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Abstract  260 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a life-time risk of 1 in 350 261 

people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry GWAS in 262 

ALS including 29,612 ALS patients and 122,656 controls which identified 15 risk loci in ALS. When 263 

combined with 8,953 whole-genome sequenced individuals (6,538 ALS patients, 2,415 controls) and 264 

the largest cortex-derived eQTL dataset (MetaBrain), analyses revealed locus-specific genetic 265 

architectures in which we prioritized genes either through rare variants, repeat expansions or 266 

regulatory effects. ALS associated risk loci were shared with multiple traits within the 267 

neurodegenerative spectrum, but with distinct enrichment patterns across brain regions and cell-268 

types. Of the environmental and life-style risk factors obtained from literature, Mendelian 269 

randomization analyses indicated a causal role for high cholesterol levels. All ALS associated signals 270 

combined reveal a role for perturbations in vesicle mediated transport and autophagy, and provide 271 

evidence for cell-autonomous disease initiation in glutamatergic neurons.  272 
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Introduction 273 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting 1 in 350 individuals. 274 

Due to degeneration of both upper and lower motor neurons patients suffer from progressive 275 

paralysis, ultimately leading to respiratory failure within three to five years after disease onset1. In 276 

~10% of ALS patients there is a clear family history for ALS suggesting a strong genetic predisposition 277 

and currently in more than half of these cases a pathogenic mutation can be found2. On the other 278 

hand, apparently sporadic ALS is considered a complex trait where heritability is estimated at 40-279 

50%.3,4 To date, partially overlapping GWASs have identified up to six genome-wide significant loci, 280 

explaining a small proportion of the genetic susceptibility to ALS5–10. Some of these loci found in GWAS 281 

harbor rare variants with large effects also present in familial cases (e.g. C9orf72 and TBK1) 11–13. For 282 

other loci, the role of rare variants remains unknown.  283 

While ALS is referred to as a motor neuron disease, cognitive and behavioral changes are observed in 284 

up to 50% of the patients, sometimes leading to frontotemporal dementia (FTD). The overlap with FTD 285 

is clearly illustrated by the pathogenic hexanucleotide repeat expansion in C9orf72 which causes 286 

familial ALS and/or FTD11,12 and the genome-wide genetic correlation between ALS and FTD14. Further 287 

expanding the ALS/FTD spectrum, a genetic correlation with progressive supranuclear palsy has been 288 

described15. Shared pathogenic mechanisms between ALS and other neurodegenerative diseases, 289 

including common diseases such as Alzheimer’s and Parkinson’s disease, can further reveal ALS 290 

pathophysiology and inform new therapeutic strategies. 291 

Here, we combine new and existing individual level-genotype data in the largest GWAS of ALS to date. 292 

We present a comprehensive screen for pathogenic rare variants and short tandem repeat (STR) 293 

expansions as well as regulatory effects observed in brain cortex-derived RNA-seq and methylation 294 

datasets to prioritize causal genes within ALS risk loci. Furthermore, we reveal similarities and 295 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=39723611335513764&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:c09465a3-2344-4216-9cc9-73ca7aab7ea5
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=14618253300390727&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:c967b84b-abc6-4b33-8821-f129a8b0ee75
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=5897212685634936&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:1950efdc-974f-413f-bf44-a7e99a082d18,f3834698-7128-44f6-b0be-3eb9e7063be7:e77de4b5-3c36-406a-b138-86faf43bf024
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=12488478042251772&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:54abeb09-f853-40c9-8d36-f27f1910d62b,f3834698-7128-44f6-b0be-3eb9e7063be7:9a6dc984-9ac9-4f41-a0a8-f5dd626ffa14,f3834698-7128-44f6-b0be-3eb9e7063be7:236a0b82-b92b-4623-aac0-3e99dc4b326e,f3834698-7128-44f6-b0be-3eb9e7063be7:d79e9848-3a8b-4bac-9b30-d3a973b455cf,f3834698-7128-44f6-b0be-3eb9e7063be7:cd4b539a-e396-447f-aa2e-4d9fc4826e67,f3834698-7128-44f6-b0be-3eb9e7063be7:382f5352-32e5-430e-8747-bf33d23a4cbc
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=21372574751576923&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:b05f0e4f-fa9f-40e5-87f8-dad1e46a2e1b,f3834698-7128-44f6-b0be-3eb9e7063be7:6f48a6b2-bed3-47d1-a0db-fefbc5988667,f3834698-7128-44f6-b0be-3eb9e7063be7:ef4393ee-628b-4e45-af53-1747e08a23a2
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=07079756525026648&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:b05f0e4f-fa9f-40e5-87f8-dad1e46a2e1b,f3834698-7128-44f6-b0be-3eb9e7063be7:6f48a6b2-bed3-47d1-a0db-fefbc5988667
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=8039951923161927&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:5836821b-e25b-4ce9-9b83-b20a857bd830
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=2082684572186725&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:2c01634c-7f9a-4b07-82dd-12d153806a84
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differences between ALS and other neurodegenerative diseases as well as the biological processes in 296 

disease-relevant tissues and cell-types that affect ALS risk. 297 

Results  298 

Cross-ancestry meta-analysis reveals 15 risk loci for ALS. To generate the largest genome-wide 299 

association study in ALS to date, we merged individual level genotype data from 117 cohorts into 6 300 

strata matched by genotyping platform. A total of 27,205 ALS patients and 110,881 control subjects of 301 

European ancestries passed quality control (Online Methods, Supplementary Table 1-2). Through 302 

meta-analysis of these six strata, we obtained association statistics for 10,461,755 variants down to a 303 

minor allele-frequency (MAF) of 0.1% in the Haplotype Reference Consortium resource16. We observed 304 

moderate inflation of the test statistics (λGC = 1.12, λ1000 = 1.003) and linkage-disequilibrium score 305 

regression yielded an intercept of 1.029 (SE = 0.0073), indicating that the majority of inflation is due 306 

to the polygenic signal in ALS. The European ancestries analysis identified 12 loci reaching genome-307 

wide significance (P < 5.0 × 10-8, Supplementary Figure 1). Of these, 8 were present in GWAS of ALS in 308 

Asian ancestries8,10 and all showed a consistent direction of effects (Pbinom = 3.9 × 10-3). The genetic 309 

overlap between ALS risk in European and Asian ancestries resulted in a trans-ancestry genetic 310 

correlation of 0.57 (SE = 0.28) for genetic effect and 0.58 (SE = 0.30) for genetic impact, which were 311 

not statistically significant different from unity (P = 0.13 and 0.16, respectively). We therefore 312 

performed a cross-ancestry meta-analysis which revealed three additional loci, totaling 15 genome-313 

wide significant risk loci for ALS risk (Figure 1, Table 1, Supplementary Figures 2-16, Supplementary 314 

Tables 4-18). Conditional and joint analysis did not identify secondary signals within these loci.  315 

Of these findings, 8 loci have been reported in previous genome-wide association studies (C9orf72, 316 

