
Commi tment Strategies in Planning: A Comparative Analysis

Steven M i n t o n and John Bresina and M a r k D r u m m o n d
Sterling Federal Systems

NASA Ames Research Center, Mail Stop 244-17
Moffett Field, CA 94035 U.S.A.

Abs t rac t
In this paper we compare the ut i l i ty of differ­
ent commitment strategies in planning. Under
a "least commitment strategy", plans are rep­
resented as part ia l orders and operators are or-
dered only when interactions are detected. We
investigate claims of the inherent advantages
of planning w i t h part ia l orders, as compared
to planning w i t h tota l orders. By focusing our
analysis on the issue of operator ordering com-
mi tment , we are able to carry out a rigorous
comparative analysis of two planners. We show
that partial-order planning can be more effi­
cient than total-order planning, but we also
show that this is not necessarily so.

1 I n t r o d u c t i o n

Since the int roduct ion of non-linear planning over a
decade ago (Sacerdoti, 1977), the superiority of non-
linear planning over linear planning has been taci t ly ac­
knowledged by the planning community. However, there
has been l i t t le analysis support ing this in tu i t ion. In this
paper, we focus on one aspect of non-linear planning: the
use of partially ordered plans rather than totally ordered
plans. The idea has been that a part ial ly ordered plan
allows a planner to avoid premature commitment to an
incorrect operator ordering, and thus improve efficiency.
We analyze the costs and benefits of using part ial ly or­
dered and total ly ordered plans to implement different
commitment strategies for operator ordering.

W h y should we be concerned about an issue that is
over a decade old? Since modern planners are not very
different f rom early planners in their basic approach, the
issue is st i l l w i t h us. In this paper, we address the is­
sue by f irst considering a simple total-order planner, and
f rom this planner we construct a partial-order planner
which can have an exponentially smaller search space.
Next , we show that a second, independent source of
power is available to a partial-order planner, namely, the
abi l i ty to make more informed planning decisions. The
relationship between our two planners demonstrates the
potent ial u t i l i t y of a least commitment strategy. We also
show that a partial-order planner based on Chapman's
(1987) Tweak can be less efficient than our total-order
planner, and we examine why this can happen.

2 Background
Planning can be characterized as search through a space
of possible plans. A total-order planner searches through
a space of total ly ordered plans; a partial-order plan­
ner is defined similarly. We introduce these definitions
because the terms "linear" and "non-linear" are over­
loaded. For example, some authors have used the term
"non-l inearity" when focusing on the issue of goal or­
dering. That is, some "linear" planners, when solv­
ing a conjunctive goal, require that all subgoals of
one conjunct be achieved before subgoals of the oth­
ers; hence, planners that can arbi trar i ly interleave sub-
goals are often called "non-l inear", This version of the
linear/non-linear dist inct ion is different than the partial-
order/total-order dist inct ion investigated here. The for­
mer dist inction impacts planner completeness, whereas
the total-order/part ial-order dist inct ion is orthogonal to
this issue (Drummond & Currie, 1989).

We claim that the only significant difference between
partial-order and total-order planners is planning effi­
ciency. It might be argued that partial-order planning
is preferable because a part ial ly ordered plan can be
more flexibly executed. However, this flexibility can
also be achieved w i th a total-order planner and a post­
processing step that removes unnecessary orderings from
the total ly ordered solution plan to yield a part ial order.
The polynomial t ime complexity of this post-processing
is negligible compared to the search time for plan gen­
eration (Veloso et al,, 1990). Hence, we believe that
execution flexibility is, at best, a weak justif ication for
the supposed superiority of partial-order planning.

In order to analyze the relative efficiency of partial-
order and total-order planning, we begin by considering
a total-order planner and a partial-order planner that
can be directly compared. By elucidating the key differ­
ences between these planning algorithms, we reveal sonic
important principles that are of general relevance.

3 Terminology
A plan consists of an ordered set of steps, where each
step is a unique operator instance. Plans can be totally
ordered, in which case every step is ordered wi th respect
to every other step; or partially ordered, in which case
steps can be unordered wi th respect to each other. We
assume that a l ibrary of operators is available, where

Minton, Bresina, and Drummond 259

each operator has preconditions, deleted conditions, and
added conditions; each deleted condit ion must be a pre­
condit ion. Each condit ion must be a non-negated propo-
sit ional l i teral. Later, we consider how our results can
be extended to more expressive languages.

