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Abs t rac t 
In this paper we compare the ut i l i ty of differ­
ent commitment strategies in planning. Under 
a "least commitment strategy", plans are rep­
resented as part ia l orders and operators are or-
dered only when interactions are detected. We 
investigate claims of the inherent advantages 
of planning w i t h part ia l orders, as compared 
to planning w i t h tota l orders. By focusing our 
analysis on the issue of operator ordering com-
mi tment , we are able to carry out a rigorous 
comparative analysis of two planners. We show 
that partial-order planning can be more effi­
cient than total-order planning, but we also 
show that this is not necessarily so. 

1 I n t r o d u c t i o n 

Since the int roduct ion of non-linear planning over a 
decade ago (Sacerdoti, 1977), the superiority of non-
linear planning over linear planning has been taci t ly ac­
knowledged by the planning community. However, there 
has been l i t t le analysis support ing this in tu i t ion. In this 
paper, we focus on one aspect of non-linear planning: the 
use of partially ordered plans rather than totally ordered 
plans. The idea has been that a part ial ly ordered plan 
allows a planner to avoid premature commitment to an 
incorrect operator ordering, and thus improve efficiency. 
We analyze the costs and benefits of using part ial ly or­
dered and total ly ordered plans to implement different 
commitment strategies for operator ordering. 

W h y should we be concerned about an issue that is 
over a decade old? Since modern planners are not very 
different f rom early planners in their basic approach, the 
issue is st i l l w i t h us. In this paper, we address the is­
sue by f irst considering a simple total-order planner, and 
f rom this planner we construct a partial-order planner 
which can have an exponentially smaller search space. 
Next , we show that a second, independent source of 
power is available to a partial-order planner, namely, the 
abi l i ty to make more informed planning decisions. The 
relationship between our two planners demonstrates the 
potent ial u t i l i t y of a least commitment strategy. We also 
show that a partial-order planner based on Chapman's 
(1987) Tweak can be less efficient than our total-order 
planner, and we examine why this can happen. 

2 Background 
Planning can be characterized as search through a space 
of possible plans. A total-order planner searches through 
a space of total ly ordered plans; a partial-order plan­
ner is defined similarly. We introduce these definitions 
because the terms "linear" and "non-linear" are over­
loaded. For example, some authors have used the term 
"non-l inearity" when focusing on the issue of goal or­
dering. That is, some "linear" planners, when solv­
ing a conjunctive goal, require that all subgoals of 
one conjunct be achieved before subgoals of the oth­
ers; hence, planners that can arbi trar i ly interleave sub-
goals are often called "non-l inear", This version of the 
linear/non-linear dist inct ion is different than the partial-
order/total-order dist inct ion investigated here. The for­
mer dist inction impacts planner completeness, whereas 
the total-order/part ial-order dist inct ion is orthogonal to 
this issue (Drummond & Currie, 1989). 

We claim that the only significant difference between 
partial-order and total-order planners is planning effi­
ciency. It might be argued that partial-order planning 
is preferable because a part ial ly ordered plan can be 
more flexibly executed. However, this flexibility can 
also be achieved w i th a total-order planner and a post­
processing step that removes unnecessary orderings from 
the total ly ordered solution plan to yield a part ial order. 
The polynomial t ime complexity of this post-processing 
is negligible compared to the search time for plan gen­
eration (Veloso et al,, 1990). Hence, we believe that 
execution flexibility is, at best, a weak justif ication for 
the supposed superiority of partial-order planning. 

In order to analyze the relative efficiency of partial-
order and total-order planning, we begin by considering 
a total-order planner and a partial-order planner that 
can be directly compared. By elucidating the key differ­
ences between these planning algorithms, we reveal sonic 
important principles that are of general relevance. 

3 Terminology 
A plan consists of an ordered set of steps, where each 
step is a unique operator instance. Plans can be totally 
ordered, in which case every step is ordered wi th respect 
to every other step; or partially ordered, in which case 
steps can be unordered wi th respect to each other. We 
assume that a l ibrary of operators is available, where 
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each operator has preconditions, deleted conditions, and 
added conditions; each deleted condit ion must be a pre­
condit ion. Each condit ion must be a non-negated propo-
sit ional l i teral. Later, we consider how our results can 
be extended to more expressive languages. 