UNC13A, SCFD1, MOBP/RPSA, KIF5A, CFAP410, GPX3/TNIP1, and TBK1)7–9. The rs80265967 variant 317 

corresponds to the p.D90A mutation in SOD1 previously identified in a Finnish ALS cohort enriched for 318 

familial ALS6. Interestingly, we observed for the first time, a genome-wide significant common variant 319 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=1257352399328463&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:4709cf16-1b4b-42f9-9aea-e40d6a225bd6
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=4817294100748869&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:d79e9848-3a8b-4bac-9b30-d3a973b455cf,f3834698-7128-44f6-b0be-3eb9e7063be7:382f5352-32e5-430e-8747-bf33d23a4cbc
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=5594338201967172&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:236a0b82-b92b-4623-aac0-3e99dc4b326e,f3834698-7128-44f6-b0be-3eb9e7063be7:cd4b539a-e396-447f-aa2e-4d9fc4826e67,f3834698-7128-44f6-b0be-3eb9e7063be7:d79e9848-3a8b-4bac-9b30-d3a973b455cf
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=4725659440425526&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:9a6dc984-9ac9-4f41-a0a8-f5dd626ffa14
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association signal within the NEK1 locus, where NEK1 was previously shown to harbor rare variants 320 

associated with ALS 17. The recently reported association at the ACSL5-ZDHHC6 locus10,18 did not reach 321 

the threshold for genome-wide significance (rs58854276, PEUR = 5.4 × 10-5, PASN = 4.9 × 10-7, Pcomb = 6.5 322 

× 10-8, Supplementary Figure 17, Supplementary Table 19), despite that our analysis includes all data 323 

from the original discovery studies. 324 

 

Figure 1. Manhattan plot of cross-ancestry meta-analysis. Horizontal dotted line reflects threshold for calling SNPs genome-
wide significant (P = 5 × 10-8). Gene labels reflect those prioritized by gene prioritization analysis. 

  325 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=9065952657796168&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:f3861a52-e9db-4048-91c1-cc1233d98723
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=3893757657993463&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:382f5352-32e5-430e-8747-bf33d23a4cbc,f3834698-7128-44f6-b0be-3eb9e7063be7:f7ee8423-eaf1-46e4-ac8c-e7dd70546379
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        European ancestries  Asian ancestries  Cross-ancestry 

Chr Basepair ID Prioritized gene A1 A2 Freq  Effect (SE) P  Effect (SE) P  Effect (SE) P 

9 27563868 rs2453555 C9orf72 A G 0.248  0.174 (0.013) 1.0×10-43  0.017 (0.066) 0.80  0.168 (0.012) 1.5×10-41 

19 17752689 rs12608932 UNC13A C A 0.347  0.125 (0.012) 8.8×10-25  0.074 (0.038) 0.053  0.120 (0.012) 3.0×10-25 

21 33039603 rs80265967 SOD1 C A 0.006  1.078 (0.124) 3.5×10-18  - -  1.078 (0.124) 3.5×10-18 

14 31045596 rs229195 SCFD1 A G 0.337  0.091 (0.012) 9.2×10-15  - -  0.091 (0.012) 9.2×10-15 

3 39508968 rs631312 MOBP/RPSA G A 0.291  0.079 (0.012) 5.2×10-11  0.084 (0.036) 0.020  0.080 (0.011) 3.3×10-12 

6 32672641 rs9275477 HLA C A 0.096  -0.143 (0.021) 5.5×10-12  -0.110 (0.111) 0.32  -0.142 (0.02) 3.5×10-12 

12 57975700 rs113247976 KIF5A T A 0.016  0.332 (0.049) 1.4×10-11  - -  0.332 (0.049) 1.4×10-11 

21 45753117 rs75087725 CFAP410 A C 0.012  0.418 (0.063) 2.7×10-11  - -  0.418 (0.063) 2.7×10-11 

5 150410835 rs10463311 GPX3/TNIP1 C T 0.253  0.079 (0.013) 3.5×10-10  0.042 (0.036) 0.24  0.075 (0.012) 2.7×10-10 

20 48438761 rs17785991 SLC9A8/SPATA2 A T 0.353  0.074 (0.012) 3.5×10-10  0.045 (0.076) 0.55  0.073 (0.012) 3.2×10-10 

12 64877053 rs4075094 TBK1 A T 0.112  -0.098 (0.018) 1.7×10-8  -0.216 (0.090) 0.017  -0.103 (0.017) 2.1×10-9 

5 172354731 rs517339 ERGIC1 C T 0.397  -0.065 (0.011) 8.5×10-9  -0.067 (0.074) 0.37  -0.065 (0.011) 5.6×10-9 

4 170583157 rs62333164 NEK1 G A 0.335  0.063 (0.012) 7.0×10-8  0.203 (0.070) 3.8×10-3  0.067 (0.012) 6.9×10-9 

13 46113984 rs2985994 COG3 C T 0.259  0.066 (0.013) 1.9×10-7  0.100 (0.041) 0.014  0.069 (0.012) 1.2×10-8 

7 157481780 rs10280711 PTPRN2 G C 0.124  0.076 (0.017) 5.8×10-6  0.132 (0.037) 2.9×10-4  0.086 (0.015) 1.8×10-8 

Table 1. Genome-wide significant loci. Details of the top associated SNPs within each genome-wide significant locus. Chr = 
chromosome, Basepair = position in reference genome GRCh37, A1 = effect allele, A2 = non-effect allele, Freq = frequency of 
the effect allele in European ancestries GWAS, SE = standard error of effect estimate. 

 326 

Rare variant association analyses in ALS. To assess a general pattern of underlying architectures that 327 

link associated SNPs to causal genes, we first tested for annotation specific enrichment using stratified 328 

linkage disequilibrium score regression (LDSC). This revealed that 5’ UTR regions as well as coding 329 

regions in the genome and those annotated as conserved were most enriched for ALS-associated SNPs 330 

(Supplementary figure 18). Subsequently we investigated how rare, coding variants contributed to ALS 331 

risk generating a whole-genome sequencing dataset of ALS patients (N = 6,538) and controls (N = 332 

2,415). The exome-wide association analysis included transcript-level rare-variant burden testing for 333 

different models of allele-frequency thresholds and variant annotations (Online methods). This 334 

identified NEK1 as the strongest associated gene (minimal P = 4.9 × 10-8 for disruptive and damaging 335 

variants at minor allele frequency < 0.005), which was the only gene to pass the exome-wide 336 

significance thresholds (0.05/17,994 = 2.8 × 10-6 and 0.05/58,058 = 8.6 × 10-7 for number of genes and 337 

protein-coding transcripts, respectively, Supplementary figures 19-32). This association is independent 338 

from the previously reported increased rare variant burden in familial ALS patients17 that were not 339 

included in this study. 340 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=8723620163293702&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:f3861a52-e9db-4048-91c1-cc1233d98723
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Gene prioritization shows locus-specific underlying architectures. To assess whether rare variant 341 

associations could drive the common variant signals at the 15 genome-wide significant loci, we 342 

combined the common and rare variants analyses to prioritize genes within these loci.  The SNP effects 343 

on gene expression were assessed through summary-based Mendelian Randomization (SMR) in blood 344 