A linearization of a part ia l ly ordered plan is a to ta l
order over the plan's steps consistent w i t h the existing
part ia l order. In a total ly ordered plan, a precondition of
a plan step is true if it is added by an earlier step and not
deleted by any intervening step. In a part ia l ly ordered
plan, a step's precondit ion is possibly true if there exists a
l inearization in which it is t rue, and a step's precondition
is necessarily true if it is true in all linearizations. A
step's precondit ion is necessarily false if it is not possibly
true.

A planning problem is defined by a start state and goal
state pair, where a state is a set of propositions. For con­
venience, we represent a problem as a two-step initial
plan, where the f irst step adds the start state propo-
sitions and the preconditions of the f inal step are the
goal state propositions. The planning process starts w i t h
this in i t ia l plan and searches through a space of possi­
ble plans. A successful search terminates w i t h a solution
plan, i.e., a plan in which all steps' preconditions are nec­
essarily true. The search space can be characterized as
a tree, where each node corresponds to a plan and each
arc corresponds to a plan transformation. Each trans-
format ion incrementally extends (i .e. , refines) a plan by
adding addit ional steps or orderings. Thus, each leaf in
the search tree corresponds either to a solution plan or
a dead-end, and each intermediate node corresponds to
an unfinished plan which can be further extended.

4 A Tale of T w o P lanners
In this section we define two simple planning algorithms.
The first a lgor i thm, shown in figure 1, is T O , a tota l -
order planner motivated by Warren (1974), Tate (1974),
and Waldinger (1975). TO accepts an unfinished plan,
P, and a goal set, G, containing the preconditions of
stepB in P which are currently false. If the algor i thm
terminates successfully then it returns a totally-ordered
solution plan. Note, there are two backtracking points
in this procedure: operator and ordering selection. As
used in step 4, the last deleter of a precondition c for a
step 0 n e e d is a step Odel before 0need which deletes c,
such that there is no other deleter of c between Odel and
Oneed. The f irst p lan step is considered the last deleter if
it does not add c and no other step before 0need deletes c.

Our purpose here is to characterize the search space of
the TO planning a lgor i thm, and the pseudo-code we give
does this by defining a depth-first procedure for enu­
merating possible plans. A l l the algorithms described
in this paper can also be implemented as breadth-first
procedures in the obvious way, and in that case, al l are
provably complete (M in ton et al., 1991).

The second planner is UA, a partial-order planner,
shown in figure 2. UA is similar to TO in that it uses
the same procedures for goal selection and operator se­
lection, and unl ike TO in that its solution plans are par-
t ial ly ordered. Step 4 of UA orders steps based on " inter-
actions". T w o steps in a plan are said to interact if they

260 Automated Reasoning

TO(P, G)
1. T e r m i n a t i o n : If G is empty, report success and stop.
2. Goa l select ion; Let c be a goal in G, and let Oneed be

the plan step for which c is a precondition.
3. Opera to r select ion: Let 0ADD be an operator in the

Library that adds c. I f there is no such 0ADD, then ter­
minate and report failure. Backtrack point: all such
operators must be considered for completeness,

4. Orde r ing select ion: Let Odd be the last deleter of c.
Insert 0 a d d somewhere between 0del and 0need, call the
resulting plan P'. Backtrack point: all such positions
must be considered for completeness.

5. U p d a t e goal set: Let G* be the set of preconditions
in P' that are not true.

6. Recursive i nvoca t ion : T O (P \ G ') ,

Figure 1: The TO Planning A lgor i thm

are unordered w i t h respect to each other and there exists
a precondit ion c of one step that is added or deleted by
the other.1 The significant difference between UA and
TO lies in step 4: TO orders the new step w i t h respect
to all others, whereas UA adds only those orderings that
are required to eliminate interactions. It is in this sense
that UA is less committed than TO.

Since UA orders all steps which interact, the plans that
are generated have a special property: each precondition
in a plan is either necessarily true or necessarily false.
We call such plans unambiguous. This property yields a
t ight correspondence between the two planners' search
spaces. Suppose UA IS given the unambiguous plan Pua

and that TO is given Pto, one of its linearizations. Pua

and Pt0 have the same set of goals since, by definit ion,
each goal in Pua is necessarily false and if a precondition
is necessarily false, it is false in every l inearization.

