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This paper studies the optimal trade-off between commitment and flexibility in an intertemporal

consumption/savings choice model. Individuals expect to receive relevant information regarding

their own situation and tastes - generating a value for flexibility - but also expect to suffer from

temptations - generating a value for commitment. The model combines the representations of
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proposed by Gul and Pesendorfer (2002), or alternatively, the hyperbolic discounting model. We set

up and solve a mechanism design problem that optimizes over the set of consumption/saving options

available to the individual each period. We characterize the conditions under which the solution

takes a simple threshold form where minimum savings policies are optimal. Our analysis is also

relevant for other issues such as situations with externalities or the problem faced by a

"paternalistic" planner, which may be important for thinking about some regulations such as forced

minimum schooling laws.
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Introduction

If people suffer from temptation and self-control problems, what should be done to

help them? Most analysis lead to a simple and extreme conclusion: it is optimal to

take over the individual’s choices completely. For example, in models with hyper-

bolic discounting preferences it is desirable to impose a particular savings plan on

individuals.

Indeed, one commonly articulated justification for government involvement in re-

tirement income in modern economies is the belief that an important fraction of the

population would save “inadequately” if left to their own devices (e.g. Diamond,

1977). From the workers perspective most pension systems, pay-as-you-go and capi-

talized systems alike, effectively impose a minimum saving requirement. One purpose

of this paper is to see if such minimum saving policies are optimal in a model where

agents suffer from the temptation to “over-consume”.

In a series of recent papers Gul and Pesendorfer (2001, 2002a,b) have given pref-

erences that value commitment an axiomatic foundation and derived a useful rep-

resentation theorem. In their representation the individual suffers from temptations

and may exert costly self-control. This formalizes the notion that commitment is

useful as a way of avoiding temptations that otherwise either adversely affect choices

or require exerting costly self-control. On the opposite side of the spectrum, Kreps

(1979) provided an axiomatic foundation for preferences for flexibility. His represen-

tation theorem shows that they can be represented by including taste shocks into an

expected utility framework.

Our model combines Kreps’ with Gul and Pesendorfer’s representations as fol-

lows.1 The main application modifies the intertemporal taste-shock preference speci-

fication introduced by Atkeson and Lucas (1995) to incorporate temptation. In their

model the individual has preferences over random consumption streams. Each period

an i.i.d. taste shock is realized that affects the individual’s desire for current consump-

tion. Importantly, the taste shock at time-t is assumed to be private information.

We modify these preferences by assuming that agents suffer from the temptation for

higher present consumption using Gul and Pesendorfer’s representation, in a way

1See Dekel, Lipman and Rustichini (2001) for axiomatic foundations and a representation theorem
for preferences over choice sets that encompasses both Kreps and Gul and Pessendorfer’s frameworks.
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that follows Krusell, Kuruscu and Smith (2001). This feature generates a desire for

commitment.

The informational asymmetry introduces a trade-off between commitment and

flexibility. Commitment is valued because it reduces temptation while flexibility is

valued because it allows the use of the valuable private information. We solve for the

optimal incentive compatible allocation that trades-off commitment and flexibility.

One can interpret our solution as describing the optimal commitment device in a

non-trivial activity.

In addition to Gul and Pesendorfer’s framework, models with time-inconsistent

preferences, as in Strotz (1956), also generate a value for commitment. In particu-

lar, the hyperbolic discounting model has proven useful for studying the effects of a

temptation to ‘over-consume’ (Phelps and Pollack, 1968) as well as the desirability of

commitment devices (Laibson, 1997). We also study in detail a version of our model

with hyperbolic-discounting preferences generating the value for commitment, with

taste shocks continuing to generate the value for flexibility.

Our analysis and results can be carried over to the hyperbolic discounting model.

Indeed, Krusell, Kuruscu and Smith (2001) have pointed out the temptation frame-

work provided by Gul and Pesendorfer essentially generalizes the hyperbolic discount-

ing model: it results in the limiting case when the agent cannot exert any self-control,

giving in fully to his temptations. Although, this relationship is evident in our model,

the hyperbolic discounting model still requires some special analysis in the multi-

period case because of the different ways points of indifference can be resolved. In-

deed, for expositional purposes we find it useful to treat the hyperbolic discounting

case first and then turn to Gul and Pesendorfer’s framework.

We begin by considering a simple hyperbolic-discounting case with two possible

taste shocks. By solving this case, we illustrate how the optimal allocation depends

critically on the strength of the temptation for current consumption relative to the

dispersion of the taste shocks. For the resulting second-best problem there are two

important cases to consider.

For low levels of temptation, relative to the dispersion of the taste shocks, it is

optimal to separate the high and low taste shock agents. If the temptation is not

too low, then in order to separate them the principal must offer consumption bundles

that yield somewhat to the agent’s temptation for higher current consumption. Thus,
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both bundles provide more present consumption than their counterparts in the first

best allocation. When temptation is strong enough, separating the agents becomes

too onerous. The principal then finds it optimal to bunch both agents: she offers a

single consumption bundle equal to her optimal uncontingent allocation. This solution

resolves the average over-consumption issue at the expense of foregoing flexibility.

In this way, the optimal amount of flexibility depends negatively on the strength

of the temptation relative to the dispersion of the taste shocks. These results with

two shocks are simple and intuitive. Unfortunately, with more than two shocks, these

results are not easily generalized. We show that with three shocks there are robust

examples where ‘money burning’ is optimal: it is optimal to have one of the agents

consuming in the interior of his budget set. Moreover, bunching can occur between

any pair of agents. The examples present a wealth of possibilities with no obvious

discernible pattern.

Fortunately, strong results are obtained in the case with a continuum of taste

shocks. Our main result is a condition on the distribution of taste shocks that is

necessary and sufficient for the optimal mechanism to be a simple threshold rule: a

minimum savings level is imposed, with full flexibility allowed above this minimum.

The optimal minimum savings level depends positively on the strength of temptation.

Thus, the main insight from the two type case carries over here: flexibility falls with

the strength of temptation and this is accomplished by increased bunching.

We extend the model to include heterogeneity in temptation of current consump-

tion. This is important because it is reasonable to assume that people suffer from

temptation at varying degrees. Indeed, perhaps some agents do not suffer from temp-

tation at all. Allowing for heterogeneity in temptation would imply that those in-

dividuals that we observe saving less are more likely to be the ones suffering from

higher temptation. However, we show that the main result regarding the optimality

of a minimum saving policy is robust to the introduction of this heterogeneity.

The rest of the paper is organized as follows. In the remainder of the introduction

we briefly discuss the related literature. Section 1 lays out the basic intertemporal

model using the hyperbolic discounting model. Section 2 analyzes this model with

two and three taste shocks while Section 3 works with a continuum of shocks. Sec-

tion 4 extends the analysis to arbitrary finite time horizons and Section 5 extends the

results to the case where agents are heterogenous with respect to their temptation.
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Section 6 contains the more general case with temptation and self-control proposed by

Gul and Pesendorfer (2001,2002a,b). Section 7 studies the case where agents discount

exponentially at a different rate than a ‘social planner’ and preferences are logarith-

mic. Section 8 diverges to discuss some alternative interpretations and applications of

our main results regarding the optimal trade-off between committment and flexibility.

The final Section concludes. An appendix collects some proofs.

Related Literature

At least since Ramsey’s (1928) moral appeal economists have long been interested

in the implications of, and justifications for, socially discounting the future at lower

rates than individuals. Recently, Caplin and Leahy (2001) discuss a motivation for a

welfare criterion that discounts the future at a lower rate than individuals. Phelan

(2002) provides another motivation and studies implications for long-run inequality

of opportunity of a zero social discount rate. In both these papers the social planner

and agents discount the future exponentially.

Some papers on social security policies have attempted to take into account the

possible “undersaving” by individuals. Diamond (1977) discussed the case where

agents may undersave due to mistakes. Feldstein (1985) models OLG agents that

discount the future at a higher rate than the social planner and studies the optimal

pay-as-you-go system. Laibson (1998) discusses public policies that avoid undersaving

in hyperbolic discounting models. Imrohoroglu, Imrohoroglu and Joines (2000) use

a model with hyperbolic discounting preferences to perform a quantitative exercise

on the welfare effects of pay-as-you-go social security systems. Diamond and Koszegi

(2002) use a model with hyperbolic discounting agents to study the policy effects of

endogenous retirement choices. O’Donahue and Rabin (2003) advocate studying pa-

ternalism normatively by modelling the errors or biases agents may have and applying

standard public finance analysis.

Finally, several papers discuss trade-offs similar to those emphasized here in var-

ious contexts not related to the intertemporal consumption/saving problem that is

our focus. Since Weitzman’s (1974) provocative paper there has been great interest in

the efficiency of the price system compared to a command economy, see Holmstrom

(1984) and the references therein. In a recent paper, Athey, Atkeson and Kehoe (2003)
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study a problem of optimal monetary policy that also features a trade-off between

time-consistency and discretion. Sheshinski (2002) models heterogenous agents that

make choices over a discrete set of alternatives but are subject to random errors and

shows that in such a setting reducing the set of alternatives may be optimal. Laib-

son (1994, Chapter 3) considers a moral-hazard model with a hyperbolic-discounting

agent and shows that the principal may reward the agent for high output by tilting

consumption towards the present.

1 The Basic Model

For reasons of exposition we first study a consumer whose preferences are time-

inconsistent. Following Strotz (1956), Phelps and Pollack (1968), Laibson (1994,

1997, 1998) and many others we model the agent in each period as different selves

and solve for subgame perfect equilibria of the game played between selves. In section

6 we show that all our results go through when we use the more general framework

provided by Gul and Pesendorfer (2001,2002a,b) which, in addition, does not require

an intrapersonal game interpretation.

