosein Domain A with methods similar to those
in Domain B—but the order in which these methods
should be used depends on whether the goal is toptaska
or toptaskb. The initial state contains the atoms

(obj obj1), (obj 0bj2), - - -, (obj 0bj10),

and aso fifteen atoms of the form (typeot) where
type € {typel,type2}; 0 € {objl, ..., obj10}; and
t € {t1,...,t3}. Different planning problems are spec-
ified by choosing different valuesfor o and t, aswell as
by choosing either toptaska or toptaskb as the goal.

In Domain C, we created a suite of 100 problems by
randomly selecting the goal tasks and initial states. Of
these problems, 44 problems had the goal task toptaska
and 56 problems had the goa task toptaskb. Seven of

Method for (toptaska)
Expansion: (ctaskal vl v2)
Congtraints: (obj v1), (obj v2)

Method 1 for (ctaskal vl v2)

Expansion: (ctaska2t1v1v2v3)

Congtraints: (typelvitl),
(typelv2tl), (typel v3tl),
Vv1£v27#£v3

Method 3 for (ctaskal vl v2)

Expansion: (ctaska? t3 v1v2 v3)
Congtraints: (typel v1t3),

| (typelv2t3), (typel v3t3),

Vv1#£ v2#v3

Method 1 for (ctaska2t v1 v2v3)
Expansion: (ctaska3tlviv2v3) |°
Congtraints; none

Method 4 for (ctaska2 t v1v2 v3)
"| Expansion: (ctaska3t3 v1v2v3)
Constraints: none

Method 1 for (ctaska3t v1v2v3)
Expansion: (ptaskatviv2v3d) |*°
Congtraints. (type2 vitl)

Method 3 for (ctaska3 t v1v2 v3)
"| Expansion: (ptaskat vl v2v3)
Congtraints. (type2 v1t3)

Method for (toptaskb)
Expansion: (ctaskblvlv2)
Congtraints: (obj v1), (obj v2), vi#£v2

Method 1 for (ctaskbl v1v2)
Expansion: (ctaskb2tlvlv2) | "*
Congtraints. (typel v2t1)

Method 3 for (ctaskbl v1v2)
Expansion: (ctaskb2t3 v1v2)
Congtraints. (typel v21t3)

Method 1 for (ctaskb2 tp v1 v2)

Expansion: (ctaskb3tp t1 vl v2v3)

Congtraints: (obj v3), (type2 v1tl),
(type2v2tl), (type2 v31l), v1#£ v2+4v3

Method 3 for (ctaskb2 tp v1 v2)
Expansion: (ctaskb3tp t3v1v2v3)

"| Constraints:. (obj v3), (type2 v11t3),

(type2 v213), (type2 v3 t3), v1#£v2#£v3

Congtraints; none

Method 1 for (ctaskb3 tpl tp2 v1iv2 v3)
Expansion: (ptaskbtl v1v2v3) o

Method 4 for (ctaskb3 tpl tp2 v1v2 v3)
*| Expansion: (ptaskb t3 v1v2 v3)
Congtraints. none

Figure 7: Methods for Domain C

the 100 problems had no solutions. As shownin Figure
8, DVCS had the best performance overall. UMCP's
average CPU timeswere 2.15 secondsusing EVIS, 1.83
seconds using RVBS, and 1.38 seconds using DVCS.

To test whether or not the differences shownin Figure
8 were dtatigtically significant, we did a paired sample
t-test. Let up be UMCP smean CPU timeusing DVCS
and pr be UMCP's mean CPU time using RVBS. The
null hypothesisHg isthat yr— pp =0(0r Ho: pr = pp);
the alternative hypothesisH; isthat ur — pup > 0. The
t statistic computed from the results is 5.569. Thisis
greater than the value 2.626 of the t-distribution with
probability 0.995 where the degrees of freedom = 100.
Thus we can reject Hp and say that the difference of the
meansissignificant. Similarly, wecan say thedifference
of themean CPU timefor DV CSand themean CPU time
for EVISissignificant with thet statistic 8.155.

The reason why DVCS outperformed EVIS and
RVBSisthat even while solving asingle planning prob-
lem, which commitment strategy is best can vary from
task to task—and DV CS can select between the EVIS
and RVBS strategies on thefly.

6

Conclusions and Future Work

We have discussed theimpact of using appropriatecom-
mitment strategiesin HTN planning. Webelievethat the
choice of commitment strategies should depend on the
problem domain and the particular problem. This paper
isafirst step to see how different commitment strategies
affect the performance of HTN planning on different
domains, and to explore whether variable commitment
strategies have a significant effect on performance.

We have presented three variable commitment strate-
gies, EVIS,RVBSand DV CSand examinedtheir perfor-
mance on three domainsusing the HTN planner UMCP.
The resultssuggest whilethereisa domainwhere EVIS
does well and adomain where RVBS doeswdll, the dy-
namic strategy DV CS is a better choice overal. While
DVCS does not always do better than both EVIS and
RVBS, it cannot do worse than both of them.