Consider the relationship between the way that UA
extends Pua and TO extends Pto. Since the two plans
have the same set of goals, and since both planners use
the same goal selection method, both algorithms pick
the same goal; therefore, Oneed is the same for both.
Similarly, both algorithms consider the same l ibrary op­
erators to achieve this goal. Since Pto is a l inearization
of P u a , and Oneed is the same in bo th plans, both algo­
r i thms find the same last deleter as wel l .2 When TO adds
a step to a p lan, it orders the new step w i t h respect to all
existing steps. When UA adds a step to a plan, it orders
the new step only w i t h respect to interact ing steps. UA
considers all possible combinations of orderings which
eliminate interactions, so for any plan produced by TO,
UA produces a corresponding plan that is less-ordered or
equivalent. The fol lowing sections exploit this t ight cor­
respondence between the search spaces of UA and TO. In
the next section we compare the entire search spaces of
UA and T O , and later we compare the number of nodes
actually visited under different search strategies.

1 Note, a step that deletes c interacts with one that adds or
deletes c according to this definition because a step's deleted
conditions are required to be a subset of its preconditions.

3 There is a unique last deleter in an unambiguous plan
since two steps which delete the same condition interact, and
thus, must be ordered.

UA(P,G)
1. Te rm ina t i on : If G is empty, report success and stop.
2. Goal select ion: Let c be a goal in G, and let Oneed be

the plan step for which c is a precondition.
3. Opera to r select ion: Let Oadd be an operator in the

library that adds c. If there is no such Oa d d , then ter­
minate and report failure. Backtrack point: all such
operators must be considered for completeness.

4. Order ing select ion: Let Odel be the last deleter of c.
Order 0add after Odel and before Oneed. Repeat until
there are no interactions:

o Select a step Oint that interacts with Oadd.
o Order Oint either before or after 0add.
Backtrack point; both orderings must be
considered for completeness.

Let P' be the resulting plan.
5. Upda te goal set: Let G' be the set of preconditions

in P' that are necessarily false.
6. Recursive invoca t ion : UA(P ' ,G ') .

Figure 2: The UA Planning A lgor i thm

5 Search Space Compar ison

Figure 3: How C maps from treeua to treeto

We can show that C satisfies both of the properties
by induction on the depth of the search trees. Detailed
proofs are in the appendix. To prove the first property,
we show that for every plan contained in treeu a , all l in-
earizations of that plan are contained in trveto. This
can be proved by examining the t ight correspondence
between the search trees of UA and TO, To prove the
second property, we show that C maps nodes u1 and U2

at the same depth in treeva to disjoint sets of nodes in
treeto: if u1 and u2 do not have the same parent, then
the property holds; if they have the same parent, then
the plans at u1 and U2 are distinct (by the definition of
U A) , in which case their linearizations are disjoint.

How much smaller is ireeua than tree i o? The map­
ping described above provides an answer. For each node
u in treeua there are | L(u) | distinct nodes in TO, where
| L(u) | is the number of linearizations of the plan con­
tained at node u. The exact number depends on how
unordered the plan at node u is. A total ly unordered
plan has a factorial number of linearizations and a totally
ordered plan has only a single l inearization. Thus, the
only time that the size of treeHa equals the size of treeto

is when every plan in treeua is total ly ordered; other­
wise, treeua is str ict ly smaller than treeto, and possibly
exponentially smaller.

6 T ime Cost Compar ison

While the size of UA'S search tree is possibly exponen­
tial ly smaller than that of T O , it does not follow that UA
is necessarily more efficient. Efficiency is determined by
two factors: the time cost per node during search (dis-
cussed in this section) and the size of the subtree actually
explored to f ind a plan (discussed below).

In this section we show that while UA can indeed take
more time per node, the extra t ime is relatively small
and grows only poly normally w i th the size of the plan.
In our analysis, the size of the plan is simply the number
of steps in the plan.3 In comparing the relative efficiency
of UA and TO, we first consider the number of times that
each algor i thm step is executed per node visited and then
consider the t ime complexity of each step.

For both UA and TO, steps 1 and 2 are each executed
once per node, and the number of executions of step 3 per
node is bounded by a constant (the number of operators
in the l ibrary). Analyzing the number of times step 4

3 We disregard operator size and the number of conditions
in any given "state", since we assume these are bounded by a
constant for a given domain. An analysis that includes these
factors does not affect our conclusion.