A linearization of a part ia l ly ordered plan is a to ta l 
order over the plan's steps consistent w i t h the existing 
part ia l order. In a total ly ordered plan, a precondition of 
a plan step is true if it is added by an earlier step and not 
deleted by any intervening step. In a part ia l ly ordered 
plan, a step's precondit ion is possibly true if there exists a 
l inearization in which it is t rue, and a step's precondition 
is necessarily true if it is true in all linearizations. A 
step's precondit ion is necessarily false if it is not possibly 
true. 

A planning problem is defined by a start state and goal 
state pair, where a state is a set of propositions. For con­
venience, we represent a problem as a two-step initial 
plan, where the f irst step adds the start state propo-
sitions and the preconditions of the f inal step are the 
goal state propositions. The planning process starts w i t h 
this in i t ia l plan and searches through a space of possi­
ble plans. A successful search terminates w i t h a solution 
plan, i.e., a plan in which all steps' preconditions are nec­
essarily true. The search space can be characterized as 
a tree, where each node corresponds to a plan and each 
arc corresponds to a plan transformation. Each trans-
format ion incrementally extends ( i .e. , refines) a plan by 
adding addit ional steps or orderings. Thus, each leaf in 
the search tree corresponds either to a solution plan or 
a dead-end, and each intermediate node corresponds to 
an unfinished plan which can be further extended. 

4 A Tale of T w o P lanners 
In this section we define two simple planning algorithms. 
The first a lgor i thm, shown in figure 1, is T O , a tota l -
order planner motivated by Warren (1974), Tate (1974), 
and Waldinger (1975). TO accepts an unfinished plan, 
P, and a goal set, G, containing the preconditions of 
stepB in P which are currently false. If the algor i thm 
terminates successfully then it returns a totally-ordered 
solution plan. Note, there are two backtracking points 
in this procedure: operator and ordering selection. As 
used in step 4, the last deleter of a precondition c for a 
step 0 n e e d is a step Odel before 0need which deletes c, 
such that there is no other deleter of c between Odel and 
Oneed. The f irst p lan step is considered the last deleter if 
it does not add c and no other step before 0need deletes c. 

Our purpose here is to characterize the search space of 
the TO planning a lgor i thm, and the pseudo-code we give 
does this by defining a depth-first procedure for enu­
merating possible plans. A l l the algorithms described 
in this paper can also be implemented as breadth-first 
procedures in the obvious way, and in that case, al l are 
provably complete (M in ton et al., 1991). 

The second planner is UA, a partial-order planner, 
shown in figure 2. UA is similar to TO in that it uses 
the same procedures for goal selection and operator se­
lection, and unl ike TO in that its solution plans are par-
t ial ly ordered. Step 4 of UA orders steps based on " inter-
actions". T w o steps in a plan are said to interact if they 
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TO(P, G) 
1. T e r m i n a t i o n : If G is empty, report success and stop. 
2. Goa l select ion; Let c be a goal in G, and let Oneed be 

the plan step for which c is a precondition. 
3. Opera to r select ion: Let 0ADD be an operator in the 

Library that adds c. I f there is no such 0ADD, then ter­
minate and report failure. Backtrack point: all such 
operators must be considered for completeness, 

4. Orde r ing select ion: Let Odd be the last deleter of c. 
Insert 0 a d d somewhere between 0del and 0need, call the 
resulting plan P'. Backtrack point: all such positions 
must be considered for completeness. 

5. U p d a t e goal set: Let G* be the set of preconditions 
in P' that are not true. 

6. Recursive i nvoca t ion : T O ( P \ G ' ) , 

Figure 1: The TO Planning A lgor i thm 

are unordered w i t h respect to each other and there exists 
a precondit ion c of one step that is added or deleted by 
the other.1 The significant difference between UA and 
TO lies in step 4: TO orders the new step w i t h respect 
to all others, whereas UA adds only those orderings that 
are required to eliminate interactions. It is in this sense 
that UA is less committed than TO. 