(eQTLGen19) and a new brain cortex-derived expression quantitative trait locus (eQTL) dataset 345 

(MetaBrain20). Similarly, we analyzed methylation-QTL (mQTL) through SMR in blood and brain-derived 346 

mQTL datasets21–23. Finally, we leveraged the genome-wide signature of ALS associated gene features 347 

in a new gene prioritization method to calculate a polygenic priority score (PoPS)24. Through these 348 

multi-layered gene prioritization strategies we classified each locus into one of four classes of most 349 

likely underlying genetic architecture to prioritize the causal gene (Supplementary figures 33-47). 350 

First, in three GWAS loci the strongest associated SNP was a low-frequency coding variant which was 351 

nominated as the causal variant. This is the case for rs80265967 (SOD1, p.D90A, Supplementary Figure 352 

46) and rs113247976 (KIF5A p.P986L, Supplementary Figure 40) which are coding variants in known 353 

ALS risk genes. This is also the most likely causal mechanism for rs75087725 (CFAP410, formerly 354 

C21orf2, p.V58L, Supplementary Figure 46) as the GWAS variant is a missense variant, no evidence for 355 

other mechanisms including repeat expansions, eQTL or mQTL effects is observed within this locus, 356 

and CFAP410 itself is known to directly interact with NEK1, another ALS gene13,25. These three loci 357 

illustrate the power of large-scale GWAS combined with modern imputation panels to directly identify 358 

low-frequency causal variants that confer disease risk. 359 

Second, SNPs can tag a highly pathogenic repeat expansion, as is seen for rs2453555 (C9orf72) and the 360 

known GGGGCC hexanucleotide repeat in this locus. Conditional analysis revealed no residual signal 361 

after conditioning on the repeat expansion which is in LD with the top-SNP (r2 = 0.14, |D’| = 0.99, 362 

MAFSNP = 0.25, MAFSTR = 0.047 ). Besides the repeat expansion, both eQTL and mQTL analyses point to 363 

C9orf72 (Supplementary Figure 39). The HEIDI outlier test, however, rejected the null hypothesis that 364 

gene expression or methylation mediated the causal effect of the associated SNP (PHEIDI_eQTL = 3.7 × 10-365 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=807554844945161&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:c12fb819-24a1-4652-b93a-b0bc2972a1ad
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=09950347672960436&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:a107412f-adb2-4fb8-86f1-19d4404fcecf
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=14616432778488375&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:f53927b6-b022-4ded-b565-304c669ae520,f3834698-7128-44f6-b0be-3eb9e7063be7:730f05d0-36b2-48c1-b081-5f226bc359d3,f3834698-7128-44f6-b0be-3eb9e7063be7:e40a4583-8696-4620-943d-aef734fdfc0c
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=14964829594642137&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:cf8e8969-2d93-4de9-b79a-51440715d8c3
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=39206921216577795&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:ef4393ee-628b-4e45-af53-1747e08a23a2,f3834698-7128-44f6-b0be-3eb9e7063be7:b9335e79-1ded-4061-8b74-92ecca0b135a
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23 and PHEIDI_mQTL = 4.1 × 10-7).  This is in line with the pathogenic repeat expansion as the causal variant 366 

in this locus as and that eQTL and mQTL effects do not mediate a causal effects. We found no similar 367 

pathogenic repeat expansions that fully explain the SNP association signal in the other genome-wide 368 

significant loci. 369 

Third, in two loci (rs62333164 in NEK1 and rs4075094 in TBK1) common and rare variants converge to 370 

the same gene, which are known ALS risk genes13,17. For both loci, the rare variant burden association 371 

is conditionally independent from the top SNP which was included in the GWAS (Supplementary figures 372 

34 and 41). Here, the eQTL and mQTL analyses indicated that the risk-increasing effects of the common 373 

variants are mediated through both eQTL and mQTL effects on NEK1 and TBK1. Furthermore, a 374 

polymorphic STR downstream of NEK1 was associated with increased ALS risk (motif = TTTA, threshold 375 

= 10 repeat units, expanded allele-frequency = 0.51, P = 5.2 × 10-5, FDR = 4.7 × 10-4, Supplementary 376 

figure 48). This polymorphic repeat is in LD with the top associated SNP within this locus (r2 = 0.24, 377 

|D’| = 0.70). Within the whole-genome sequencing data, there was no statistically significant 378 

association for the top SNP to reliably determine its independent contribution to ALS risk. 379 

Lastly, the fourth group contains remaining loci where there is no direct link to a causal gene through 380 

coding variants or repeat expansions. Here, we investigated regulatory effects of the associated SNPs 381 

on target genes acting as either eQTL or mQTL. Single genes were prioritized by SMR using both mQTL 382 

and eQTL for rs2985994 (COG3 Supplementary Figure 42), rs229243 (SCFD1, Supplementary Figure 383 

43), and rs517339 (ERGIC1, Supplementary Figure 36). In other loci, both methods prioritized multiple 384 

genes, such as rs631312 (MOBP and RPSA, Supplementary Figure 33) and rs10463311 (GPX3 and 385 

TNIP1, Supplementary Figure 35). Besides the prioritized genes, each of these loci harbor multiple 386 

genes that are not prioritized by any method and are therefore less likely to contribute to ALS risk. 387 

Locus-specific sharing of risk loci between ALS and neurodegenerative diseases. To investigate the 388 

pleiotropic properties of ALS-associated loci and shared genetic basis of neurodegeneration, we tested 389 

for shared effects among neurodegenerative diseases. We included GWAS from clinically-diagnosed 390 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=057589871441816154&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:f3861a52-e9db-4048-91c1-cc1233d98723,f3834698-7128-44f6-b0be-3eb9e7063be7:ef4393ee-628b-4e45-af53-1747e08a23a2
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Alzheimer’s disease (AD)26, Parkinson’s disease (PD)27, frontotemporal dementia (FTD)28, progressive 391 

supranuclear palsy (PSP)15 and corticobasal degeneration (CBD)29 to estimate genetic correlations. 392 

Bivariate LDSC confirmed a statistically significant genetic correlation between ALS and PSP (rg = 0.44, 393 

SE = 0.11, P = 1.0 × 10-4) as previously reported, and also found a significant genetic correlation 394 

between ALS and AD (rg = 0.31, SE = 0.12, P = 9.6 × 10-3) as well as between ALS and PD (rg = 0.16, SE = 395 

0.061, P = 0.011, Figure 2a). The point estimate for the genetic correlation between ALS and FTD was 396 

high (rg = 0.59, SE = 0.41, P = 0.15), but not statistically significant due to the limited size of the FTD 397 

GWAS. Thus, power to detect a genetic correlation between ALS and FTD using LDSC was limited 398 