In our experiments, when any of the commitment
strategies selected variable instantiation, the variable
which had the smallest number of possible values was
chosen to be instantiated. This technique is known to
work well in constraint satisfaction problems (Kumar
1992). However, another heuristic for choosing vari-
able ingtantiation, more specific to HTN planning, is
to instantiate those variables first that participate in the

EVIS

RVBS

DVCS

CPU Time

o = N w S o o ~ o]
CPU Time

o = N w S o o ~ o]

CPU Time
o = N w S o o ~ [es]

20 40 60 80

=
o
S}

20

Problem Number

40

Problem Number

60 80

=
o
S}

20 40 60 80

Problem Number

Figure 8: CPU time (in seconds) in Domain C

highest number of pending, but not yet bound, con-
straints. We intend to try this heuristicin the future.

Based on the results in this paper, it would seem
that DVCS is a good variable binding strategy. We
thus intend to explore how this commitment strategy
performs in other planning problems such as simple
domains like Blocks World, the test suites for UCPOP
(Penberthy and Weld 1992), and more complex ones
such as UM Translog (Andrews et al. 1995).

Inaddition, the DV CSapproach of tryingto minimize
the branching factor can be extended for step-ordering
commitments as well. While, as we described, we sus-
pect that the variable commitment strategies will have
agreater overal effect on planning efficiency, we hope
that an approach to DVCS will aso be effective for the
introduction of ordering constraints. In general, we be-
lievethat dynamiccommitment strategi esperform better
than static commitment strategi esunl essenough domain
information is provided beforehand so that the user can
foretell a static strategy would perform satisfactory, and
we wish to test this out.

Although this paper discussed only domain-
independent commitment strategies, a commitment
strategy could a so be highly domain specific. However,
writingagood domai n-specific commitment strategy re-
quires much knowledge about the domain and the plan-
ning system. One of our goalsisto build amethodology
which can automatically extract the domain knowledge
useful for efficient commitment strategies.

In particul ar, wehopeto use Al learning techniquesto
develop domain-specific commitment strategies. Case-
based reasoning (Veloso 1994) and explanation-based
learning (1hrig and Kambhampati 1995) areal ready used
tolearn search control for various planners, and we hope
to extend thiswork to HTN planning. We aso intend
to explore the adjustment of dynamic heuristics such
as DVCS based on feedback from experience in the
domain.

References

S. Andrews, B. Kettler, K. Erol, and J. Hendler. UM
trandog: A planning domain for the devel opment and

benchmarking of planning systems. Technical report,
CS-TR-3487, University of Maryland, 1995.

A. Barret and D. Weld. Partia-order planning: Eval-
uating possible efficiency gains. Artificial Intelligence
67(1), pp. 71-112, 1994.

D. Chapman. Planning for Conjunctive Goals. Artifi-
cial Intelligence 32, pp. 333-377, 1987.

K. Currieand A. Tate. O-plan: the open planning ar-
chitecture. Artificial Intelligence 52, pp. 49-86, 1991.

K. Erol. HTN planning: Formalization, analysis, and
implementation. Ph.D. dissertation, Computer Science
Dept., University of Maryland, 1995.

E. Fink and M. Veloso. Prodigy planning algorithm.
Technical report, CMU-CS-94-123, Carnegie Mellon
University, Pittsburgh, PA, 1994.

L. Ihrig and S. Kambhampati. Integrating replay with
EBL to improve planning performance. ASE-CSE-TR
94-003, Arizona State University, 1995.

S. Kambhampati, C. Knoblock, and Q. Yang. Plan-
ning as refinement search: A unified framework for
evaluating design tradeoffs in partial-order planning.
Artificial Intelligence 76, pp. 167-238, 1995.

V. Kumar. Algorithmsfor constraint -sati sfaction prob-
lems: A survey. Al Magazine, pp. 32—44, 1992.

S. Minton, J. Bresina, and M. Drummond. Commit-
ment strategy in planning: A comparative anaysis. In
[JCAI-91, pp. 259-265, 1991.

J. S. Penberthy and D. Weld. UCPOP: A sound, com-
plete, partial order planner for ADL. Proceedings of
KR-92, 1992.

A. Tate. Generating project networks. In 1JCAI-77, pp.
888-893.

M. Veloso and P. Stone. FLECS: Planning with aflex-
ible commitment strategy. Journal of Artificial Intelli-
gence Research 3, pp. 25-52, 1995.

M. Veloso. Flexible strategy learning: Analogica re-
play of problem solving episodes. In AAAI-94, pp.
595-600, 1994.

Q. Yang and A. Chan. Delaying variable binding com-
mitmentsin planning. In AIPS-94, pp. 182-187, 1994.