Since UA orders all steps which interact, the plans that 
are generated have a special property: each precondition 
in a plan is either necessarily true or necessarily false. 
We call such plans unambiguous. This property yields a 
t ight correspondence between the two planners' search 
spaces. Suppose UA IS given the unambiguous plan Pua 

and that TO is given Pto, one of its linearizations. Pua 

and Pt0 have the same set of goals since, by definit ion, 
each goal in Pua is necessarily false and if a precondition 
is necessarily false, it is false in every l inearization. 

Consider the relationship between the way that UA 
extends Pua and TO extends Pto. Since the two plans 
have the same set of goals, and since both planners use 
the same goal selection method, both algorithms pick 
the same goal; therefore, Oneed is the same for both. 
Similarly, both algorithms consider the same l ibrary op­
erators to achieve this goal. Since Pto is a l inearization 
of P u a , and Oneed is the same in bo th plans, both algo­
r i thms find the same last deleter as wel l .2 When TO adds 
a step to a p lan, it orders the new step w i t h respect to all 
existing steps. When UA adds a step to a plan, it orders 
the new step only w i t h respect to interact ing steps. UA 
considers all possible combinations of orderings which 
eliminate interactions, so for any plan produced by TO, 
UA produces a corresponding plan that is less-ordered or 
equivalent. The fol lowing sections exploit this t ight cor­
respondence between the search spaces of UA and TO. In 
the next section we compare the entire search spaces of 
UA and T O , and later we compare the number of nodes 
actually visited under different search strategies. 

1 Note, a step that deletes c interacts with one that adds or 
deletes c according to this definition because a step's deleted 
conditions are required to be a subset of its preconditions. 

3 There is a unique last deleter in an unambiguous plan 
since two steps which delete the same condition interact, and 
thus, must be ordered. 



UA(P,G) 
1. Te rm ina t i on : If G is empty, report success and stop. 
2. Goal select ion: Let c be a goal in G, and let Oneed be 

the plan step for which c is a precondition. 
3. Opera to r select ion: Let Oadd be an operator in the 

library that adds c. If there is no such Oa d d , then ter­
minate and report failure. Backtrack point: all such 
operators must be considered for completeness. 

4. Order ing select ion: Let Odel be the last deleter of c. 
Order 0add after Odel and before Oneed. Repeat until 
there are no interactions: 

o Select a step Oint that interacts with Oadd. 
o Order Oint either before or after 0add. 
Backtrack point; both orderings must be 
considered for completeness. 

Let P' be the resulting plan. 
5. Upda te goal set: Let G' be the set of preconditions 

in P' that are necessarily false. 
6. Recursive invoca t ion : UA(P ' ,G ' ) . 

Figure 2: The UA Planning A lgor i thm 

5 Search Space Compar ison 

Figure 3: How C maps from treeua to treeto 

We can show that C satisfies both of the properties 
by induction on the depth of the search trees. Detailed 
proofs are in the appendix. To prove the first property, 
we show that for every plan contained in treeu a , all l in-
earizations of that plan are contained in trveto. This 
can be proved by examining the t ight correspondence 
between the search trees of UA and TO, To prove the 
second property, we show that C maps nodes u1 and U2 

at the same depth in treeva to disjoint sets of nodes in 
treeto: if u1 and u2 do not have the same parent, then 
the property holds; if they have the same parent, then 
the plans at u1 and U2 are distinct (by the definition of 
U A ) , in which case their linearizations are disjoint. 

How much smaller is ireeua than tree i o? The map­
ping described above provides an answer. For each node 
u in treeua there are | L(u) | distinct nodes in TO, where 
| L(u) | is the number of linearizations of the plan con­
tained at node u. The exact number depends on how 
unordered the plan at node u is. A total ly unordered 
plan has a factorial number of linearizations and a totally 
ordered plan has only a single l inearization. Thus, the 
only time that the size of treeHa equals the size of treeto 

is when every plan in treeua is total ly ordered; other­
wise, treeua is str ict ly smaller than treeto, and possibly 
exponentially smaller. 