(Supplementary Figure 49). 399 

Patterns of sharing disease-associated genetic variants appeared to be locus specific (Figure 2b, 400 

Supplementary Table 20). To assess whether two traits shared a common signal indicating shared 401 

causal variants, we performed colocalization analyses for all loci meeting P < 5 × 10-5 in any of the 402 

GWAS on neurodegenerative diseases (N = 161 loci). This revealed a shared signal in the MOBP/RPSA 403 

between ALS, PSP and CBD, as well as a shared signal in the UNC13A locus between ALS and FTD 404 

(posterior probability: PPH4 > 95%, Supplementary Figure 50). For the HLA locus, there was evidence 405 

for a shared causal variant between ALS and PD (PPH4 = 88%) but no conclusive evidence for ALS and 406 

AD (PPH4 = 51% for a shared causal variant and PPH3 = 49% for independent signals in both traits).  407 

Furthermore, the colocalization analyses identified two additional shared loci that were not genome-408 

wide significant in the ALS GWAS: between ALS and PD at the GAK locus (rs34311866, PPH4 = 99%) and 409 

between ALS and AD at the BRZAP-AS1 locus (rs2632516, PPH4 = 90%). Of note, the association at 410 

BZRAP-AS1 was not genome-wide significant in the GWAS of clinically diagnosed AD (P = 3.7 × 10-7) 411 

either, but was identified in the larger AD-by-proxy GWAS30. For FTD subtypes, C9orf72 showed a co-412 

localization signal for a shared causal variant between ALS and the motor neuron disease subtype of 413 

FTD (mndFTD, PPH4 = 93%, Supplementary figure 50 and 51).   414 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=40812596118446953&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:cda9d5a0-ae10-4fcb-8f73-724a0005ae1e
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=46929496009207017&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:1152011f-675f-4100-aa58-a367d6ad8371
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=6540817745325347&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:c826aa70-650a-4979-8eaf-519b1fc2377b
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=2508058067692811&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:2c01634c-7f9a-4b07-82dd-12d153806a84
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=18181171246878458&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:46e75eea-e7f8-4ff3-814b-466bdd1e374c
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=30108487113953275&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:b864371c-41aa-4206-b9c7-1b70890bf910
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Figure 2. Shared genetic risk among ALS and neurodegenerative diseases. (a) Genetic correlation analysis. Genetic correlation 

was estimated with LD-score regression between each pair of neurodegenerative diseases being ALS, Alzheimer’s disease (AD), 

corticobasal degeneration (CBD), Parkinson’s disease (PD), progressive supranuclear palsy (PSP), and frontotemporal dementia 

(FTD). Lower left triangle shows correlation estimate and upper right triangle shows -log10(P-value). Correlations marked with 

an asterisk were statistically significant P < 0.05. (b) SNP associations of ALS lead SNPs or LD-proxies in neurodegenerative 

diseases. Effective sample size is shown on the left. Posterior probabilities of the same causal SNP affecting two diseases were 

estimated through colocalization analysis and highlighted as connections.  

Enrichment of glutamatergic neurons indicate cell-autonomous processes in ALS susceptibility. To 415 

find tissues and cell-types which gene expression profiles are enriched for genes within ALS risk loci, 416 

we first combined gene-based association statistics calculated using MAGMA31 with gene expression 417 

patterns from GTEx (v8) in a gene-set enrichment analysis using FUMA32. We observed a significant 418 

enrichment in genes expressed in brain tissues, specifically the cerebellum, basal ganglia (caudate 419 

nucleus, accumbens, and putamen), and cortex, but not peripheral nervous tissue or muscle. Whereas 420 

this pattern roughly resembles the enrichments observed in PD, it is strikingly different from that 421 

observed in AD where blood, lung and spleen were mostly enriched (Figure 3a). We subsequently 422 

queried single-cell RNA sequencing datasets of human-derived brain samples to further specify brain-423 

specific enriched cell-types using the cell-type analysis module in FUMA33. This showed significant 424 

enrichment for neurons but not microglia or astrocytes (Figure 3b). Further subtyping of these neurons 425 

illustrated that genes expressed in glutamatergic neurons were mostly enriched for genes within the 426 

ALS-associated risk loci. Again, this contrasted AD which showed specific enrichment of microglia. In 427 

single-cell RNA sequencing data obtained from brain tissues in mice, a similar pattern was observed 428 

showing neuron-specific enrichment in ALS and PD, but microglia in AD (Supplementary Figure 52). 429 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=9821606126919519&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:46a87948-818a-4440-9cf9-ad6630668772
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=9851752652835329&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:d82aa4e9-834f-43a6-b953-524f6a98d876
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=8162023474715572&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:e0175354-216b-4ef5-b9cf-46057ec1718d
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Together, this indicates that susceptibility to neurodegeneration in ALS is mainly driven by neuron-430 

specific pathology and not by immune-related tissues and microglia.  431 

 

Figure 3. Tissue and cell-type enrichment analysis. (a) Enrichment of tissues and brain regions included in the GTEx v8 

illustrates a brain-specific enrichment pattern in ALS, similar to Parkinson’s disease but contrasting Alzheimer’s disease. (b) 

Cell-type enrichment analyses indicate neuron-specific enrichment for glutamatergic neurons. No enrichment was found for 

microglia or other non-neuronal cell-types, contrasting the pattern observed in Alzheimer’s disease. Statistically significant 

enrichments after correction for multiple testing with a false discovery rate (FDR) < 0.05 are marked with an asterisk. ALS = 

amyotrophic lateral sclerosis, PD = Parkinson’s disease, AD = Alzheimer’s disease, Cx = cortex, OPC = oligodendrocyte progenitor 

cells. 

Brain-specific co-expression networks improve detection of ALS-relevant pathways. To assess which 432 

processes were mostly enriched in ALS, we performed enrichment analyses that combined gene-based 433 

association statistics with gene co-expression patterns obtained from either multi-tissue 434 

transcriptome datasets34 or RNA-seq data from brain cortex samples (MetaBrain20). To validate this 435 

approach, we first tested for enrichment of Human Phenotype Ontology (HPO) terms that are linked 436 

to well-established disease genes in the Online Mendelian Inheritance in Man (OMIM) and Orphanet 437 

catalogues. Using the multi-tissue co-expression matrix, we found no enriched HPO terms after 438 

Bonferroni correction for multiple testing. Using the brain-specific co-expression matrix however, we 439 

found a strong enrichment of HPO terms that are related to ALS or neurodegenerative diseases in 440 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=6336243288063154&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:43aa7cd8-75c3-480a-9031-5cc32edcad1e
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=09950347672960436&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:a107412f-adb2-4fb8-86f1-19d4404fcecf
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general, including Cerebral cortical atrophy (P = 1.8 × 10-8), Abnormal nervous system electrophysiology 441 

(P = 4.1 × 10-7) and Distal amyotrophy (P = 8.6 × 10-7, full-list in Supplementary table 21). In general, 442 