Minton, Bresina and Drummond 261

is executed might seem more complicated, since it may
be executed many times at an internal node and is not
executed at a leaf node. However, notice that a new node
is generated each time step 4 is executed. Consequently,
step 4 is executed once per node. Step 5 is also executed
once per node since it always follows step 4, Thus, both
algorithms execute steps 1, 2, 4, and 5 once per node,
and step 3 is executed 0(1) times per node.

In examining the costs for each step, we first note that
for both algorithms, steps 1, 2, and 3 can be accom-
plished in 0 (1) time. The cost of step 4, the ordering
step, is different for TO and UA. In TO, step 4 is accom­
plished by inserting the new operator, Oadd, Bomewhere
between 0del and Oneed. If the possible insertion points
are considered starting at Oneed and working towards
Odel, then step 4 takes constant t ime, since each inser­
tion constitutes one execution of the step. On the other
hand, step 4 in UA involves carrying out interaction de-
tection and elimination. This step can be accomplished
in 0(e) t ime, where e is the number of edges in the graph
required to represent the partially ordered plan (Minton
et al., 1991), If n is the number of steps in the plan,
then in the worst case, there may be 0(n2) edges in the
graph, and in the best case, 0(n) edges. To carry out
step 5 may require examining the entire plan, and thus,
for UA , takes O(e) time and for TO, 0 (n) time.

To summarize, UA pays the penalty of having a more
complex ordering procedure (Step 4), as well as the
penalty for having a more expressive plan language (a
partial order as compared to total order) which is re­
flected in the extra cost of step 5. Overall, UA requires
0(e) time per node, whereas TO only requires O(n) time.

7 Overall Efficiency Comparison
The previous sections compared TO and UA in terms
of relative search space size and relative time cost per
node. The extra processing time required by UA for each
node would appear to be justif ied since its search space
may contain exponentially fewer nodes. To complete our
analysis, we must consider the number of nodes actually
visited by each algorithm under a given search strategy.

Consider a breadth-first search technique that explores
the entire search tree up to the depth of the smallest
solution plan. By the search tree correspondence estab-
lished earlier, both algorithms find the first solution at
the same depth. Thus, TO explores all linearizations of
the plans explored by UA. We can formalize the overall
efficiency comparison as follows. For a node u in treeua,
we denote the number of steps in the plan at u by nu,
and the number of edges by eu. Then for each node u
that UA generates, UA incurs time cost 0 (e u) ; whereas,
TO incurs time cost 0(nu) • | L(u) |, where | L(u) \ is the

262 Automated Reasoning

number of linearizations of the plan at node u. There-
fore, the rat io of the to ta l t ime costs of TO and uA is as
follows, where bf(treeua) denotes the subtree considered
by UA under breadth-first search.

The cost comparison is not so clear-cut for depth-first
search, since TO does not necessarily explore all lineariza­
tions of the plans explored by UA. A node in a search
tree is said to succeed if it is on a path to a solution, oth­
erwise, it is said to fail When a node in UA 'S search tree
fails, al l corresponding nodes for TO also fa i l . If a UA
node succeeds, then some subset of the corresponding
TO nodes succeed. If, under a depth-first strategy, UA
and TO generate corresponding plans in the same order,
then (i) for every failed node u that UA generates, TO
generates al l nodes in C(u) and (it) for every UA node
u that succeeds, TO generates at least one node in L(u).
However, in actual i ty, UA and TO need not generate cor­
responding plans in the same order. In this case, while
the search spaces correspond, there is no guarantee that
the planners w i l l explore corresponding subtrees. Nev­
ertheless, the relative size of the subtree explored by TO
under depth-first search can be expected to be propor­
t ional to the average size of | C |, since the relative size
of TO's ful l search space is proport ional to this value.

This in tu i t ion is supported by empirical experimen­
tat ion w i t h depth- l imited versions of UA and T O . In a
blocksworld domain where all steps interact, UA tends to
explore the same number of nodes as TO under depth-
first search. On another version of the blocksworld,
where the probabi l i ty of two randomly selected steps in­
teracting is approximately 0.5, UA tends to explore many
fewer nodes. For example, on a representative problem,
w i t h a solution depth (and depth-bound) of eight, TO ex­
plored 8.0 times as many nodes as UA. This rat io tends
to increase w i th solution depth; for a problem wi th so­
lut ion depth of nine, TO explored 15.4 times as many
nodes. A l though UA required more t ime per node, in
terms of total search t ime, UA ran 4.6 times faster than
TO on the first problem and 9.0 times faster than TO
on the second problem. The results under breadth-first
search were also as expected: when all steps interact,
UA and TO search exactly the same number of nodes,
and when relatively few steps interact, UA explores many
fewer nodes than TO. For example, in our low-interaction
version of the blocksworld, on a problem where the first
solution is found at depth seven, To explored 4.8 times
as many nodes as UA, and UA ran 2.8 times faster. We
caution that this is a small-scale study, intended only to
i l lustrate our theoretical results.