6 T ime Cost Compar ison 

While the size of UA'S search tree is possibly exponen­
tial ly smaller than that of T O , it does not follow that UA 
is necessarily more efficient. Efficiency is determined by 
two factors: the time cost per node during search (dis-
cussed in this section) and the size of the subtree actually 
explored to f ind a plan (discussed below). 

In this section we show that while UA can indeed take 
more time per node, the extra t ime is relatively small 
and grows only poly normally w i th the size of the plan. 
In our analysis, the size of the plan is simply the number 
of steps in the plan.3 In comparing the relative efficiency 
of UA and TO, we first consider the number of times that 
each algor i thm step is executed per node visited and then 
consider the t ime complexity of each step. 

For both UA and TO, steps 1 and 2 are each executed 
once per node, and the number of executions of step 3 per 
node is bounded by a constant (the number of operators 
in the l ibrary). Analyzing the number of times step 4 

3 We disregard operator size and the number of conditions 
in any given "state", since we assume these are bounded by a 
constant for a given domain. An analysis that includes these 
factors does not affect our conclusion. 
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is executed might seem more complicated, since it may 
be executed many times at an internal node and is not 
executed at a leaf node. However, notice that a new node 
is generated each time step 4 is executed. Consequently, 
step 4 is executed once per node. Step 5 is also executed 
once per node since it always follows step 4, Thus, both 
algorithms execute steps 1, 2, 4, and 5 once per node, 
and step 3 is executed 0(1) times per node. 

In examining the costs for each step, we first note that 
for both algorithms, steps 1, 2, and 3 can be accom-
plished in 0 (1) time. The cost of step 4, the ordering 
step, is different for TO and UA. In TO, step 4 is accom­
plished by inserting the new operator, Oadd, Bomewhere 
between 0del and Oneed. If the possible insertion points 
are considered starting at Oneed and working towards 
Odel, then step 4 takes constant t ime, since each inser­
tion constitutes one execution of the step. On the other 
hand, step 4 in UA involves carrying out interaction de-
tection and elimination. This step can be accomplished 
in 0(e) t ime, where e is the number of edges in the graph 
required to represent the partially ordered plan (Minton 
et al., 1991), If n is the number of steps in the plan, 
then in the worst case, there may be 0(n2) edges in the 
graph, and in the best case, 0(n) edges. To carry out 
step 5 may require examining the entire plan, and thus, 
for UA , takes O(e) time and for TO, 0 ( n ) time. 

To summarize, UA pays the penalty of having a more 
complex ordering procedure (Step 4), as well as the 
penalty for having a more expressive plan language (a 
partial order as compared to total order) which is re­
flected in the extra cost of step 5. Overall, UA requires 
0(e) time per node, whereas TO only requires O(n) time. 

7 Overall Efficiency Comparison 
The previous sections compared TO and UA in terms 
of relative search space size and relative time cost per 
node. The extra processing time required by UA for each 
node would appear to be justif ied since its search space 
may contain exponentially fewer nodes. To complete our 
analysis, we must consider the number of nodes actually 
visited by each algorithm under a given search strategy. 

Consider a breadth-first search technique that explores 
the entire search tree up to the depth of the smallest 
solution plan. By the search tree correspondence estab-
lished earlier, both algorithms find the first solution at 
the same depth. Thus, TO explores all linearizations of 
the plans explored by UA. We can formalize the overall 
efficiency comparison as follows. For a node u in treeua, 
we denote the number of steps in the plan at u by nu, 
and the number of edges by eu. Then for each node u 
that UA generates, UA incurs time cost 0 ( e u ) ; whereas, 
TO incurs time cost 0(nu) • | L(u) |, where | L(u) \ is the 
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number of linearizations of the plan at node u. There-
fore, the rat io of the to ta l t ime costs of TO and uA is as 
follows, where bf(treeua) denotes the subtree considered 
by UA under breadth-first search. 