HPO terms in the neurological branch (Abnormality of the nervous system) showed an increase in 443 

enrichment statistics in ALS when using the brain-specific co-expression matrix compared to the multi-444 

tissue dataset (Supplementary Figure 53), which illustrates the benefit of the brain-specific co-445 

expression matrix for ALS-specific enrichment analyses. Subsequently, we tested for enriched 446 

biological processes using Reactome and Gene Ontology terms. Again, using the multi-tissue 447 

expression profiles, we found no Reactome annotations to be enriched. Leveraging the brain-specific 448 

co-expression networks we identified Vesicle Mediated Transport (“Membrane Trafficking” P = 4.2 × 449 

10-6, “Intra-golgi and retrograde Golgi-to-ER trafficking” P = 1.4 × 10-5) and Autophagy 450 

(“Macroautophagy” P = 3.2 × 10-5) as enriched processes after Bonferroni correction for multiple 451 

testing (Supplementary Table 22). The subsequently identified enriched Gene Ontology terms all 452 

related to vesicle mediated transport or autophagy (Supplementary Table 23 and 24). 453 

Cholesterol levels are causally related to ALS. From previous observational case-control studies and 454 

our accompanying blood-based methylome-wide study35, numerous non-genetic risk factors have 455 

been implicated in ALS. Here we studied a selection of those putative risk factors through causal 456 

inference in a Mendelian randomization (MR) framework36. We selected 22 risk factors for which 457 

robust genetic predictors were available including BMI, smoking, alcohol consumption, physical 458 

activity, cholesterol-related traits, cardiovascular diseases and inflammatory markers (Supplementary 459 

Table 25). These analyses provided the strongest evidence for cholesterol levels to be causally related 460 

to ALS risk (PWeightedMedian = 3.2 × 10-4, Figure 4a, full results in Supplementary Table 26). These results 461 

were robust to removal of outliers through Radial MR analysis37 and we observed no evidence for 462 

reverse causality (Supplementary Table 27 and 28). Importantly, ascertainment bias can lead to the 463 

selection of higher educated control subjects38, compared to ALS patients that are mostly ascertained 464 

through the clinic. In line with control subjects being higher educated, MR analyses indicate a negative 465 

effect for years of schooling on ALS risk (PIVW = 2.0 × 10-4, Figure 4b). As a result, years of schooling can 466 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=48203155247355156&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:801150b9-327e-473e-b2a5-fed1a637685f
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act as a confounder for the observed risk increasing effect of higher total cholesterol through 467 

ascertainment bias. To correct for this potential confounding, we applied multivariate MR analyses 468 

including both years of schooling and total cholesterol. The results for total cholesterol were robust in 469 

the multivariate analyses, suggesting a causal role for total cholesterol levels on ALS susceptibility 470 

(Supplementary Table 29). 471 

 

Figure 4. Causal inference of total cholesterol and years of schooling in ALS.  (a) Mendelian randomization results for ALS and 

total cholesterol. Results for the five different Mendelian Randomization methods for two different P-value cut-offs for SNP 

instrument selection. All methods show a consistent positive effect for an increased risk of ALS with higher total cholesterol 

levels. There is no evidence for reverse causality. (b) Mendelian randomization results for ALS and years of schooling. Error-

bars reflex 95% confidence intervals. Statistically significant effects that pass Bonferroni correction for multiple testing for all 

tested traits and MR methods are marked with an asterisk. Z = genetic instrument, MR = Mendelian Randomization, IVW = 

inverse-variance weighted, bxy = estimated causal effect for one standard deviation increase in genetically predicted exposure.  

  472 



21 
 

21 
 

Discussion 473 

In summary, in the largest GWAS on ALS to date including 29,612 ALS patients and 122,656 control 474 

subjects, we have identified 15 risk loci contributing to ALS risk. Through in-depth analysis of these loci 475 

incorporating rare-variant burden analyses and repeat expansion screens in whole-genome 476 

sequencing data, blood and brain-specific eQTL and mQTL analysis we have prioritized genes in 14 of 477 

the loci. Across the spectrum of neurodegenerative diseases we identified a genetic correlation 478 

between ALS and AD, PD and PSP with locus-specific patterns of shared genetic risk across all 479 

neurodegenerative diseases. Colocalization analysis identified two additional loci, GAK and BZRAP1-480 

AS1, with a high posterior probability of shared causal variants between ALS/PD, and ALS/AD 481 

respectively. We found glutamatergic neurons as the most enriched cell type in the brain and brain-482 

specific co-expression network enrichment analyses indicated a role for vesicle-mediated transport 483 

and autophagy in ALS. Finally, causal inference of previously described risk factors provides evidence 484 

for high total cholesterol levels as a causal risk factor for ALS. 485 

The cross-ancestry comparison illustrated similarities in the genetic risk factors for ALS in European 486 

and East Asian ancestries, providing an argument for cross-ancestry studies and to further expand ALS 487 

GWAS in non-European populations. Important to note is that 3 loci including those that harbor low-488 

frequency variants (KIF5A, SOD1, and CFAP410) were not included in the East Asian GWAS due to their 489 

low minor allele frequency. Therefore, the shared genetic risk might not extend to rare genetic 490 

variation, for which population-specific frequencies have been observed even within Europe. 491 

The multi-layered gene prioritization analyses highlighted four different classes of genome-wide 492 

significant loci in ALS. First, the sample size of this GWAS combined with accurate imputation of low-493 

frequency variants directly identified rare coding variants that increase ALS risk. These include the 494 

known p.D90A mutation in SOD1 (MAF = 0.006) as well as  rare variants in KIF5A (MAF = 0.016) and 495 

CFAP410 (MAF = 0.012) for which, after their identification through GWAS, experimental work 496 
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confirms their direct role in  ALS pathophysiology9,25,39. Second, we confirmed that the pathogenic 497 

C9orf72 repeat expansion is tagged by genome-wide significant GWAS SNPs, and that no residual signal 498 

is left by conditioning the SNP on the repeat expansion. Although more repeat expansions are known 499 

to affect ALS risk, we found no similar loci where the SNPs tag a highly pathogenic repeat expansion. 500 

This suggests that highly pathogenic repeat expansions on a stable haplotype are merely the exception 501 

rather than the rule in ALS. Third, common and rare variant association signals can converge on the 502 

same gene as is observed for NEK1 and TKB1, consistent with observations for other traits and 503 

diseases40–42. We show that these signals are conditionally independent and that the common variants 504 

act on the same gene through regulatory effects as eQTL or mQTL. In the fourth class, we find evidence 505 

for regulatory effects of ALS associated SNPs that act as eQTL or mQTL. These locus-specific 506 

architectures illustrate the complexity of ALS associated GWAS loci where not one solution fits all, but 507 

instead warrants a multi-layered approach to prioritize genes. 508 

In addition, we find locus-specific patterns of shared effects across neurodegenerative diseases. The 509 