Consider first a case with three periods. There are two periods of consumption,

t = 1, 2, and an initial period t = 0 from which we evaluate expected utility. Section

4 extends the analysis to arbitrary finite horizons. Each period agents receive an

i.i.d. taste shock θ ∈ Θ, normalized so that Eθ = 1 which affects the marginal

utility of current consumption: higher θ make current consumption more valuable.

The taste shock is observed privately by the agent at time t. One may think of the

taste shock as a catch-all for the significant variation one observes in consumption

and saving data after conditioning on available observable variables.2 We denote first

and second period consumption by c and k, respectively.

The utility for self-1 from periods t = 1, 2 with taste shock θ is

θU (c) + βW (k) .

where U : R+ → R and W : R+ → R are increasing, concave and continuously

2Indeed, with exponential CARA utility income shocks are equivalent to unobservable taste
shocks.
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differentiable and β ≤ 1. The notation allows W (·) 6= U (·), this generality facilitates
the extension to N periods in section 4.

The utility for self-0 from periods t = 1, 2 is

θU (c) +W (k) .

Agents have quasi-geometric discounting: self-t discounts the entire future at rate

β ≤ 1 and in this respect, there is disagreement among the different t-selves and

1−β is a measure of this disagreement or bias. On the other hand, there is agreement
regarding taste shocks: everyone values the effect of θ in the same way. Below we often

associate the value of β to the strength of a ‘temptation’ for current consumption;

thus, we say that temptation is stronger if β is lower.

An alternative interpretation to hyperbolic discounting is available if we consider

only periods 1 and 2. One can simply work with the assumption that the correct

welfare criterion does not discount future utility at the same rate as agents do, al-

though both do so exponentially. Although this alternative interpretation is available

for two-periods we will see that in general it does not permit a straightforward exten-

sion of the analysis to more periods. In section 7 we discuss a case in which it does

generalize.

We investigate the optimal allocation from the point of view of self-0 subject to

the constraint that θ is private information of self-1. The essential tension is between

tailoring consumption to the taste shock and the self-1 ’s constant higher desire for

current consumption. This generates a trade-off between commitment and flexibility

from the point of view of self-0.

To solve the allocation preferred by self-0 with total income y we use the revelation

principle and set up the optimal direct truth telling mechanism given y.

v2 (y) ≡ max
c(θ),k(θ)

Z
[θU (c (θ)) +W (k (θ))] dF (θ)

θU (c (θ)) + βW (k (θ)) ≥ θU (c (θ0)) + βW (k (θ0)) for all θ, θ0 ∈ Θ (1)

c (θ) + k (θ) ≤ y for all θ ∈ Θ (2)

where F (θ) is the distribution of the taste shocks with support Θ.
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This problem maximizes, given total resources y, the expected utility from the

point of view of self-0 (henceforth: the principal) subject to the constraint that θ

is private information of self-1 (henceforth: the agent). The incentive compatibility

constraint (1) ensures that it is in agent-θ’s self interest to report truthfully, thus

obtaining the allocation that is intended for him. In the budget constraints the

interest rate is normalized to zero for simplicity.

The problem above imposes a budget constraint for each θ ∈ Θ, so that insurance

across θ-agent’s is ruled out. The principal cannot transfer resources across different

agent’s types. This choice was motivated by several considerations.

First, it may be possible to argue that the case without insurance is of direct

relevance in many situations. This could be the case if pooling risk is simply not

possible or if insurance contracts are not available because of other considerations

outside the scope of our model.

Second, the cardinality of the taste shocks plays a more important role in an

analysis with insurance. The taste shock θ affects ordinal preferences between current

and future consumption, c and k. However, we would like to avoid taking a strong

stand on whether or not agents with high taste for current consumption also have a

higher marginal utility from total resources as the expression θu+w implictly assumes.

Focusing on the case without insurance avoids making our analysis depend strongly

on such cardinality assumptions.

Third, without temptation (β = 1) incentive constrained insurance problems such

as Mirrlees (1971) or Atkeson and Lucas (1995) are non-trival and the resulting op-

timal allocations are not easily characterized. This would make a comparison with

the solutions with temptation (β < 1) more difficult. In contrast, without insurance

the optimal allocation without temptation (β = 1) is straightforward — every agent

chooses their tangency point on the budget set — allowing a clearer disentangling of

the effects of introducing temptation.

Finally, we hope that studying the case without insurance may yield insights into

the case with insurance which we are currently pursuing.

Once the problem above is solved the optimal allocation for self-0 solves a standard

problem:

max
c0
{θ0U (c0) + βv2 (y0 − c0)}
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where y0, c0 and θ0 represents the initial t = 0, income, consumption and taste shock,

respectively. In what follows we ignore the initial consumption problem and focus on

non-trivial periods.

2 Two Types

In this section we study the optimal commitment with only two taste shocks, θh > θl,

occuring with probabilities p and 1− p, respectively.

Without temptation, β = 1, there is no disagreement between the principal and

the agent and we can implement the ex-ante first-best allocation defined by the so-

lution to θU 0 (cfb (θ)) /W 0 (kfb (θ)) = 1 and cfb (θ) + kfb (θ) = y. For low enough

levels of temptation, so that β is close enough to 1, the first-best allocation is still

incentive compatible. Intuitively, if the disagreement in preferences is small relative

to the dispersion of taste shocks then, at the first best, the low shock agent would

not envy the high shock agent’s allocation.

Proposition 1 There exists a β∗ < 1 such that for β ∈ [β∗, 1] the first-best allocation
is implementable.

Proof. At β = 1 the incentive constraints are slack at the ex-ante first-best allocation.

Define β∗ < 1 to be the value of β for which the incentive constraint of agent-θl holds

with equality at the first best allocation (see equation (3) below). The result follows.

¥

This result relies on the discrete difference in taste shocks and no longer holds

when we study a continuum of shocks in Section 3.

For higher levels of temptation, i.e. β < β∗, the first best allocation is not incentive

compatible. If offered, agent-θl would take the bundle meant for agent-θh to obtain

a higher level of current consumption. The next proposition characterizes optimal

allocations in such cases.

Proposition 2 The optimum can always be attained with the budget constraint hold-

ing with equality: c∗ (θ) + k∗ (θ) = y for θ = θh, θl. We have that θl/θh < β∗ and:

(a) if β > θl/θh separation is optimal, i.e. c
∗ (θh) > c∗ (θl) and k∗ (θh) < k∗ (θl)
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(b) if β < θl/θh bunching is optimal, i.e. c
∗ (θl) = c∗ (θh) and k∗ (θl) = k∗ (θh)

(c) if β = θl/θh separating and bunching are optimal

Proof. First, β∗ > β follows from the incentive compatibility constraint since

β∗ ≡ θl
U (cfb (θh))− U (cfb (θl))

W (y − cfb (θl))−W (y − cfb (θh))
(3)

> θl
U 0 (cfb (θh)) (cfb (θh)− cfb (θl))

W 0 (y − cfb (θh)) (cfb (θh)− cfb (θl))
= θl

U 0 (cfb (θh))
W 0 (y − cfb (θh))

=
θl
θh

Now, consider the case where β > θl/θh and suppose that c (θh) + k (θh) < y.

Then an increase in c (θh) and a decrease in k (θh) that holds (θl/β)U (c (θh)) +

U (k (θh)) unchanged increases c (θh) + k (θh) and the objective function. Such a

change is incentive compatible because it strictly relaxes the incentive compatibility

constraint of the high type pretending to be a low type and leaves the other incentive

compatibility constraint unchanged. It follows that we must have c (θh) + k (θh) = y

at an optimum. This also shows that separating is optimal in this case, proving part

(a). Analogous arguments establish parts (b) and (c).

Finally, c (θl)+k (θl) < y cannot be optimal since lowering c (θl) and raising k (θl)

holding θlU(c(θl))+βW (k(θl)) constant would then be feasible. Such a variation does

not affect one of the incentive constraints and relaxes the other, yet it increases the

objective function since θlU(c(θl)) +W (k(θl)) increases. ¥

Propositon 2 shows that for β < β∗ the resulting non-trivial second-best problem

can be separated into essentially two cases. For intermediate levels of temptation, i.e.

θl/θh < β < β∗, it is optimal to separate the agents. In order to separate them the

principal must offer consumption bundles that yield somewhat to the agent’s ex-post

desire for higher consumption giving them higher consumption in the first period than

the first best.

For higher levels of temptation, i.e. β < θl/θh, separating the agents is too onerous.

bunching them is then optimal at the best uncontingent allocation — with U = W

this implies c = k = y/2. Bunching resolves the disagreement problem at the expense

of flexibility. In this way, the optimal amount of flexibility depends negatively on the

size of the disagreement relative to the dispersion of the taste shocks as measured by
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θl/θh.

Proposition 2 also shows that it is always optimal to consume all the resources

c (θ) + k (θ) = y. In this sense, ‘money burning’, i.e. setting c (θ) + k (θ) < y, is not

required for optimality. As discuss below, with more than two types this is not a

foregone conclusion.

Figure 1 below shows a typical case that illustrate these results. We set U (c) =

c1−σ/ (1− σ) , U (·) = W (·) , and σ = 2, θh = 1.2, θl = .8, p = 1/2 and y = 1. The

figure shows consumption in the first period, c (θ) , as a function of β. For comparison

we also plots the optimal ex-post consumption for both types (i.e. the full flexibility

outcome). Note that these are always higher than the optimal allocation: the principal

does manage to lower consumption in the first period.

ββ*β

cfb(θH)

cfb(θL)

c*(θH)

c*(θL)

consumption

Figure 1: Optimal first period consumption with two shocks as a function of β.

The figure illustrates Proposition 1 and 2 in the following way. For high β the

first best allocation is attainable so the optimal allocation does not vary with β in

this range. For intermediate β, consumption in the first period rises as β falls. In

this way the principal yields to the agent’s desire for higher consumption. For low

enough β bunching becomes optimal and c (θ) = y/2.