The performance of TO can be improved w i t h the ad­
di t ion of dependency-directed backtracking. Al though
space does not permit analysis of this search strategy,
we note that by using dependency-directed backtrack­
ing, To will behave almost identical ly to UA. Specifically,
when TO backtracks to a node, a dependency analysis
can indicate whether or not the failure below was inde­
pendent of the ordering decision at that node. Of course,
this dependency analysis increases the cost per node.

8 Heur is t ic Advantages

It is often claimed that partial-order planners are more
efficient due to their abi l i ty to make more informed or-
dering decisions. So far, we have shown that a part ial-
order planner can be more efficient simply because its
search tree is smaller, independent of its abi l i ty to make
more informed decisions. We now show that a part ial-
order planner does in fact have a "heuristic advantage"
as well.

In the UA planning algor i thm, step 4 arbitrar i ly or­
ders interact ing steps. Similarly, step 4 of TO arbi trar i ly
chooses an insertion point for the new step. It is easy
to see, however, that some orderings should be tried be­
fore others in a heuristic search. This is i l lustrated by
figure 4, which compares UA and TO on a particular prob­
lem. The key in the figure describes the relevant condi­
tions of the l ibrary operators, where preconditions are
indicated to the left of an operator and added condi­
tions are indicated to the r ight (there are no deletes).
For brevity, the start step and f inal step are not shown.
Consider the node in treeua containing the plan wi th
unordered steps 01 and 02- When UA introduces O3 to
achieve precondition p of 01, step 4 of UA wi l l order O3
wi th respect to O2, since these steps interact. However,
it makes more sense to order O2 before O3, since O2
achieves precondit ion q of O3. This il lustrates a simple
planning heuristic: "prefer the orderings that yield the
fewest false precondit ions". Th is strategy is not guaran­
teed to produce the opt imal search or plan, but tends to
be effective and is commonly used.

Notice, however, that TO cannot exploit this heuristic
as effectively as UA because it must prematurely commit
to an ordering on 0\ and 0%. Due to this inabi l i ty to
postpone an ordering decision, TO must choose arbitrar­
i ly between the plans 0\ 02 and O2 01, before the
impact of this decision can be evaluated.

In the genera] case, UA is more informed than TO by
any heuristic h that satisfies the fol lowing property: for
any UA node u and corresponding To node t, h(u)
h(t); that is, a par t ia l ly ordered plan must be rated at
least as high as any of its linearizations. (Note that for
unambiguous plans the heuristic funct ion in our example
satisfies this property.) When we say that UA is more
informed than T O , we mean that under h, some child of
u is rated at least as high as every child of t. This is true
since every child of t is a l inearization of some child of

MT(P,G)
1. Termina t ion : If G is empty, report success and stop.
2. Goal selection: Let c be a goal in G, and let Oneed he

the plan step for which c is a precondition.
3. Operator selection: Let Oadd be either a plan step

possibly before Oneed that adds c or an operator in the
library that adds c. If there is no such Oadd, then ter­
minate and report failure. Backtrack point: alt such
operators must be considered for completeness,

4. Order ing selection: Order Oadd before Oneed. Repeat
unti l there are no steps possibly between Oadd and Oneed
which delete c:

Let Odel be such a step; choose one of the following
ways to make c true for Oneed

o Order Odel before Oadd.
o Order Odel after Oneed.
0 Choose a step Oknight that adds c that is possibly

between Odel and Oneed; order it after Odel and
before Oneed.
Backtrack point: all alternatives must be
considered for completeness.

Let P' be the resulting plan.
5. Upda te goal set: Let G' be the set of preconditions

in P' that are not necessarily true.
6. Recursive invocat ion ; MT(P',G'),

Figure 5: A Propositional Planner based on the M T C

u, and therefore no child of t can be rated higher than a
child of u. Furthermore, there may be a child of u such
that none of its linearizations is a child of t, and therefore
this child of u can be rated higher than every child of t.
Assuming that h is a good heuristic, this means that UA
can make a better choice than T O .