MOBP locus has previously been identified in PSP and ALS and here we show that indeed both diseases, 510 

as well as CBD, are likely to share the same causal variant in this locus. The same is true for UNC13A 511 

and C9orf72 with FTD and the motor neuron disease subtype of FTD, respectively. The colocalization 512 

analysis with PD identified a shared causal variant in the GAK locus, which was not found in the ALS 513 

GWAS alone. Furthermore the BZRAP1-AS1 locus harbors SNPs associated with ALS and AD risk. 514 

Although this locus was not significant in either of the GWAS, larger GWAS including AD-by-proxy cases 515 

confirmed this as a risk locus for AD. This illustrates the power of cross-disorder analyses to leverage 516 

the shared genetic risk of neurodegenerative diseases.  517 

We aimed to clarify the role of neuron-specific pathology in ALS susceptibility as opposed to non-cell 518 

autonomous pathology through detailed cell-type enrichment analyses. Previous experiments have 519 

illustrated multiple lines of evidence for non-cell autonomous pathology in microglia, astrocytes and 520 

oligodendrocytes which ultimately leads to neurodegeneration in ALS43–45. These experiments have 521 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=526079959518194&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:cd4b539a-e396-447f-aa2e-4d9fc4826e67,f3834698-7128-44f6-b0be-3eb9e7063be7:c51c83e0-6ace-414b-927e-f061dd79409c,f3834698-7128-44f6-b0be-3eb9e7063be7:b9335e79-1ded-4061-8b74-92ecca0b135a
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shown that non-cell autonomous processes, such as neuro-inflammation, mainly act as modifiers of 522 

disease in SOD1 models of ALS44,45. Here, we show that genes within loci associated with ALS 523 

susceptibility are specifically expressed in (glutamatergic) neurons. This provides evidence for neuron-524 

specific pathology as a driver of ALS susceptibility, which is in stark contrast to the signal of 525 

inflammation associated tissues and cell-types in Alzheimer’s disease30. It also shows that disease 526 

susceptibility and disease modification can be distinct processes, while both can be targets for 527 

potential new treatments in ALS.  528 

The subsequent functional enrichment analyses identified membrane trafficking, Golgi to 529 

Endoplasmatic Reticulum (ER) trafficking and autophagy to be enriched for genes within ALS associated 530 

loci. These terms and their related Gene Ontology (GO) terms of biological processes are all related to 531 

autophagy and degradation of (misfolded) proteins. This corroborates the central hypothesis of 532 

impaired protein degradation leading to aberrant protein aggregation in neurons which is the 533 

pathological hallmark of ALS. Our results suggest that this is a central mechanism in ALS even in the 534 

absence of rare known mutations in genes directly involved in these biological processes such as 535 

TARDBP, FUS, UBQLN2 and OPTN46.  536 

Based on observational studies and MR analyses, conflicting evidence exists for lipid levels including 537 

cholesterol as a risk factor for ALS47–49. Potential selection bias, reverse causality and the subtype of 538 

cholesterol studied challenge the interpretation of these results. Here, we provided support for a 539 

causal relationship between high total cholesterol levels and ALS independent of educational 540 

attainment and ruling out reverse orientation of the MR effect. The total cholesterol effects were 541 

consistent across the different MR methods tested, indicating that this finding is robust to violation of 542 

the no horizontal pleiotropy assumption. This is in line with our accompanying study showing 543 

methylation changes associated with increased cholesterol levels in ALS35. We do not find a clear 544 

pattern for either LDL or HDL cholesterol subtypes in relation to ALS risk. Whereas cholesterol levels 545 

are closely related to cardiovascular risk, the association between cardiovascular risk and ALS risk 546 
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remains controversial with conflicting reports.3,47,50. Interestingly, recent work has shown that lipid 547 

metabolism and autophagy are closely related which brings results of our pathway analyses and 548 

Mendelian randomization together51. Both in vitro and in vivo experiments have shown that autophagy 549 

regulates lipid homeostasis through lipolysis and that impaired autophagy increases triglyceride and 550 

cholesterol levels. Conversely, high lipid levels were shown to impair autophagy51. Further studies on 551 

the effect of high cholesterol levels and protein degradation through autophagy illustrate that high 552 

cholesterol levels decrease fusogenic ability of autophagic vesicles through decreased SNARE 553 

function52,53 and lead to increased protein aggregation due to impaired autophagy in mouse models 554 

for Alzheimer’s disease54. Therefore, the risk increasing effect of cholesterol on ALS might be mediated 555 

through impaired autophagy. 556 

In conclusion, our genome-wide association study identifies 15 risk loci in ALS, and illustrates locus-557 

specific interplay between common and rare genetic variation that helps prioritize genes for future 558 

follow-up studies. We show a causal role for cholesterol which can be linked to impaired autophagy as 559 

common denominators of neuron-specific pathology that drive ALS susceptibility and serve as 560 

potential targets for therapeutic strategies.  561 
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Methods 675 

GWAS 676 

Data description 677 

We obtained individual genotype level data for all individuals in the previously published GWAS in ALS 678 

in European ancestries7,9 and publicly available control datasets including  120,971 controls genotyped 679 

on Illumina platforms. Additionally 6,374 cases and 22,526 controls were genotyped on the 680 

IlluminaOmniExpress and Illumina GSA array. Details for each cohort are provided in Supplementary 681 

Table 1. For ALS cases, both cases with and without a family-history for ALS and/or dementia were 682 

included. Cases were not pre-screened for specific ALS related mutations. Given the late onset and 683 

relatively low life-time risk of ALS, controls were not screened for (subclinical) signs of ALS. A detailed 684 

description of the newly genotyped cases and controls is provided in the Supplementary Information. 685 

All participants gave written informed consent and the relevant local institutional review boards 686 

approved this study (Supplementary Information). Cases and controls formed cohorts when they were 687 

processed in the same lab and were genotyped in the same batch, resulting in 117 independent 688 

cohorts.  689 

GWAS quality control and imputation 690 

For each cohort, SNPs were first annotated according to dbSNP150 and mapped to the hg19 reference 691 

genome. All multi-allelic and palindromic (A/T or C/G) SNPs were excluded. Subsequently, basic quality 692 

control was first performed by cohort, excluding extremely low-quality SNPs and genotyped individuals 693 

as well as excluding extreme population outliers. Low quality SNPs and genotyped individuals were 694 

excluded using PLINK 1.9 (--geno 0.1 and --mind 0.1)55. Population structure was assessed by projecting 695 

HapMap3 principal components (PCs) using EIGENSOFT56 6.1.4. Extreme outliers from the European 696 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=21418557570480334&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:236a0b82-b92b-4623-aac0-3e99dc4b326e,f3834698-7128-44f6-b0be-3eb9e7063be7:cd4b539a-e396-447f-aa2e-4d9fc4826e67
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=5945453082310459&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:55d0f175-9db5-4571-9a2d-14d1cbc65792
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ancestries population were removed (> 25 SD on PC1-4). Finally, cohorts were merged into strata based 697 

on genotyping platforms to preserve the maximum number of SNPs (Supplementary Table 2). Four out 698 

of 6 strata were formed by only a single platform. The remaining two strata included multiple platforms 699 

with 420,952 and 299,625 overlapping SNPs across platforms in these strata.  700 

After excluding major SNP and sample outliers in cohort QC and merging cohorts into strata, stringent 701 