To summarize, with two types we are able to characterize the optimal allocation

which enjoys nice properties. In particular, the budget constraint holds with equality

and we found simple necessary and sufficient conditions for a bunching or separating

outcome to be optimal.
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Unfortunately, with more than two types extending these conclusions is not straight-

forward. For example, with three taste shocks, θh > θm > θl, it is simple to construct

robust examples where the optimal solution has the following properties: (i) the bud-

get constraint for agent θm is satisfied with strict inequality — i.e. ‘money burning’

is optimal; (ii) although β < θm/θh remains a sufficient condition for bunching m

and h, it is no longer necessary: there are cases with β > θm/θh where bunching θm

and θh is optimal; (iii) bunching can occur between θl and θm, with θh separated.

The examples seem to show a variety of possibilities that illustrate the difficulties in

characterizing the optimum with more than two types.

Fortunately, with a continuum of types more progress can be made. In the next

section we find conditions on the distribution of θ which allows us to characterize the

optimal allocation fully.

3 Continuous Distribution of Types

Assume that the distribution of types is represented by a continuous density f (θ)

over the interval Θ ≡ [θ, θ]. Define g (θ) ≡ F (θ) + θ (1− β) f (θ) , an expression

which will be used frequently below. We find it convenient to change variables from

(c (θ) , k (θ)) to (u (θ) , w (θ)) where u (θ) = U (c (θ)) and w (θ) = W (k (θ)) and we

term either pair an allocation. Let C (u) and K (w) be the inverse functions of U (c)

and W (k), respectively, so that C (·) and K (·) are increasing and convex.
To characterize the incentive compatibility constraint (1) in this case consider the

problem faced by agent-θ when confronted with a direct mechanism (u (θ) , w (θ)):

V (θ) ≡ max
θ0∈Θ

½
θ

β
u(θ0) + w(θ0)

¾
.

If the mechanism is truth telling then V (θ) = θ
β
u (θ) + w (θ) and integrating the

envelope condition we obtain,

θ

β
u (θ) + w (θ) =

Z θ

θ

1

β
u(θ̃)dθ̃ +

θ

β
u(θ) + w(θ) (4)

(see Milgrom and Segal, 2002). It is standard to see that incentive compatibility of

(u,w) also requires u to be a non-decreasing function of θ — agents that are more
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eager for current consumption cannot consume less. Thus, condition (4) and the

monotonicity of u are necessary for incentive compatibility. It is well know that these

two conditions are also sufficient (e.g. Fudenberg and Tirole, 1991).

The principal’s problem is thus,

v2 (y) ≡ max
u,w

Z θ

θ

[θu (θ) + w (θ)] f (θ) dθ,

subject to (4), C (u (θ)) +K (w (θ)) ≤ y and u (θ0) ≥ u (θ) for θ0 ≥ θ. This problem

is convex since the objective function is linear and the constraint set is convex. In

particular, it follows that v2 (y) is concave in y.

We now substitute the incentive compatibility constraint (4) into the objective

function and the resource constraint, and integrate the objective function by parts.

This allows us to simplify the problem by dropping the function w (θ), except for

its value at θ. Consequently, the maximization below requires finding a function

u : Θ→ R and a scalar w representing w (θ).
The problem to solve is the following,

v2 (y) ≡ max
w,u(·)∈Φ

(
θ

β
u(θ) + w +

1

β

Z θ̄

θ

(1− g (θ)) u (θ) dθ

)

K−1 (y − C (u (θ))) +
θ

β
u (θ)− θ

β
u (θ)− w −

Z θ

θ

1

β
u(θ̃)dθ̃ ≥ 0 for all θ ∈ Θ (5)

where

Φ = {w, u | w ∈W
¡
R+
¢
, u : Θ→ R and u is non-decreasing}

Note that both the objective function and the left hand side of the constraint

are well defined for all (w, u) ∈ Φ. This follows because monotonic functions are

integrable (Rudin, 1973, Theorem 6.9, pg. 126) and the product of two integrable

functions, in this case 1 − g (θ) = 1 − F (θ) − θ (1− β) f (θ) and u (θ), is integrable

(Rudin, 1973, Theorem 6.13, pg. 129).

Note that an allocation (w, u) ∈ Φ (uniquely) determines an incentive compatible

direct mechanism. If condition (5) holds, then this direct mechanism satisfies the
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budget constraint.

Definition. We say an allocation (w, u) is feasible if (w, u) ∈ Φ and (5) holds.

3.1 Bunching

For any feasible allocation (w, u) it is always possible to modify the allocation so as

to bunch an upper tail of agents, that is, give them the same bundle. Informally, this

can be done by simply removing the bundles at the very top. Those agents whose

bundle is removed will now choose the closest bundle available. The new allocation

(w, û) is given by û (θ) = u (θ) for θ < θ̂ and û (θ) = u(θ̂) for some type θ̂. Bunching

the upper tail is always feasible, we now show that it is optimal.

To gain some intuition, note that agents with θ ≤ βθ̄ share the ordinal preferences

of the principal with a higher taste shock equal to θ/β. That is, the indifference curves

θu + βw and θ/βu + w are equivalent. Informally, these agents can make a case for

their preferences. In contrast, agents with θ > βθ̄ display a blatant over-desire for

current consumption from the principal’s point of view, in the sense that there is no

taste shock that would justify these preferences to the principal. Thus, it is intuitive

that these agents are bunched since separating them is tantamount to increasing some

of these agents consumption, yet they are already obviously “over-consuming”. The

next result shows that bunching goes even further than βθ̄.

Proposition 3 Define θp as the lowest value in Θ such that for θ̂ ≥ θp:

E
h
θ|θ ≥ θ̂

i
θ̂

≤ 1

β

Note that θp ≤ βθ̄ and θp < βθ̄ as long as f > 0. An optimal allocation (w, u∗) has

u∗ (θ) = u∗ (θp) for θ ≥ θp (i.e. it bunchs all agents above θp)

Proof. The contribution to the objective function from θ ≥ θp is

1

β

Z θ̄

θp

(1− g (θ))u (θ) dθ.
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Substituting u =
R θ
θp
du+ u (θp) and integrating by parts we obtain,

u (θp)
1

β

Z θ̄

θp

(1− g (θ)) dθ +
1

β

Z θ̄

θp

ÃZ θ̄

θ

³
1− g

³
θ̃
´´

dθ̃

!
du

Note that,

Z θ̄

θ

³
1− g

³
θ̃
´´

dθ̃ = β (1− F (θ)) θ

E
h
θ̃|θ̃ ≥ θ

i
θ

− 1
β

 ≤ 0,
for all θ ≥ θp. It follows that it is optimal to set du = 0, or equivalently u (θ) = u (θp) ,

for θ ≥ θp. ¥

With two types Proposition 2 showed that bunching is strictly optimal whenever

θh/θl < 1/β. Proposition 3 generalizes this result since with two types when θh/θl <

1/β then according to the definition essentially θp = θl.

If the support Θ is unbounded then θp may not exist. This occurs, for example,

with the Pareto distribution. One can show that in this case it might be optimal to

bunch all agents depending on the Pareto parameter.

3.2 Assumption A

To obtain a simple and full characterization of the optimal allocation for θ ≤ θp we

impose the following condition on the distribution F and β.

Assumption A: g (θ) ≡ (1− β) θf (θ) + F (θ) is increasing for all θ ≤ θp.

When the density f is differentiable assumption A is equivalent to,

θ
f 0 (θ)
f (θ)

≥ −2− β

1− β
,

which places a lower bound on the elasticity of the density f. The lower bound is

negative and continuously decreasing in β. The highest lower bound of −2 is attained
for β = 0 and as β → 1 the lower bound goes off to −∞. Note that A does not

impose the bound on the whole support Θ, only for θ ≤ θp.

For any density f such that θf 0/f is bounded from below assumption A is satisfied

for β close enough to 1. Moreover, many densities satisfy assumption A for all β.
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For example, it is trivially satisfied for all density functions that are non-decreasing

and also holds for the exponential distribution, the log-normal, Pareto and Gamma

distributions for a large subset of their parameters.

3.3 Minimum Saving Policies

Define cflex (θ) , kflex (θ) to be the unconstrained optimum for agent-θ, that is the

allocation that is achieved when individuals are given full flexibility:

¡
cflex (θ) , kflex (θ)

¢ ≡ argmax
c,k

½
θ

β
U (c) +W (k)

¾
s.t. c+ k ≤ y

and let uflex (θ) ≡ U
¡
cflex (θ)

¢
and wflex (θ) ≡ W

¡
kflex (θ)

¢
. Our next result shows

that under assumption A agents with θ ≤ θp are offered their unconstrained opti-

mum and agents with θ ≥ θp are bunched at the unconstrained optimum for θp.

That is, the optimal mechanism offers the whole budget line to the left of the point¡
cflex(θp), k

flex (θp)
¢
given by the ex-post unconstrained optimum of the θp-agent.

Let the proposed allocation (w∗, u∗) be given by w∗ = wflex (θ) and

u∗ (θ) =

(
uflex (θ)

uflex (θp)

for θ < θp

for θ ≥ θp

This translates to (c∗ (θ) , k∗ (θ)) =
¡
cflex (θ) , kflex (θ)

¢
for θ < θp and (c

∗ (θ) , k∗ (θ)) =¡
cflex (θp) , k

flex (θp)
¢
for θ ≥ θp.At this allocation, the agents have full flexibility for

shocks smaller than θp and are bunched at θp for higher shocks. It is an allocation that

corresponds to a minimum savings rule. We now proceed to show that this allocation

is optimal.

Define the Lagrangian function as,

L (w, u|Λ) ≡ θ

β
u (θ) + w +

1

β

Z θ̄

θ

(1− g (θ))u (θ) dθ

+

Z θ̄

θ

µ
K−1 (y − C (u (θ))) +

θ

β
u (θ)−

µ
θ

β
u(θ) + w

¶
−
Z θ

θ

1

β
u(θ̃)dθ̃

¶
dΛ (θ)

where the function Λ is the Lagrange multiplier associated with the incentive com-
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patibility constraint. We require the Lagrange multiplier Λ to be non-decreasing (see

Luenberger, 1969, Chapter 8) and without loss of generality can set Λ
¡
θ̄
¢
= 1 and

take Λ to be left continuous for all θ < θ̄.