The cost comparison is not so clear-cut for depth-first 
search, since TO does not necessarily explore all lineariza­
tions of the plans explored by UA. A node in a search 
tree is said to succeed if it is on a path to a solution, oth­
erwise, it is said to fail When a node in UA 'S search tree 
fails, al l corresponding nodes for TO also fa i l . If a UA 
node succeeds, then some subset of the corresponding 
TO nodes succeed. If, under a depth-first strategy, UA 
and TO generate corresponding plans in the same order, 
then (i) for every failed node u that UA generates, TO 
generates al l nodes in C(u) and (it) for every UA node 
u that succeeds, TO generates at least one node in L(u). 
However, in actual i ty, UA and TO need not generate cor­
responding plans in the same order. In this case, while 
the search spaces correspond, there is no guarantee that 
the planners w i l l explore corresponding subtrees. Nev­
ertheless, the relative size of the subtree explored by TO 
under depth-first search can be expected to be propor­
t ional to the average size of | C |, since the relative size 
of TO's ful l search space is proport ional to this value. 

This in tu i t ion is supported by empirical experimen­
tat ion w i t h depth- l imited versions of UA and T O . In a 
blocksworld domain where all steps interact, UA tends to 
explore the same number of nodes as TO under depth-
first search. On another version of the blocksworld, 
where the probabi l i ty of two randomly selected steps in­
teracting is approximately 0.5, UA tends to explore many 
fewer nodes. For example, on a representative problem, 
w i t h a solution depth (and depth-bound) of eight, TO ex­
plored 8.0 times as many nodes as UA. This rat io tends 
to increase w i th solution depth; for a problem wi th so­
lut ion depth of nine, TO explored 15.4 times as many 
nodes. A l though UA required more t ime per node, in 
terms of total search t ime, UA ran 4.6 times faster than 
TO on the first problem and 9.0 times faster than TO 
on the second problem. The results under breadth-first 
search were also as expected: when all steps interact, 
UA and TO search exactly the same number of nodes, 
and when relatively few steps interact, UA explores many 
fewer nodes than TO. For example, in our low-interaction 
version of the blocksworld, on a problem where the first 
solution is found at depth seven, To explored 4.8 times 
as many nodes as UA, and UA ran 2.8 times faster. We 
caution that this is a small-scale study, intended only to 
i l lustrate our theoretical results. 

The performance of TO can be improved w i t h the ad­
di t ion of dependency-directed backtracking. Al though 
space does not permit analysis of this search strategy, 
we note that by using dependency-directed backtrack­
ing, To will behave almost identical ly to UA. Specifically, 
when TO backtracks to a node, a dependency analysis 
can indicate whether or not the failure below was inde­
pendent of the ordering decision at that node. Of course, 
this dependency analysis increases the cost per node. 



8 Heur is t ic Advantages 

It is often claimed that partial-order planners are more 
efficient due to their abi l i ty to make more informed or-
dering decisions. So far, we have shown that a part ial-
order planner can be more efficient simply because its 
search tree is smaller, independent of its abi l i ty to make 
more informed decisions. We now show that a part ial-
order planner does in fact have a "heuristic advantage" 
as well. 

In the UA planning algor i thm, step 4 arbitrar i ly or­
ders interact ing steps. Similarly, step 4 of TO arbi trar i ly 
chooses an insertion point for the new step. It is easy 
to see, however, that some orderings should be tried be­
fore others in a heuristic search. This is i l lustrated by 
figure 4, which compares UA and TO on a particular prob­
lem. The key in the figure describes the relevant condi­
tions of the l ibrary operators, where preconditions are 
indicated to the left of an operator and added condi­
tions are indicated to the r ight (there are no deletes). 
For brevity, the start step and f inal step are not shown. 
Consider the node in treeua containing the plan wi th 
unordered steps 01 and 02- When UA introduces O3 to 
achieve precondition p of 01, step 4 of UA wi l l order O3 
wi th respect to O2, since these steps interact. However, 
it makes more sense to order O2 before O3, since O2 
achieves precondit ion q of O3. This il lustrates a simple 
planning heuristic: "prefer the orderings that yield the 
fewest false precondit ions". Th is strategy is not guaran­
teed to produce the opt imal search or plan, but tends to 
be effective and is commonly used. 