SNP QC was performed per stratum. The following filter criteria were applied: MAF > 0.01, SNP 702 

genotyping rate > 0.98, Deviation from Hardy-Weinberg disequilibrium in controls P > 1 × 10-5, and 703 

haplotype-biased missingness P > 1 × 10-8 (PLINK --maf 0.01, --geno 0.02, --hwe 1e-5 midp include-704 

nonctrl, --test-mishap). Then, more stringent QC thresholds were applied to exclude individuals: 705 

individual missingness > 0.02, inbreeding coefficient |F| > 0.2, mismatches between genetic and 706 

reported gender, and missing phenotypes (PLINK --mind 0.02, --het, --check-sex). Subsequently, SNPs 707 

with a differential missingness (--test-missing midp) P < 1 × 10-4 were excluded. Duplicate individuals 708 

were removed (PI_HAT > 0.8).  Finally, outliers from the European ancestries reference population 709 

(projected on HapMap 3: > 10 SD from CEU on PC1-4 and projected on 1000 Genomes: > 4 SD from 710 

CEU on PC1-4) and outliers within the stratum itself (> 4SD from stratum mean on PC1-4) were 711 

removed (Supplementary Figures 54-59).  712 

After removing outliers, principal components were recalculated for each stratum. To assess the result 713 

of quality control prior to imputation, genomic inflation factors per stratum were calculated using 714 

SAIGE57 to run a logistic mixed model regressing SNP genotype on ALS case-control status. SAIGE 715 

internally calculates an equivalent of a genetic relationship matrix to correct for relatedness and 716 

population structure. Additionally, PC1-20 and genotyping platform were included as covariates.  717 

The number of individuals and SNPs passing quality control for each stratum prior to imputation is 718 

described in Supplementary Table 2. 719 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=9132025939873699&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:367fce23-5922-4bcf-8d2e-f8fadf0a488e
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Post Imputation quality control  720 

Strata were then imputed using the HRC reference panel (r.1.1 2016) on the Michigan Imputation 721 

Server16. Data was phased using Eagle 2.3. After imputation, one individual of each pair of related 722 

samples across strata (PI_HAT > 0.125) was removed whereas related pairs within a stratum were 723 

retained since the genetic relationship matrix corrects for relatedness. Post-imputation variant-level 724 

quality control included removing all monomorphic SNPs and multi-allelic SNPs from each stratum. 725 

SNPs with MAF < 0.1% in the HRC imputation panel were excluded. Subsequently, INFO scores were 726 

calculated for each stratum based on dosage information using SNPTEST58 v2.5.4-beta3. Within each 727 

stratum, SNPs with an INFO-score < 0.6 and those deviating from Hardy-Weinberg equilibrium at P < 1 728 

× 10-5 in control subjects were removed. Effective sample size was calculated for each stratum: 729 

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 4 ⋅ 𝑁𝑁𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐 ⋅ 𝑁𝑁𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐 + 𝑁𝑁𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  730 

The difference in sample size and number of SNPs for each stratum prior to imputation, resulted in a 731 

different set of SNPs passing post-imputation quality control for each stratum. Therefore, only SNPs 732 

that were successfully imputed in an effective sample meeting > 50% of the maximum effective sample 733 

size were included.  734 

The number of individuals and SNPs passing quality control for each stratum after imputation is 735 

described in Supplementary Table 2. 736 

Association testing and meta-analysis  737 

After quality control, a null logistic mixed model was fitted using SAIGE57 0.29.1 for each stratum with 738 

PC1-20 as covariates. The model was fit on a set of high-quality (INFO >0.95), pruned with PLINK 1.9, 739 

(--indep-pairwise 50 25 0.1) SNPs in a leave-one-chromosome-out scheme. Subsequently, a SNP-wise 740 

logistic mixed model including the saddle point approximation test was performed using genotype 741 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=8455709886883279&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:4709cf16-1b4b-42f9-9aea-e40d6a225bd6
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=9066983699670315&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:42aada4f-d5bc-4abe-8c8d-5752c77ec485
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=4400834792020548&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:367fce23-5922-4bcf-8d2e-f8fadf0a488e
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dosages with SAIGE. Association statistics for all strata were combined in an inverse variance-weighted 742 

fixed effects meta-analysis using METAL59. 743 

Genomic inflation factors were calculated per stratum and for the full meta-analysis. To assess any 744 

residual confounding due to population stratification and artificial structure in the data we calculated 745 

the LD Score regression (LDSC)60 intercept using SNP LD-scores calculated in the HapMap3 CEU 746 

population. 747 

Cross-ancestry analyses. 748 

GWAS summary statistics from two Asian ancestry studies were obtained8,10. These summary statistics 749 

were meta-analyzed with all European ancestry in strata as described above. To assess genetic 750 

correlation for ALS in the European and Asian ancestries, we used Popcorn61 version 0.9.9. We used 751 

population specific LD scores for genetic impact and genetic effect provided with the Popcorn 752 

software. The regression model (--use_regression) was used to estimate genetic correlation. We 753 

calculated both the correlation of genetic effects (correlation of allelic effect sizes) and genetic impact 754 

(correlation of allelic effect size adjusted for difference in allele frequencies). 755 

Conditional SNP analysis 756 

Conditional and joint SNP analysis (COJO, GCTA v1.91.1b)62,63 was performed to identify potential 757 

secondary GWAS signals within a single locus. SNPs with association P ≤ 5 × 10-8 were considered. 758 

European ancestry controls from the health and retirement study (HRS, cohort 65, Supplementary 759 

Table 1), included in stratum 4 of this study, were used as LD reference panel.  760 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=11260325239036217&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:18ec838a-b2c6-4984-9343-0230f714e0ad
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=022072774809593465&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:b6e2e0af-0059-4acd-92ea-cd589fc70297
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=37264776005331135&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:d79e9848-3a8b-4bac-9b30-d3a973b455cf,f3834698-7128-44f6-b0be-3eb9e7063be7:382f5352-32e5-430e-8747-bf33d23a4cbc
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=7336178957082811&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:b85a2dd9-6527-425f-9335-a0fef88da48d
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=46955346436282097&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:d97cf2a6-2bd2-4b0e-b30e-6108387221e9,f3834698-7128-44f6-b0be-3eb9e7063be7:5d031213-c287-48aa-84ae-a3d8917bf730
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Gene prioritization. 761 

Whole-genome sequencing 762 

Sample selection, sequencing and data preparation. 763 

ALS cases and controls from Project MinE64 were recruited for whole genome sequencing. The 764 

participating cohorts are described in the Supplementary Note. A full description of Project MinE, the 765 

sequencing and quality control pipeline were described previously65. In summary, the first batch of 766 