Intuitively, the Lagrange multiplier Λ can be thought of as a cumulative distribu-

tion function.3 If Λ happens to be representable by a density λ then the continuum

of constraints can be incorporated into the Lagrangian as the familiar integral of

the product of the left hand side of each constraint and the density function λ (θ).

Although this is a common approach in many applications, in general, Λ may have

points of discontinuity and such mass points are associated with individual constraints

that are particularly important. In such cases, working with a density λ would not

be valid. As we shall see, in our case the multiplier Λ is indeed discontinuous at two

points: θ and θp.

Integrating the Lagrangian by parts yields:

L (w, u|Λ) ≡
µ
θ

β
u (θ) + w

¶
Λ (θ)

+
1

β

Z θ̄

θ

(Λ (θ)− g (θ))u (θ) dθ

+

Z θ̄

θ

µ
K−1 (y − C (u (θ))) +

θ

β
u (θ)

¶
dΛ (θ)

Note that we do not need to incorporate the monotonicity condition explicitly.

Instead, we work directly with Φ which incorporates the monotonicity condition.

The proposition below draws on the following lemma which basically verifies the

conditions in Luenberger (1969).

Lemma. (a) If an allocation
¡
w0, u0

¢ ∈ Φ is optimal and u0 is continuous then there

exists a non-decreasing Λ0 such that

L
¡
w0, u0|Λ0

¢ ≥ L (w, u|Λ0) (6)

for all (w, u) ∈ Φ with u continuous. (b) Conversely, if (6) holds for some Λ0 for all

(w, u) ∈ Φ then (u0, w0) is optimal.

3Except for the integrability condition. Also, for notational purposes, we make Λ a left-continuous
function, instead of the usual right-continuous convention for distribution functions.
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Proof. In the appendix. ¥

If the Lagrangian has linear Gateaux differentials then because it is concave it

follows it is maximized within a convex cone if and only the first-order conditions

below hold, that is L
¡
w0, u0|Λ0

¢ ≥ L (w, u|Λ0) for all (w, u) ∈ P, where P is a convex

cone, if and only:

∂L
¡
w0, u0;w0, u0|Λ0

¢
= 0 (7)

∂L
¡
w0, u0;hw, hu|Λ0

¢ ≤ 0 (8)

for all (hw, hu) ∈ P (see Luenberger, Chapter 8, Lemma 1, pg. 227).

Note that the Lagrangian is the sum of integrals over θ of concave functions of w̄

and u (θ). In the appendix we show that this implies that the Gateaux differential

exists and can be easily computed. In particular, at the proposed allocation (w∗, u∗)

the Gateaux differential is linear and given by:

∂L (w, u;hw, hu|Λ) =
µ
θ

β
hu (θ) + hw

¶
Λ (θ) +

1

β

Z θ̄

θ

(Λ (θ)− g (θ))hu (θ) dθ (9)

+
θp
β

Z θ̄

θp

µ
θ

θp
− 1
¶
hudΛ (θ)

Proposition 4 The proposed allocation (w∗, u∗) is optimal if and only if assumption

A holds.

Proof. Necessity. Since (w∗, u∗) is optimal then there should exist a non-decreasing

Λ∗ such that first-order conditions (7) and (8) hold. We will show that if assumption A

does not hold then the first-order conditions require a decreasing Λ∗, a contradiction.

Condition (8) with hu = 0 requires that Λ
∗ (θ) = 0 since hw is unrestricted. Using

Λ∗ (θ) = 0 and integrating (9) by parts leads to (Theorem 6.20 in Rudin guarantees

this step since hu is continuous):

∂L (w∗, u∗;hw, hu|Λ∗) = γ (θ)hu (θ) +

Z θ̄

θ

γ (θ) dhu (θ) , (10)
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where,

γ (θ) ≡ 1

β

Z θ̄

θ

[Λ∗(θ̃)− g(θ̃)]dθ̃ +
θp
β

Z θ̄

min{θ,θp}

Ã
θ̃

θp
− 1
!
dΛ∗(θ̃)

It follows that condition (8) implies that γ (θ) ≤ 0 for all θ ∈ Θ. Suppose that there

is a θ1 such that γ (θ1) > 0 then we argue that there is an interval [θ0, θ1] such that

γ (θ) > 0 for all θ ∈ [θ0, θ1]. This follows since in the definition of γ the first term
is continuous and the second term is non-increasing. But such an interval leads to a

contradiction with (8) for any continuous non-decreasing function hu that is strictly

increasing within [θ0, θ1] and constant for Θ− [θ0, θ1].
Given γ (θ) ≤ 0 for all θ ∈ Θ, (7) implies that γ (θ) = 0 for θ ∈ [θ, θp], i.e.

wherever u∗ is strictly increasing. It follows that,

Λ∗ (θ) = g (θ) ,

for all θ ∈ (θ, θp]. The proposed allocation (w∗, u∗) thus determines a unique candidate
multiplier Λ∗ in the separating region (θ, θp] and assumption A is necessary and

sufficient for Λ∗ (θ) to be non-decreasing in this region. It follows that assumption A

is necessary for the proposed solution (w∗, u∗) to be optimal.

Sufficiency. We now prove sufficiency by showing that there exists a non-decreasing

multiplier Λ∗ such that the proposed (w∗, u∗) satisfies the first-order conditions (7)

and (8) for all (hw, hu) ∈ Φ. We’ve specified Λ∗ for (θ, θp] that is consistent with

these first-order conditions so we only need to specify Λ∗ for (θp, θ̄]. We will show

that Λ∗ (θ) = Λ
¡
θ̄
¢
for θ ∈ ¡θp, θ̄¤ meets the requirements.

The constructed Λ is not continuous, it has an upward jump at θ and a jump at

θp. To show that Λ
∗ is non-decreasing all that remains is to show that the jump at

θp is upward,

Λ∗ (θp)− lim
θ↑θp

Λ∗ (θp) = Λ
¡
θ̄
¢− g (θp) ≥ 0,

which follows from the definition of θp. To see this, note that if θp = θ the result is

immediate since then Λ∗ would jump from 0 to Λ
¡
θ̄
¢
at θ. Otherwise, notice that,

by definition, θp is the lowest θ̂ such that γ (θ) ≤ 0 for all θ ≥ θ̂, which implies that

γ0 (θp) = g (θp)− Λ
¡
θ̄
¢ ≤ 0.

Given the proposed allocation (w∗, u∗) and the constructed Lagrange multiplier Λ∗

imply that γ ≤ 0 and that γ = 0 wherever u∗ is increasing. The Gateaux differential
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is also given by (10), integration by parts is warranted for non-decreasing hu given

the particular Λ∗ constructed. It follows that the first-order conditions (7) and (8)

are satisfied. ¥

The figure below illustrates the form of the multiplier Λ∗ (θ) constructed in the

proof of the proposition.

θ

separating with full flexibility bunching

θp θθ

Λ(θ)

Figure 2: The Lagrange multiplier Λ∗ (θ)

Proposition 4 shows that under assumption A the optimal allocation is extremely

simple. It can be implemented by imposing a maximum level of current consumption,

or equivalently, a minimum level of savings. Such minimum saving policies are a

pervasive part of social security systems around the world.

The next result shows the comparative statics of the optimal allocation with re-

spect to temptation β. As the temptation increases, i.e. β decreases, more types are

bunched (i.e. θp decreases). In terms of policies, as the disagreement increases the

minimum savings requirement decreases so there is less flexibility in the allocation.

Proposition 5 The bunching point θp increases with β. The minimum savings re-

quirement, smin = y − C (u (θp)) , decreases with β.

Proof. That θp is weakly increasing follows directly from its definition. To see that

smin is decreasing note that smin solves

θp
β

U 0 (y − smin)

W 0 (smin)
= 1,
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and that θp, when interior, solves,

θp
β
= E [θ | θ ≥ θp] .

Combining these, we obtainE [θ|θ ≥ θp]U
0 (y − smin) /W

0 (smin) = 1. SinceE [θ | θ ≥ θp]

is increasing in θp the result follows from concavity of U and W . ¥

3.4 Drilling

In this subsection we study cases where assumption A does not hold and show that

the allocation described in Proposition 4 can be improved upon by drilling holes in

the separating section where the condition in assumption A is not satisfied.

Suppose we are offering the unconstrained optimum for some closed interval [θa, θb]

of agents and we consider removing the open interval (θa, θb). Agents that previously

found their tangency within the interval will move to one of the two extremes, θa or

θb. The critical issue in evaluating the change in welfare is counting how many agents

moving to θa versus θb. For a small enough interval, welfare rises from those moving

to θa and falls from those moving to θb.

Since the relative measure of agents moving to the right versus the left depends on

the slope of the density function this explains its role in assumption A. For example,

if f 0 > 0 then upon removing (θa, θb) more agents would move to the right than the

left. As a consequence, such a change is undesirable. The proof of the next result

formalizes these ideas.

Let θind ∈ [θa, θb] be the agent type that obtains the same utility from reporting

θa or θb. We find it more convenient to state the next result in terms of c (θ) and

k (θ).

Proposition 6 Suppose an allocation (c (θ) , k (θ)) satisfies incentive compatibility

(1) and the budget constraint (2) and has c (θ) = cflex (θ) and k (θ) = kflex (θ) for θ ∈
[θa, θb], where θb ≤ θp. Then if g (θ) is decreasing on [θa, θb] the allocation (c̃ (θ) , k̃ (θ))

defined below increases the objective function, remains incentive compatible (1) and
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satisfies the budget constraint (2):

c̃ (θ) , k̃ (θ) =


c (θ) , k (θ)

c (θa) , k (θa)

c (θb) , k (θb)

; for θ 6∈ [θa, θb]
; for θ ∈ (θa, θind)
; for θ ∈ [θind, θb)

Proof. In the appendix. ¥

Proposition 6 illustrates by construction why assumption A is necessary for a

simple ‘threshold rule’ to be optimal and gives some insight into this assumption. Of

course, Proposition 6 only identifies particular improvements whenever assumption A

fails. We have not characterized the full optimum when assumption A does not hold.