Notice, however, that TO cannot exploit this heuristic 
as effectively as UA because it must prematurely commit 
to an ordering on 0\ and 0%. Due to this inabi l i ty to 
postpone an ordering decision, TO must choose arbitrar­
i ly between the plans 0\ 02 and O2 01, before the 
impact of this decision can be evaluated. 

In the genera] case, UA is more informed than TO by 
any heuristic h that satisfies the fol lowing property: for 
any UA node u and corresponding To node t, h(u) 
h(t); that is, a par t ia l ly ordered plan must be rated at 
least as high as any of its linearizations. (Note that for 
unambiguous plans the heuristic funct ion in our example 
satisfies this property.) When we say that UA is more 
informed than T O , we mean that under h, some child of 
u is rated at least as high as every child of t. This is true 
since every child of t is a l inearization of some child of 

MT(P,G) 
1. Termina t ion : If G is empty, report success and stop. 
2. Goal selection: Let c be a goal in G, and let Oneed he 

the plan step for which c is a precondition. 
3. Operator selection: Let Oadd be either a plan step 

possibly before Oneed that adds c or an operator in the 
library that adds c. If there is no such Oadd, then ter­
minate and report failure. Backtrack point: alt such 
operators must be considered for completeness, 

4. Order ing selection: Order Oadd before Oneed. Repeat 
unti l there are no steps possibly between Oadd and Oneed 
which delete c: 

Let Odel be such a step; choose one of the following 
ways to make c true for Oneed 

o Order Odel before Oadd. 
o Order Odel after Oneed. 
0 Choose a step Oknight that adds c that is possibly 

between Odel and Oneed; order it after Odel and 
before Oneed. 
Backtrack point: all alternatives must be 
considered for completeness. 

Let P' be the resulting plan. 
5. Upda te goal set: Let G' be the set of preconditions 

in P' that are not necessarily true. 
6. Recursive invocat ion ; MT(P',G'), 

Figure 5: A Propositional Planner based on the M T C 

u, and therefore no child of t can be rated higher than a 
child of u. Furthermore, there may be a child of u such 
that none of its linearizations is a child of t, and therefore 
this child of u can be rated higher than every child of t. 
Assuming that h is a good heuristic, this means that UA 
can make a better choice than T O . 

9 A Less Commi t t ed Planner 
We have shown that UA, a partial-order planner, has cer­
tain computational advantages over a total-order plan­
ner, TO, due to its abi l i ty to delay commitments. How­
ever, there are planners that are less committed than 
UA. In fact, there is a cont inuum of commitment strate­
gies that we might consider. At the extreme liberal end 
of the spectrum is the strategy of maintaining a totally 
unordered set of steps during search, unt i l there exists a 
linearization that is a solution plan. 

Compared to many well-known planners, UA is con­
servative since it requires each plan to be unambiguous. 
This is not required by NOAH (Sacerdoti, 1977), Now Lin 
(Tate, 1977), and Tweak (Chapman, 1987), for exam-
ple. How do these less-commit ted planners compare to 
UA and TO? One might expect a less-committed planner 
to have the same advantages over UA that UA has over 
T O . However, this is not necessarily true. For exam-
ple, we show in this section that Tweak's search tree is 
larger than TO's in some circumstances.4 See figure 5 for 
a propositional planner, MT, based on Chapman's (1987) 
Modal T ru th Cri ter ion, the formal statement that char-
acUrizes Tweak's search space. 

The proof that UA'S search tree is no larger than To's 
search tree rested on the two properties of C elaborated 

4We use Tweak for this comparison because, like UA and 
TO, it is a formal construct rather than a realistic planner, 
and therefore more easily analyzed. 