9 A Less Commi t t ed Planner
We have shown that UA, a partial-order planner, has cer­
tain computational advantages over a total-order plan­
ner, TO, due to its abi l i ty to delay commitments. How­
ever, there are planners that are less committed than
UA. In fact, there is a cont inuum of commitment strate­
gies that we might consider. At the extreme liberal end
of the spectrum is the strategy of maintaining a totally
unordered set of steps during search, unt i l there exists a
linearization that is a solution plan.

Compared to many well-known planners, UA is con­
servative since it requires each plan to be unambiguous.
This is not required by NOAH (Sacerdoti, 1977), Now Lin
(Tate, 1977), and Tweak (Chapman, 1987), for exam-
ple. How do these less-commit ted planners compare to
UA and TO? One might expect a less-committed planner
to have the same advantages over UA that UA has over
T O . However, this is not necessarily true. For exam-
ple, we show in this section that Tweak's search tree is
larger than TO's in some circumstances.4 See figure 5 for
a propositional planner, MT, based on Chapman's (1987)
Modal T ru th Cri ter ion, the formal statement that char-
acUrizes Tweak's search space.

The proof that UA'S search tree is no larger than To's
search tree rested on the two properties of C elaborated

4We use Tweak for this comparison because, like UA and
TO, it is a formal construct rather than a realistic planner,
and therefore more easily analyzed.

Minton, Bresina and Drummond 263

Figure 6: "Over lapping" plans.

in section 5. By investigating the relationship between
MT and TO, we found that the second of these proper­
ties does not hold for MT, and its failure il lustrates how
MT can explore more nodes than TO (and consequently
U A) on certain problems. The second property guaran­
tees that UA does not generate "overlapping" plans. The
example in figure 6 shows that MT fails to satisfy this
property because it can generate plans that share com-
mon linearizations, leading to considerable redundancy
in the search. The f igure shows three steps, 01 , 0 2 , and
0 3 , where each 0 i has precondit ion p i, and added condi-
tions g i, p1, P2, and p3. The final step has preconditions
g1, g2, and g3, bu t the start and final steps are not shown
in the figure. The node at the top of the figure contains
a plan constructed by MT where goals g1, g2 and g3 have
been achieved, but p1, p2 and p3 remain to be achieved.
Subsequently, in solving the precondit ion p1 , MT gener­
ates plans which share the l inearization O3 ­2 0i
(among others). In comparison, both TO and UA only
generate the plan O3 O2 01 once. In fact, it is
simple to show that , under breadth-first search, MT gen­
erates many more nodes than TO on this example, due
to redundancy (and also more than UA, by t ransi t iv i ty) .

This example shows that although one planner may be
less commit ted than another, it is not necessarily more
efficient. In general, a part ia l ly ordered plan can repre­
sent a large set of l inearizations, but of course, there can
be many more par t ia l orders over a set of steps than there
are linearizations. A general lesson f rom this is that a
search space should be defined so as to minimize redun­
dancy whenever possible. In part icular, part ia l ly ordered
plans w i th l inearization overlap should be avoided.

10 Conc lud ing Remarks
By focusing our analysis on the single issue of operator
ordering commitment , we were able to carry out a r ig-
orous comparative analysis of two planners. In contrast,
most previous work has focused on the definit ion of a sin­
gle planner, and comparative analyses have been rare.5

6 Soderland and Weld (1991) have very recently, and inde­
pendently, carried out a comparative analysis of two planners,
corroborating some of the results reported in Section 5.

We have shown that the search space of a partial-order
planner, U A , is never larger than the search space of a
total-order planner, TO. Indeed for certain problems,
UA 'S search space is exponentially smaller than T O ' S .
Since UA pays only a small polynomial t ime increment
per node over TO, it is generally more efficient. We have
also demonstrated that UA can be more informed than
TO under a certain class of heuristic evaluation func-
tions. Lastly, we have shown that partial-order planners
do not necessarily have smaller search spaces; in particu­
lar, we demonstrated that a Tweak-l ike planner can have
a larger search space than TO on some problems.