It seems likely that ‘money burning’ may be optimal in some cases.

4 Arbitrary Finite Horizons

We now show that our results extend to arbitrary finite horizons. We confine ourselves

to finite horizons because with infinite horizons any mechanism may yield multiple

equilibria in the resulting game. These equilibria may involve reputation in the sense

that a good equilibrium is sustained by a threat of reverting to a bad equilibria

upon a deviation. Some authors have questioned the credibility of such reputational

equilibria in intrapersonal games (e.g. Gul and Pesendorfer, 2002a, and Kocherlakota,

1996). We avoid these issues by focusing on finite horizons.

Consider the problem with N <∞ periods t = 1, ..., N where the felicity function

is U (·) in each period. Let θt = (θ1, θ2, ..., θt) denote the history of shocks up to time
t. A direct mechanism now requires that at time t the agent makes reports rt on the

history of shocks rt = (rt1, r
t
2, ..., r

t
t). The agent observes the history of shocks as well

as the history of reports made by the previous selves. The agent’s consumption may

depend on the whole history of reports ct (r
t, rt−1, ..., r1).

We first argue that without loss in optimality we can restrict ourselves to mecha-

nisms that at time t require only a report rt on the current shock θt, and not of the

whole history of shocks θt. This is the case in Atkeson and Lucas (1995) but in their

setup since preferences are time-consistent there is a single player and the argument
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is straightforward.

In contrast, in the hyperbolic model we have N players and the difference in

preferences between these selves can be exploited to punish past deviations. For

example, an agent at time t that is indifferent between allocations can be asked

to choose amongst them according to whether there has been a deviation in the

past. In particular, she can ‘punish’ previous deviating agents by selecting the worst

allocations from their point of view. Otherwise, if there have been no past deviations,

she can ‘reward’ the truth-telling agents by selecting the allocation preferred by them.

Such schemes may make deviations more costly, relaxing the incentive constraints,

and are thus generally desirable.

One way to remove the possibility of these punishment schemes is to introduce

the refinement that when agents are indifferent between several allocations choose

the one that maximizes the utility of previous selves. Indeed, Gul and Pesendorfer’s

(2001,2002a,b) framework, discussed in Section 6, delivers, in the limit without self-

control, the hyperbolic model with this added refinement.

However, with a continuous distribution for θ such a refinement is not necessary

to rule out these punishment schemes. We show that for any mechanism the subset

of Θ over which θ-agents are indifferent is at most countable. This implies that the

probability that future selves will find themselves indifferent is zero so that the threat

of using indifference to punish past deviations has no deterrent effect.

For any set A of pairs (u,w) define the optimal correspondence over x ∈ X

M (x;A) ≡ arg max
(u,w)∈A

{xu+ w}

(we allow the possibility that M (x,A) is empty) then we have the following result.

Lemma (Indifference is countable). For any A the subset XI ⊂ X for which

M (x;A) has two or more points (set of agents that are indifferent) is at most count-

able.

Proof. The correspondence M (x;A) is monotone in the sense that if x1 < x2 and

(u1, w1) ∈ M (x1;A) and (u2, w2) ∈ M (x2;A) then u1 ≤ u2. Thus, in an obvious

sense, points at which there are more than a single element in M (x;A) represent

upward ‘jumps’. As with monotonic functions, it follows easily that M (x;A) can

have at most a countable number of such ‘jumps’. ¥
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This result relies only on the single crossing property of preferences and not on the

linearity in u and w. We make use of this lemma again in Section 5.

These considerations lead us to write the problem with T ≥ 3 remaining periods
and income yT recursively as follows.

vT (yT ) = max
cT , kT

Z
[θU (cT (θ)) + vT−1 (kT (θ))] dF (θ)

θU (cT (θ)) + βvT−1 (kT (θ)) ≥ θhU(cT (θ
0)) + βvT−1(kT (θ0)) for all θ, θ0 ∈ Θ

cT (θ) + kT (θ) ≤ yT for all θ ∈ Θ

where v2 (·) was defined in Section 1.
Any feasible continuation utility profile w̃T−1 (θ) ∈ [(T − 1)U (0) , vT−1 (kT (θ))]

can be achieved by ‘money burning’ with the same effect: setting w̃T−1 (θ) = vT−1(k̃T (θ))

for some k̃T (θ) ≤ kT (θ). Consequently, the above formulation imposes ex-post opti-

mality, that is given the resources available the continuation utility is vT−1(k̃T (θ)).

For the simple recursive representation to obtain it is critical that, although the

principal and the agent disagree on the amount of discounting between the current

and next period, they both agree on the utility obtained from the next period on,

given by vT−1. This is not true in the alternative setup where the principal and the

agent both discount exponentially but with different discount factors. We treat this

case separately in Section 7.

For any horizon T this problem has exactly the same structure as the two-period

problem analyzed previously, with the exception that vT−1 (θ) has substituted W (θ).

We only required W (θ) to be increasing and concave and since vT−1 (θ) has these

properties all the previous results apply. We summarize this result in the next propo-

sition.

Proposition 7 Under assumption A the optimal allocation with a horizon of N pe-

riods can be implemented by imposing a minimum amount of saving St (yt) in period

t.

In Proposition 7 the minimum saving is a function of resources yt. With CRRA

preferences the optimal allocation is linearly homogenous in y, so that c (θ, y) = c̃ (θ) y
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and k (θ, y) = k̃ (θ) y. It follows that the optimal mechanism imposes a minimum

saving rate for each period that is independent of yt.

Proposition 8 Under assumption A and U (c) = c1−σ/ (1− σ) the optimal mecha-

nism for the N-period problem imposes a minimum saving rate st for each period t

independent of yt.

4.1 Hidden Savings

Another property of the optimal allocation identified in Propositions 4 and 7 is worth

mentioning. Suppose agents can save, but not borrow, privately behind the principal’s

back at the same rate of return as the principal, as in Cole and Kocherlakota (2001).

The possibility of this ‘hidden saving’ reduces the set of allocations that are incentive

compatible since the agent has a strictly larger set of possible deviations. Importantly,

the mechanism described in Proposition 7 continues to implement the same allocation

when we allow agents to save privately, and thus remains optimal.

To prove this claim we argue that confronted with the mechanism in Proposition

7 agents that currently have no private savings would never find it optimal to ac-

cumulate private savings. To see this, first note that by Proposition 7 the optimal

mechanism imposes only a minimum on savings in each period. Thus agent-θ always

have the option of saving more observably with the principal than what the allocation

recommends, yet by incentive compatibility the agent chooses not to.

Next, note that saving privately on his own can be no better for the agent than

increasing the amount of observable savings with the principal. This is true because

the principal maximizes the agents utility given the resources at its disposal. Thus,

from the point of view of the current self, future wealth accumulated by hidden savings

is dominated by wealth accumulated with the principal.

It follows that agents never find it optimal to save privately and the mechanism

implements the same allocation when agents can or cannot save privately.

Proposition 9 Under assumption A the mechanism described in Proposition 7 im-

plements the same allocation when agents can save privately.
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5 Heterogeneous Temptation

Consider now the case where the level of temptation, measured by β, is random. Het-

erogeneity in β captures the commonly held view that the temptation to overconsume

is not uniform in the population and that it is the agents that save the least that

are more likely to be ‘undersaving’ because of a higher temptation to consume (e.g.

Diamond, 1977).

If the heterogeneity in temptation were due to permanent differences across indi-

viduals then the previous analysis would apply essentially unaltered. If agents knew

their β at time time 0 they would truthfully report it so that their mechanism could

be tailored to their β as described above4. To explore other possibilities we assume

the other extreme, that differences in temptation are purely idiosyncratic, so that β

is i.i.d. across time and individuals. Thus, each period θ and β are realized together

from a continuous distribution — we do not require independence of θ and β for our

results. We continue to assume that β ≤ 1 for simplicity.
For any set A of available pairs (u,w) agents with (θ, β) maximize their utility:

arg max
(u,w)∈A

½
θ

β
u+ w

¾
.

Note that this argmax set is identical for all types with the same ratio x ≡ θ/β which

implies that we can without loss in optimality assume the allocation depend only on

x.

To see this note that the allocation may depend on θ and β independently for

a given x only if the x-agent is indifferent amongst several pairs of u,w. However,

the lemma in section 4 showed that the set of x for which agents are indifferent is

of measure zero. As a consequence, allowing the allocation to depend on θ or β

independently, in addition to x, cannot improve the objective function. Without loss

in optimality we limit ourselves to allocations that are functions of x only5.

4Of course, if agents can only report at t = 1 then one cannot costlessly obtain truthfull reports
on β. However, with large enough N it is likely that the cost of revealing β would be small.

5Given β ≤ 1 a simpler argument is available. The planner can simply instruct agents with given
x to choose the element of the arg max with the lowest u, since the planner has a strict preference
for the lowest u element. The argument in the text is similar to the one used to extend the analysis
to arbitrary horizons and can be applied to the case where β > 1 is allowed.
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The objective function is then:

E [θu (x) + w (x)] = E [E [θu (x) + w (x)|x]] =
Z
[α (x)u (x) + w (x)] f̂ (x) dx

where α (x) = E (θ|x) and f̂ (x) is the density over x. Let X = [x, x̄] be the support

of x and F̂ (x) be its cumulative distribution.

Define xp as the lowest value such that for x̂ ≥ xp

E [α (x)|x ≥ x̂]

x̂
≤ 1

We modify our previous assumption A in the following way.