Minton, Bresina and Drummond 263 



Figure 6: "Over lapping" plans. 

in section 5. By investigating the relationship between 
MT and TO, we found that the second of these proper­
ties does not hold for MT, and its failure il lustrates how 
MT can explore more nodes than TO (and consequently 
U A ) on certain problems. The second property guaran­
tees that UA does not generate "overlapping" plans. The 
example in figure 6 shows that MT fails to satisfy this 
property because it can generate plans that share com-
mon linearizations, leading to considerable redundancy 
in the search. The f igure shows three steps, 01 , 0 2 , and 
0 3 , where each 0 i has precondit ion p i, and added condi-
tions g i, p1, P2, and p3. The final step has preconditions 
g1, g2, and g3, bu t the start and final steps are not shown 
in the figure. The node at the top of the figure contains 
a plan constructed by MT where goals g1, g2 and g3 have 
been achieved, but p1, p2 and p3 remain to be achieved. 
Subsequently, in solving the precondit ion p1 , MT gener­
ates plans which share the l inearization O3 ­2 0i 
(among others). In comparison, both TO and UA only 
generate the plan O3 O2 01 once. In fact, it is 
simple to show that , under breadth-first search, MT gen­
erates many more nodes than TO on this example, due 
to redundancy (and also more than UA, by t ransi t iv i ty) . 

This example shows that although one planner may be 
less commit ted than another, it is not necessarily more 
efficient. In general, a part ia l ly ordered plan can repre­
sent a large set of l inearizations, but of course, there can 
be many more par t ia l orders over a set of steps than there 
are linearizations. A general lesson f rom this is that a 
search space should be defined so as to minimize redun­
dancy whenever possible. In part icular, part ia l ly ordered 
plans w i th l inearization overlap should be avoided. 

10 Conc lud ing Remarks 
By focusing our analysis on the single issue of operator 
ordering commitment , we were able to carry out a r ig-
orous comparative analysis of two planners. In contrast, 
most previous work has focused on the definit ion of a sin­
gle planner, and comparative analyses have been rare.5 

6 Soderland and Weld (1991) have very recently, and inde­
pendently, carried out a comparative analysis of two planners, 
corroborating some of the results reported in Section 5. 

We have shown that the search space of a partial-order 
planner, U A , is never larger than the search space of a 
total-order planner, TO. Indeed for certain problems, 
UA 'S search space is exponentially smaller than T O ' S . 
Since UA pays only a small polynomial t ime increment 
per node over TO, it is generally more efficient. We have 
also demonstrated that UA can be more informed than 
TO under a certain class of heuristic evaluation func-
tions. Lastly, we have shown that partial-order planners 
do not necessarily have smaller search spaces; in particu­
lar, we demonstrated that a Tweak-l ike planner can have 
a larger search space than TO on some problems. 

How general are these results? Whi le our analysis 
has considered only two specific planners, the tradeoffs 
that we have examined are of general relevance. We 
believe these tradeoffs are manifested in other styles of 
planner, including temporal-project ion planners (Drum-
mond, 1989) and STRIPs-Uke planners such as Prodigy 
(Minton et al., 1989)- We conjecture that one can define 
a partial-order version of Prodigy, for instance, which 
corresponds to the original in the same way that UA cor­
responds to TO. The key dif f iculty in analyzing possible 
correspondences between such planners is establishing a 
mapping between the planners' search trees. 

What about more expressive operator languages? We 
have defined TO and UA to use propositional operators, 
but many problems demand operators w i t h variables, 
condit ional effects, or condit ional preconditions. UA and 
TO can be extended to use such operators so that the 
search space correspondence st i l l holds. In such cases, 
the relative advantages of UA over TO w i l l be preserved 
as long as the t ime cost of detecting possible interactions 
remains relatively small . For example, if l ibrary opera-
tors have variables, but are fu l ly instantiated during the 
operator selection step, then our analysis holds wi thout 
modif icat ion. The work required to demonstrate step in­
teraction tends to increase w i th the expressiveness of the 
operator language used (Dean &. Boddy, 1988; Hertzberg 
& Horz, 1989); nevertheless, we believe the cost of de­
tecting interactions can often be kept low by using a 
conservative definit ion of step interact ion. 

The general lesson f rom this work is that partial-order 
planning can be better than total-order planning, but 
this isn't necessarily so. When designing a partial-order 
planner, one must understand the effect of plan rep­
resentation on the planner's search space, the cost in­
curred per node, and sources of possible redundancy in 
the search space. 
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