How general are these results? Whi le our analysis
has considered only two specific planners, the tradeoffs
that we have examined are of general relevance. We
believe these tradeoffs are manifested in other styles of
planner, including temporal-project ion planners (Drum-
mond, 1989) and STRIPs-Uke planners such as Prodigy
(Minton et al., 1989)- We conjecture that one can define
a partial-order version of Prodigy, for instance, which
corresponds to the original in the same way that UA cor­
responds to TO. The key dif f iculty in analyzing possible
correspondences between such planners is establishing a
mapping between the planners' search trees.

What about more expressive operator languages? We
have defined TO and UA to use propositional operators,
but many problems demand operators w i t h variables,
condit ional effects, or condit ional preconditions. UA and
TO can be extended to use such operators so that the
search space correspondence st i l l holds. In such cases,
the relative advantages of UA over TO w i l l be preserved
as long as the t ime cost of detecting possible interactions
remains relatively small . For example, if l ibrary opera-
tors have variables, but are fu l ly instantiated during the
operator selection step, then our analysis holds wi thout
modif icat ion. The work required to demonstrate step in­
teraction tends to increase w i th the expressiveness of the
operator language used (Dean &. Boddy, 1988; Hertzberg
& Horz, 1989); nevertheless, we believe the cost of de­
tecting interactions can often be kept low by using a
conservative definit ion of step interact ion.

The general lesson f rom this work is that partial-order
planning can be better than total-order planning, but
this isn't necessarily so. When designing a partial-order
planner, one must understand the effect of plan rep­
resentation on the planner's search space, the cost in­
curred per node, and sources of possible redundancy in
the search space.
A c k n o w l e d g e m e n t s : The TORPOR group thanks Mark
Boddy for helping star t this project, and Andy Philips,
for implementing and helping design the algorithms.
Thanks also to our various reviewers.

264 Automated Reasonina

References

[Chapman, 1987] D. Chapman. Planning for Conjunc-
tive Goals. Artificial Intelligence, Vol. 32.

[Dean & Boddy, 1988] T. Dean and M, Boddy. Reason­
ing About Part ial ly Ordered Events. Artificial In­
telligence, VoL 36.

[Drummond & Currie, 1989] M. Drummond and K.W.
Currie. Goal-ordering in Part ial ly Ordered Plana.
Proceedings of IJCAI-89, Detroit, M l .

[Drummond, 1989] M. Drummond. Situated Control
Rules. Proceedings of the Conference on Princi­
ples of Knowledge Representation and Reasoning,
Toronto, Canada.

[Hertzberg & Horz, 1989] J. Hertzberg and A, Horz. To-
wards a Theory of Conflict Detection and Resolu­
t ion in Nonlinear Plans. IJCAI-89, Detroi t , M I .

[Minton et al, 1989] S. M in ton , J.G. Carbonell, C A .
Knoblock, D.R. Kuokka, O. Etzioni and Y. G i l
Explanation-Based Learning; A Problem-Solving
Perspective, Artificial Intelligence, VoL 40.

[Minton et al, 1991] S. M in ton , J. Bresina, M. Drum­
mond, and A. Phil ips. An Analysis of Commitment
Strategies in Planning: The Details, Technical re­
port 91-08, NASA Ames, AI Research Branch.

[Sacerdoti, 1977] E. Sacerdoti. A Structure for Plans
and Behavior American Elsevier, New York.

[Soderland & Weld, 1991] S. Soderland and D.S. Weld.
Evaluating Nonlinear Planning. Technical report
91-02-03, Univ. of Washington, Computer Science
Dept.

[Tate, 1974] A. Tate. Interplan: A Plan Generation Sys­
tem Which Can Deal W i t h Interactions Between
Goals. Univ. of Edinburgh, Machine Intelligence Re­
search Unit Memo MIP-R-109.

[Tate, 1977] A. Tate. Generating Project Networks. In
Proceedings of IJCAI-77, Boston, M A .

[Waldinger, 1975] R, Waldinger. Achieving Several
Goals Simultaneously. SRI AI Center Technical
Note 107, SRI, Menlo Park, CA.

[Veloso et al, 1990] M .M. Veloso, M,A. Perez and J.G.
Carbonell. Nonlinear Planning wi th Parallel Re­
source Al locat ion. In Proceedings of the Workshop
on Innovative Approaches to Planning, Scheduling
and Control, San Diego, CA.

[Warren, 1975] D. Warren. Warplan: A System for
Generating Plans, Memo 76, Computational Logic
Dept., School of A I , Univ. of Edinburgh.

Minton, Bresina, and Drummond 265