Assumption Ã. For x ∈ [x, xp], we have that

xf̂ 0 (x)

f̂ (x)
≥ − 2− α0 (x)

1− α (x) /x

Note that without heterogeneity α (x) = βx so that assumptions Ã and A are

equivalent in this case.

max
u(·),w(·)

Z x̄

x

[α (x)u (x) + w (x)] dF̂ (x)

subject to

xu (x) + w (x) = xu (x) + w (x) +

Z x

x

u (x) dx

C (u (x)) +K (w (x)) ≤ 1

u (x) ≥ u (y) for all x ≥ y

The proof of the next result closely follows the proof of proposition 4.

Proposition 10 Under assumption Ã agents with x < xp are offered their uncon-

strained optimum and agents with x ≥ xp are bunched at the unconstrained optimum

for agent xp.
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6 Commitment with Self Control

Gul and Pesendorfer (2001,2002a,b) introduced an axiomatic foundation for prefer-

ences for commitment. We review their setup and representation result briefly in

general terms and then describe how we apply it to our framework.

In their static formulation the primitive is a preferences ordering over sets of

choices, with utility function P (A) over choice sets A. In the classical case P (A) =

maxa∈A p (a) for some utility function p defined directly over actions. Note that in

this case if a set A is reduced to A0 without removing the best element, a∗ from A,

then P is not altered. In this sense, committment, a preference for smaller sets, is

not valued.

To model a preference for commitment they assume a consumer may strictly prefer

a set A0 that is a strict subset A, i.e. P (A0) > P (A) and A0 ⊂ A. They show that

such preferences can be represented by two utility functions Ũ and Ṽ over choices a

by the relation:

P (A) = max
â∈A

{p (â) + t (â)}−max
a∈A

t (a)

One can think of t (a) −maxa∈A t (a) as the cost of self-control suffered by an agent
when choosing a instead of argmaxa∈A t (a). In a dynamic setting recursive prefer-

ences with temptation can be represented similarly (Gul and Pessendorfer, 2002a,b).

In our framework the action is a choice for current consumption and savings, c

and k. In order to nest the hyperbolic preferences model we follow Krusell, Kuruscu

and Smith (2001) and use:

p (c, k) = θU (c) +W (k)

t (c, k) = φ (θU (c) + βW (k))

where the parameter φ > 0 captures the lack of self control. As φ→∞ the agent has

no self-control and yields fully to his temptation. His preferences essentially converge

to those implied by the hyperbolic model. The only difference is that in the limit

as φ →∞ we obtain a tie-breaking criteria that whenever an agent is indifferent he

selects whatever is best for his previous ‘selves’ (i.e. maximizes t).
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For any set of bundles (υ, ω) available A the objective function P (A) is then:

Z θ̄

θ

max
υ,ω∈A

[θυ + ω + φ (θυ + βω)] f (θ) dθ − φ

Z θ̄

θ

max
υ,ω∈A

[θυ + βω] f (θ) dθ (11)

Before we proceed we need some definitions. Let β̂ ≡ (1 + φβ) / (1 + φ), θ ≡ θβ/β̂,

and h (θ) ≡ f(θβ̂/β)(β̂/β). Note that h (θ) is the density of the random variable

θβ/β̂; let H (θ) represent its corresponding distribution function. For future use, let

us define

ĝ (θ) ≡ 1 + (1 + φ) (β̂/β)H (θ)− φF (θ)

(1 + φ) β̂/β − φ
= β [1 + (1/β)H (θ) + φ(H (θ)− F (θ))]

since this expression will appear frequently below.

The following Lemma allows us to rewrite the problem in terms of an allocation

(u,w) defined over a larger domain Θ̂ ≡ [θ, θ̄].
Lemma. The objective function (11) can be written as

(1 + φ) (β̂/β)

Z θ̄β/β̂

θ

(θu (θ) + βw (θ))h (θ) dθ − φ

Z θ̄

θ

(θu (θ) + βw (θ)) f (θ) dθ (12)

for any (u (θ) , w (θ)) ∈ argmaxυ,ω∈A(θυ + βω) for all θ ∈ Θ̂.

Proof. Note that

max
υ,ω∈A

[θυ + ω + φ (θυ + βω)] = (1 + φ) max
υ,ω∈A

(θυ + β̂ω)

Thus, we can write the objective function P (A) as

(1 + φ)

Z θ̄

θ

(θû (θ) + β̂ŵ (θ))f (θ) dθ − φ

Z θ̄

θ

(θu (θ) + βw (θ))f (θ) dθ

for û, ŵ and u,w such that

(û (θ) , ŵ (θ)) ∈ arg max
υ,ω∈A

(θυ + β̂ω) for all θ ∈ Θ,

(u (θ) , w (θ)) ∈ arg max
υ,ω∈A

(θυ + βω) for all θ ∈ Θ.
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Note that since, argmaxυ,ω∈A(θυ + β̂ω) = argmaxυ,ω∈A((θβ/β̂)υ + βω) if we extend

the domain of u and w to Θ̂. Then we can write these two conditions as,

(û (θ) , ŵ (θ)) = (u(θβ/β̂), w(θβ/β̂)) for all θ ∈ Θ,

(u (θ) , w (θ)) ∈ arg max
υ,ω∈A

(θυ + βω) for all θ ∈ Θ̂.

Substituting the first conditon into the objective function we obtain,

(1 + φ)

Z θ̄

θ

(θu(θβ/β̂) + β̂w(θβ/β̂))f (θ) dθ − φ

Z θ̄

θ

(θu (θ) + βw (θ))f (θ) dθ (13)

The first term of (13) is equal to (1 + φ) (β̂/β)
R θ̄β/β̂
θ

(θu (θ) + βw (θ)) f(θβ̂/β)(β̂/β)dθ

so that using the definition of h (θ) yields (12). ¥

Given any set A an allocation that satisfies (u (θ) , w (θ)) ∈ argmaxυ,ω∈A(θυ +
βω) for all θ ∈ Θ̂ must satisfy the incentive constraints:

θu (θ) + βw (θ) ≥ θu (θ0) + βw (θ0) for all θ, θ0 ∈ Θ̂. (14)

Indeed, the set {(υ0, ω0) | (υ0, ω0) = (u (θ) , w (θ)) for some θ ∈ Θ̂} delivers the same
utility as A. Thus, we can pose the problem as maximizing (12) subject to (14) and

the resource constraint, C (u (θ)) +K (w (θ)) ≤ y for all θ ∈ Θ̂.

As before, the incentive constraints (14) are equivalent to

θu (θ) + βw (θ) = θu(θ) + βw(θ) +

Z θ

θ

u(θ̃)dθ̃ for all θ ∈ Θ̂. (15)

with u (θ) non-decreasing. Substituting this into the resource constraint yields,

βK−1 (y − C (u (θ)))−
Ã
θu(θ) + βw(θ) +

Z θ

θ

u
³
θ̃
´
dθ̃ − θu (θ)

!
≥ 0.
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Subsituting (15) into (13) and integrating by parts, we obtain:

(1 + φ) (β̂/β)

Z θ̄

θ

(1−H (θ))u (θ) dθ−φ
Z θ̄

θ

(1− F (θ))u (θ) dθ (16)

+ [(θ/β)u(θ) + w(θ)],

where we are taking both intervals of integration as being from θ to θ̄ by naturally

extending f and h so that h (θ) = 0, for all θ > θ̄β/β̂, and f (θ) = 0, for all θ < θ. .

Definition. Let θp be the lowest value of θ̂ such that for θ ≥ θ̂,

Z θ̄

θ

³
1− ĝ

³
θ̃
´´

dθ̃ ≤ 0

Assumption B. For θ ∈ [θ, θp], ĝ (θ) ≡ β [1 + (1/β)H (θ) + φ(H (θ)− F (θ))] is

increasing.

This assumption is equivalent to (1 + φ) (β̂/β)2f(θβ̂/β)− φf (θ) ≥ 0. Note that
assumption B is satisfied always for θ ∈ [θ, θ].
We now show that the optimal allocation is to offer all types below θp their uncon-

strained optimum and to bunch types higher than θp at the unconstrained optimum

for θp. Denote this allocation by (w
∗, u∗) as before.

We can write the Lagrangian as

L
¡
w, u|Λ¢ ≡ Λ(θ)

·
θ

β
u(θ) + w

¸
+
1

β

Z θ̄

θ

(Λ (θ)− ĝ (θ))u (θ) dθ

+

Z θ̄

θ

·
K−1 (y − C (u (θ))) +

θ

β
u (θ)

¸
dΛ

where Λ is a non-decreasing Lagrange multiplier for the budget constraint, normalized

so that Λ(θ̄) = 1.

Proposition 11 The allocation (w∗, u∗) is optimal if and only if assumption Â holds.
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Proof. The proof proceeds along the same lines as the proof of Proposition 4, except

that Λ does not jump at θ (because ĝ (θ) is zero at θ). ¥

The next result establishes a connection between assumptions A and B showing

that B is a weaker requirement.

Lemma (A implies B). If the condition for assumption A holds for [θ, θpβ̂/β], then

the condition for assumption Â holds for [θ, θp].

Proof. In the appendix. ¥

7 Disagreement on Exponential Discounting

This section departs a bit from our intra-personal temptation environment. We now

consider the case where individuals discount the future exponentially but do so at a

different rate than a ‘social planner’. Caplin and Leahy (2001) and Phelan (2002)

provide motivations for such an assumption. Here we simply explore the implications

of such a difference in discount rates.

It is important to note that this modification constitutes more than just a de-

parture on the form of discounting. Our previous analysis relied on the tensions

within an individual due to temptation. In contrast, in the current case we require

some paternalistic motivation for the social planner’s disagreement with agents. As

a consequence, some may view this case as more ad hoc and somehow less worthy of

analysis. However, we believe that paternalistic motivations may be behind several

government policies. In the next section we discuss other examples of paternalism.

For the two period case the analysis requires absolutely no change, only a different

interpretation for β. The difference in discounting in the incentive constraints versus

the objective function now arises from an assumed difference in private and social

discounting, it is no longer motivated by time inconsistent preferences. The relevant

question that remains is whether we can extend the results to longer horizons.

A difficulty is that the planner and agent will disagree on more than just how much

to discount future utility relative to present utility: now there is also disagreement

on the evaluation of future lifetime utility itself. This makes a recursive formulation

more difficult since the key simplification was that the same value function appeared

in the objective function and in the incentive constraints.
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Indeed, now we require two value functions, one for the planner, v, and one for the

agent, vA. Fortunately, in the case with logarithmic utility these two value functions

are related in a simple way. This allows us to keep track of only one value function,

v, rendering the analysis tractable. We can show that all our results go through in

this case.

Consider first the situation with three periods. Let the exponential discount factor

for the agent be given by β and for simplicity assume the discount factor for the social

planner is unity.

The highest utility achievable by the agent in the last two periods is

vA2 (y) = (1 + β) log (y) +BA

for some constant BA. For any homogenous mechanism the planner’s value function

for the last two periods takes the form:

v2 (y) = 2 log (y) +BP

The important point is that these value functions differ only by constants and coef-

ficients. As a consequence the correct incentive constraint for the first period can be

written with either value function. That is,

θU (c (θ)) + βvA2 (y (θ)) ≥ θU
³
c
³
θ̃
´´
+ βvA2

³
y
³
θ̃
´´

,

is equivalent to,

θU (c (θ)) + β̂3v2 (y (θ)) ≥ θU
³
c
³
θ̃
´´
+ β̂3v2

³
y
³
θ̃
´´

, (17)

where β̂3 = β(1 + β)/2 < 1 is a fictitious hyperbolic discount factor when there are

three periods to go. Note that the incentive constraint (17) has all the features of the

hyperbolic discounting case.

Thus, we can we can write the three period problem disagreement on exponential

discounting in the same way as the hyperbolic discounting problem. The arguments

generalizes to any finite horizon. With k remaining periods the discount factor that
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must be applied is

β̂k ≡ β
1 + β + ...+ βk−1

k
< 1.

Note that βk is decreasing in k and converges to zero (this last feature is special to

the planner not discounting the future at all).

8 Other Interpretations

In this section we discuss how our model can be reinterpreted for other applications.

8.1 Paternalism

Another interesting application of the model to a paternalistic problem is the choice

between schooling and leisure choice. In many cases the relevant agent is not yet

an adult so that we can interpret paternalism literally as a struggle between the

preferences of parents and child. Alternatively, other adults may be altruistically

concerned about children without parents and support paternalistic legislation.

The child’s preference are given by the utility function θU (l) + βW (s)where s

represents schooling time and l represents other valuable uses of time. The taste

parameter θ affects the relative value placed on schooling vs. other activities. The

parent’s preferences are given by θU (s) + W (s) , so that more weight is given to

schooling time.

The allocation of time is constrained by the time endowment normalized to one,

s+ l ≤ 1. In this example no insurance is possible.

8.2 Externalities

Another origin for a divergence of preferences between the planner and the agents is

when consumption of a good generates positive externalities. Agents do not internal-

ize the effects of their consumption on other agents but the planner does.

To make this precise, suppose there are two goods, c and k, that the agent with

taste shock θ obtains the following utility when the entire allocation is (c (θ) , k (θ))

V (θ; (c (·) , k (·))) ≡ θU (c (θ)) + βW (k (θ)) + (1− β)

Z
W (k (θ)) dF (θ) (18)
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The last term captures the externality from the consumption of k. The utilitarian

welfare criterion is:

W =

Z
V (θ, (c, k)) dF (θ) =

Z
(θU (c (θ)) +W (k (θ))) dF (θ) .

Thus, we can represent θU (c) + W (k) as the relevant utility function for agent-θ

from the planner’s point of view. Although this is not the utility actually attained

by agent-θ, which is given by the expression in (18), it is an interpretation that leads

to the same welfare functional.

9 Conclusion

This paper studied the optimal trade-off between commitment and flexibility in an

intertemporal consumption/saving model without insurance. In our model, agents

expect to receive relevant private information regarding their tastes which creates a

demand for flexibility. But they also expect to suffer from temptations, and therefore

value commitment. The model combined the representation theorems of preferences

for flexibility introduced by Kreps (1979) with the preferences for commitment pro-

posed by Gul and Pesendorfer (2002).

We solved for the optimal solution that trades-off commitment and flexibility by

setting up a mechanism design problem. We showed that under certain conditions

the optimal allocation takes the simple threshold form of a minimum savings require-

ment. We characterized the condition on the distribution of the shocks under which

this result holds, and showed that if this condition is not satisfied, more complex

mechanisms might be optimal. Future work will focus on the case with insurance,

with a hope of understanding how it may affect the results obtained here.

The model is open to a variety of other interpretations. A paternalistic principal

who cares about an agent but believes the agent is biased on average in his choices

would face a similar trade-off as long as the agent has some private information

regarding his tastes that the planner also cares about. We discussed applications to

schooling choices by teenagers and situations with externalities.
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A The Lagrangian Lemma

Our optimization problem maps into the general problem studied in Sections 8.3-8.4

by Luenberger (1969): maxx∈X Q (x) subject to x ∈ Ω and G (x) ∈ P , where Ω is a

subset of the vector space X, Q : Ω→ R and G : Ω→ Z, where Z is a normed vector

space and P is a positive non-empty convex cone in Z.

For part (b) we set:

X = {w, u | w ∈W
¡
R+
¢
and u : Θ→ R}

Ω = {w, u| w ∈W
¡
R+
¢
, u : Θ→ U

¡
R+
¢
and u is non-decreasing} ≡ Φ

Z =

½
z | z : Θ→ R with sup

θ∈Θ
|z (θ)| <∞

¾
with the norm kzk = sup

θ∈Θ
|z (θ)|

P = {z | z ∈ Z and z (θ) ≥ 0 for all θ ∈ Θ}

We also define the objective function Q and the left hand side of the resource con-

straint G by,

Q (w, u) =
θ

β
u(θ) + w +

1

β

Z θ̄

θ

[(1− F (θ))− θ (1− β) f (θ)]u (θ) dθ

G (w, u) = K−1 (y − C (u (θ))) +
θ

β
u (θ)− θ

β
u (θ)− w −

Z θ

θ

1

β
u(θ̃)dθ̃

The result then follows immediately since the hypothesis of Theorem 1, pg. 220 in

Luenberger (1969) are met.

For part (a) we modify Ω and Z to require continuity of u:

Ω = {w, u| w ∈W
¡
R+
¢
, u : Θ→ U

¡
R+
¢
and u is continuous and non-decreasing}

Z = {z | z : Θ→ R and z is continuous} with the norm kzk = sup
θ∈Θ

|z (θ)|

with X, P, Q and G as before. Note that Q and G are concave, Ω is convex, P

contains an interior point (e.g. z (θ) = 1, for all θ ∈ Θ, is interior) and that the

positive dual of Z is isomorphic to the space of non-decreasing functions on Θ by

the Riesz Representation Theorem (see Chapter 5, pg. 113 in Luenberger (1969)).

Finally, if w0, u0 is optimal within Φ and w0, u0 ∈ Φ ∩ {u is continuous} then w0, u0

is optimal within the subset Φ∩{u is continuous} ≡ Ω. The result then follows since
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the hypothesis of Theorem 1, pg. 217 in Luenberger (1969) are met.

B Lemma on Differentiability

Definition. Given a function T : Ω → Y , where Ω ⊂ X and X and Y are normed

spaces. If for x, h ∈ Ω the limit:

lim
α→0

1

α
[T (x+ αh)− T (x)]

exists then it is called the Gateaux differential for x, h ∈ Ω and is denoted by ∂T (x;h).

Lemma. Let

T (x) =

Z
Θ

g (x (θ) , θ) dµ (θ)

(Θ, Θ̃, µ) is any measure space (not necessarily R or a vector space) and x : Θ→ Rn

in some space Ω for which T is defined (an arbitrary restriction or perhaps a required

restriction to ensure measurability and integrability). Suppose g (·, θ) is concave and
gx (·, θ) exists and is continuous in x, for all θ. Then as long as x + αh ∈ Ω for

α ∈ [0, ε] for some ε > 0 then:

∂T (x;h) =

Z
Θ

gx (x (θ) , θ)h (θ) dµ (θ)

if this expression is well defined.

Proof. By definition

∂T (x;h) = lim
α→0

1

α
[T (x+ αh)− T (x)]

= lim
α→0

Z
Θ

1

α
[g (x (θ) + αh (θ) , θ)− g (x (θ) , θ)] dµ (θ)

=

Z
Θ

gx (x (θ) , θ)h (θ) dµ

+ lim
α→0

Z
Θ

·
1

α
[g (x (θ) + αh (θ) , θ)− g (x (θ) , θ)]− gx (x (θ) , θ)h (θ)

¸
dµ (θ)
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since for α < ε we have¯̄̄̄
1

α
[g (x (θ) + αh (θ) , θ)− g (x (θ) , θ)]− gx (x (θ) , θ)h (θ)

¯̄̄̄
≤
¯̄̄̄
1

ε
[g (x (θ) + εh (θ) , θ)− g (x (θ) , θ)]− gx (x (θ) , θ)h (θ)

¯̄̄̄
by concavity of g.

Since g (x (θ) + εh (θ) , θ), g (x (θ) , θ) and gx (x (θ) , θ)h (θ) are integrable by as-

sumption it follows that 1
ε
[g (x (θ) + εh (θ) , θ)− g (x (θ) , θ)]−gx (x (θ) , θ)h (θ) is also

integrable. Since any function f is integrable if and only if |f | is integrable [see Exer-
cise 7.26, pg. 192, chapter 8, SLP] we have that |1

ε
[g (x (θ) + εh (θ) , θ)− g (x (θ) , θ)]−

gx (x (θ) , θ)h (θ) | is integrable. We then have the conditions for Lebesgue’s Domi-
nated Convergence Theorem.

It follows that:

lim
α→0

Z
Θ

·
1

α
[g (x (θ) + αh (θ) , θ)− g (x (θ) , θ)]− gx (x (θ) , θ)h (θ)

¸
dµ

=

Z
Θ

·
lim
α→0

1

α
[g (x (θ) + αh (θ) , θ)− g (x (θ) , θ)]− gx (x (θ) , θ)h (θ)

¸
dµ = 0

by continuity of gx and its definition. It follows that ∂T (x;h) =
R
Θ
gx (x (θ) , θ)h (θ) dµ.

¥

Remark: Suppose Ω is convex and that we are interested in δT (x0;h) then the

obvious requirement that x0 + αh ∈ Ω for α ∈ [0, ε] for some ε > 0 is satisfied if

and only if h = x1 − x0 and x1 ∈ Ω. Note that the case where Ω is the space of

non-decreasing functions is convex.

C Proof of Proposition 6

Suppose that we are offering a segment of the budget line between the tangency point

for θL and that of θH , with associated allocation cL and cH . Define the θ
∗ that is

indifferent from the allocation cL and cH then θ∗ ∈ (θL, θH) for θH > θL. Upon

removing the interval θ ∈ (θ∗, θH) types move to cH and θ ∈ (θL, θ∗) types move to
cL allocation.
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Let∆ (θH , θL) be the change in utility for the principal of such a move (normalizing

income to y = 1 for simplicity)

∆ (θH , θL) ≡
Z θH

θ∗(θH ,θL)

{θU (c∗ (θH)) +W (y − c∗ (θH))} f (θ) dθ

+

Z θ∗(θH ,θL)

θL

{θU (c∗ (θL)) +W (y − c∗ (θL))} f (θ) dθ

−
Z θH

θL

{θU (c∗ (θ)) +W (y − c∗ (θ))} f (θ) dθ

where the function c∗ (θ) is defined implicitly by

θU 0 [c∗ (θ)] = βW 0 (y − c∗ (θ)) (19)

and θ∗ (θH , θL) is then defined by

θ∗ (θH , θL)U (c∗ (θH)) + βW (y − c∗ (θH)) (20)

= θ∗ (θH , θL)U (c∗ (θL)) + βW (y − c∗ (θL))

Notice that ∆ (θL, θL) = 0.

The following lemma regarding the partial derivative of ∆ (θH , θL) is used below.

Lemma. The partial of ∆ (θH , θL) with respect to θH can be expressed as:

∂∆

∂θH
(θH , θL) = S (θH ; θ

∗)
U 0 (c∗ (θH))

β

∂c∗ (θH)
∂θH

where S (θ; θ∗) is defined by,

S (θ, θ∗) ≡ (y − β) (θ − θ∗) θ∗f (θ∗)−
Z θ

θ∗

³
θ − βθ̃

´
f
³
θ̃
´
dθ̃

Since U 0 (c∗ (θH)) > 0 and
∂c∗(θH)
∂θH

> 0, then sign (∆1) = sign (S (θH , θ
∗)) .
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Proof. We have

∆1 (θH , θL) = [θHU (c
∗ (θH)) +W (y − c∗ (θH))] f (θH)

− [θ∗ (θH , θL)U (c∗ (θH)) +W (y − c∗ (θH))] f (θ∗)
∂θ∗

∂θH

+

Z θH

θ∗(θH ,θL)

{θU 0 (c∗ (θH))−W 0 (y − c∗ (θH))} f (θ) ∂c
∗ (θH)
∂θH

dθ

+ {θ∗ (θH , θL)U (c∗ (θL)) +W (y − c∗ (θL))} f (θ∗) ∂θ
∗

∂θH

− [θHU (c∗ (θH)) +W (y − c∗ (θH)) f (θH)]

Combining terms,

∆1 (θH , θL) =µZ θH

θ∗(θH ,θL)

{θU 0 (c∗ (θH))−W 0 (y − c∗ (θH))} f (θ) dθ
¶
∂c∗ (θH)
∂θH

+ {θ∗ (θH , θL) [U (c∗ (θL))− U (c∗ (θH))] +W (y − c∗ (θL))−W (y − c∗ (θH))} f (θ∗) ∂θ
∗

∂θH

Now, from (20) we have

θU 0 [c∗ (θ)]−W 0 (y − c∗ (θ)) =
·
β − 1
β

¸
θU 0 [c∗ (θ)]

Substituting above

∆1 (θH , θL) =µZ θH

θ∗(θH ,θL)

µ
θ − 1

β
θH

¶
f (θ) dθ

¶
U 0 (c∗ (θH))

∂c∗ (θH)
∂θH

+ {θ∗ (θH , θL) [U (c∗ (θL))− U (c∗ (θH))] +W (y − c∗ (θL))−W (y − c∗ (θH))} f (θ∗) ∂θ
∗

∂θH

we also have that from (19)

−θ
∗ (θH , θL)

β
[U (c∗ (θL))− U (c∗ (θH))] = {W (y − c∗ (θL))−W (y − c∗ (θH))}
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So,

∆1 (θH , θL) =

½·
1

β
− 1
¸
θ∗f (θ∗)

¾
[U (c∗ (θH))− U (c∗ (θL))]

∂θ∗

∂θH

−
µZ θH

θ∗

µ
1

β
θH − θ

¶
f (θ) dθ

¶
U 0 (c∗ (θH))

∂c∗ (θH)
∂θH

Differentiating (20) we obtain:

∂θ∗

∂θH
[U (c∗ (θH))− U (c∗ (θL))] = − [θ∗U 0 (c∗ (θH))− βW 0 (y − c∗ (θH))]

∂c∗ (θH)
∂θH

Using the fact that θU 0 [c∗ (θ)]− βW 0 (1− c∗ (θ)) = 0 this implies

∂θ∗

∂θH
[U (c∗ (θH))− U (c∗ (θL))] = [θH − θ∗]U 0 [c∗ (θH)]

∂c∗ (θH)
∂θH

Substituting back the result follows. ¥

From the lemma we only need to sign S (θH , θ
∗). Clearly, S (θ∗, θ∗) = 0. Taking

derivatives we also get that

∂S (θ, θ∗)
∂θ

= [1− β] θ∗f (θ∗)− (1− β) θf (θ)−
Z θ

θ∗
f
³
θ̃
´
dθ̃

Notice that
∂S (θ, θ∗)

∂θ

¯̄̄̄
θ∗
= 0

∂2S (θ, θ∗)

(∂θ)2
= − (2− β) f (θ)− (1− β) θf 0 (θ)

Note that ∂2S (θ, θ∗) / (∂θ)2 does not depend on θ∗, just on θ. It follows that sign
³
∂2S(θ,θ∗)
(∂θ)2

´
≤

0 if and only if
θf 0 (θ)
f (θ)

≥ −2− β

1− β
(21)

That is, if A holds. Integrating ∂2S (θ, θ∗) / (∂θ)2 twice:

S (θH , θ
∗) =

Z θH

θ∗

Z θ

θ∗

∂2S
³
θ̃, θ∗

´
³
∂θ̃
´2 dθ̃dθ
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Thus S (θH , θ
∗) ≤ 0 if A holds.

This implies then that ∆1 (θ, θL) ≤ 0 for all θ ≥ θL if assumption A holds; and

∆ (θH , θL) =

Z θH

θL

∆1 (θ; θL) dθ

so that
θf 0 (θ)
f (θ)

≥ −2− β

1− β
⇒ ∆ (θH , θL) ≤ 0 ; for all θH and θL

and clearly θL ∈ argmaxθH≥θL ∆ (θH , θL) . In other words if assumption A holds then
punching holes into any offered interval is not an improvement.

The converse is also true: if A does not hold for some open interval θ ∈ (θ1, θ2)
then the previous calculations show that it is an improvement to remove the whole

interval. In other words,

(θ1, θ2) ∈ arg max
θL,θH

∆ (θH , θL)

s.t. θ1 ≤ θL ≤ θH ≤ θ2

This concludes the proof. ¥

D Proof of Lemma A implies B

Let φ = 1
ε
> 0 then assumption B is equivalent to

Φ (θ, ε) ≡ (1 + ε)
³
β̂ (ε) /β

´2
f
³
θβ̂ (ε) /β

´
− f (θ) ≥ 0

with β̂ (ε) = (β + ε) / (1 + ε). Note that Φ (θ, 0) = 0,

Φε (θ, ε) =
β̂2

β2
f
³
θβ̂/β

´
+
1 + ε

β2

³
2β̂f

³
θβ̂/β

´
+ β̂2f 0

³
θβ̂/β

´
θ/β

´
β̂0 (ε) ,

and β̂0 (ε) = (1− β) / (1 + ε)2. Thus:

Φε (θ, ε) =
β̂

1 + ε

1

β2

³
(2− β + ε) f

³
θβ̂/β

´
+ (1− β) f 0

³
θβ̂/β

´
θβ̂/β

´
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assumption A holding at θ̂ implies that (2− β) f(θ̂)+(1− β) f 0(θ̂)θ̂ ≥ 0. This implies
(2− β + ε) f(θ̂) + (1− β) f 0(θ̂)θ̂ ≥ 0 for ε ≥ 0. So if the condition in assumption A

holds for [θ, θpβ̂/β] then Φε (θ, ε) ≥ 0 for all ε ≥ 0 and θ ∈ [θ̂, θp]. Given that
Φ (θ, 0) = 0, we have that if A holds for [θ, θpβ̂/β], then

Φ (θ, ε) = Φ (θ, 0) +

Z ε

0

Φε (θ, ε̃) dε̃ ≥ 0

for θ ∈ [θ̂, θp] so that assumption B holds. ¥
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