2,250 cases and control samples were sequenced on the Illumina HiSeq 2000 platform. All remaining 767 

7,350 cases and controls were sequenced on the Illumina HiSeq X platform. All samples were 768 

sequenced to ~35X coverage with 100bp reads and ~25X coverage with 150bp reads for the HiSeq 2000 769 

and HiSeq X respectively. Both sequencing sets used PCR-free library preparation. Samples were also 770 

genotyped on the Illumina 2.5M array. Sequencing data was then aligned to GRCh37 using the iSAAC 771 

Aligner, and variants called using the iSAAC variant caller; both the aligner and caller are standard to 772 

Illumina’s aligning and calling pipeline. 773 

Quality control  774 

For variant-level quality control, we set sites with a genotype quality (GQ) < 10 to missing and SNVs 775 

and indels with quality (QUAL) scores < 20 and < 30, respectively, were removed. We subsequently 776 

performed sample-level quality control. An overview of the number of samples that have been 777 

excluded at each of the following QC steps, stratified by country of origin, is included in Supplementary 778 

Table 3.  779 

We estimated kinship coefficients (i.e., relatedness) using the KING method, as implemented in the 780 

SNPRelate package in R. In some instances, cohorts were intentionally enriched for related samples. 781 

We identified all pairs of related individuals (kinship > 0.0625).  782 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=25824650526579607&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:18c734e0-4ee5-4c32-915a-69670dbfc11f
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=6020790633766342&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:a0fc8f02-e3dd-4b53-a79e-efa8b00a75ef
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We calculated the transition-transversion ratio in each sample using SnpSift 4.3p. In WGS data, the 783 

expected transition-transversion ratio is ~2.0. Samples with a Ti/Tv ratio ± 6 SD from the full 784 

distribution of samples were removed.  785 

Per sample, we calculated the total number of SNVs and total number of singletons. We removed 786 

samples with a total number of SNVs or Singletons > 6 SD from the mean. The transition in sequencing 787 

platforms from HiSeq 2000 to HiSeq X (which occurred in parallel with a change in the calling pipeline, 788 

to improve indel detection) caused an increase in observed indels per sample. Samples were thus 789 

filtered by platform (HiSeq 2000 or HiSeq X) and removed samples with number of indels ± 6 SD from 790 

the mean of their respective group.  791 

We calculated average sample depth and again observed noticeable differences between those 792 

samples sequenced on the HiSeq 2000 and the HiSeq X, where average depth of coverage was 793 

somewhat higher (35X, on average) for samples sequenced on HiSeq 2000 compared to the samples 794 

sequenced on the HiSeqX (25X, on average). We removed no samples at this step. 795 

Using the genetically inferred sex based on the number of X and Y chromosome, we tested to see if 796 

the inferred genetic sex was concordant with the sex as annotated in the available phenotype 797 

information. We excluded samples with mismatching information and samples for which phenotypic 798 

information is missing at this time.  799 

We performed the remaining sample QC on high-quality variants:  We removed all multi-allelic SNVs, 800 

Plink 1.9 (--geno), variants with a missingness > 2% were excluded. We calculated Hardy-Weinberg 801 

equilibrium (HWE) in controls only, PLINK 1.9 (--hwe midp), and removed all variants with HWE P < 1 × 802 

10-5. We calculated differential missingness, PLINK 1.9 (--test-mishap) between cases and controls and 803 

removed variants with P < 1 × 10-8. Samples with a missingness > 2%, in SNV and indels, were excluded. 804 

Final steps of sample QC was performed on a set of variants with a MAF > 10%, SNP missingness < 805 

0.1%, variants residing outside four complex regions (the major histocompatibility complex (MHC) on 806 

chromosome 6; the lactase locus (LCT), on chromosome 2; and inversions on chromosomes 8 and 17); 807 
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and we excluded the A/T and C/G variants. We used the SNVs to calculate observed and expected 808 

autosomal homozygous genotype counts for each sample PLINK 1.9 (--het); samples with |F| > 0.1 809 

were excluded. We excluded duplicate samples; PLINK 1.9 (--genome) with a PIHAT > 0.8, keeping the 810 

maximum number of non-duplicated individuals.  811 

Principal component analysis (PCA) implemented in EIGENSOFT was used to visualize potential 812 

structure in the data, induced by population stratification or other variables. Projections onto 813 

HapMap3 and the 1KG phase3 v5 populations indicated that the samples were primarily of European 814 

ancestry, though some were of African or East Asian ancestries, while other samples appeared to be 815 

admixed. Outliers from the European population (HapMap3: > 10 SD on PC1-4, 1KG: > 4 SD on PC1-4).  816 

All samples were sent in batches to Illumina for sequencing. To prevent spurious association due to 817 

batch specific artifacts, we regressed all variants on a dummy coded variable indicating batch using 818 

PLINK 1.9 (--logistic). All variants with an association P < 1 × 10-10 in at least 1 batch were excluded.  819 

Genic burden association analyses 820 

To aggregate rare variants in a genic burden test framework we used a variety of variant filters to allow 821 

for different genetic architectures of ALS associated variants per gene as we and others have used 822 

previously65,66. In summary, variants were annotated according to allele-frequency threshold (MAF < 823 

0.01 or MAF < 0.005) and predicted variant impact (“missense”, “damaging”, “disruptive”). 824 

“Disruptive” variants were those variants classified as frame-shift, splice-site, exon loss, stop gained, 825 

start loss and transcription ablation. “Damaging” variants were missense variants predicted to be 826 

damaging by seven prediction algorithms (SIFT67, Polyphen-268, LRT69, MutationTaster270, Mutations 827 

Assessor71, and PROVEAN72). “Missense” variants are those missense variants that did not meet the 828 

“damaging” criteria. All combinations of allele frequency threshold and variant annotations were used 829 

to test the genic burden on a transcript level in a Firth logistic regression framework where burden 830 

was defined as the number of variants per individual. Sex and the first 20 principal components were 831 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=7773565360168437&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:a0fc8f02-e3dd-4b53-a79e-efa8b00a75ef,f3834698-7128-44f6-b0be-3eb9e7063be7:39ec850c-523c-48eb-9f26-0160ce97eb62
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=9421414200583459&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:b45a3169-a1e3-428e-8d65-e7b22a9121cf
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=5009375557271505&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:3de3a63d-ca05-4dff-8c21-13e6a37228ef
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=2940910228291689&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:a638b385-0fc2-4b71-9255-b83b527a2fe4
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=7828532604451347&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:3316bef6-b469-4ba4-b266-df462056f016
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=7037692982058155&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:867e5a25-af73-4dbb-9180-d8e388738bd6
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=24898089170020876&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:ce258089-e73d-42e3-ac1a-0d9962a2e026
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included as covariates. All ENSEMBL protein coding transcripts for which at least five individuals had a 832 

non-zero burden were included in the analysis. 833 

Conditional genic burden analysis. 834 

We selected for each gene the protein coding transcripts that were strongest associated with ALS 835 

across all different combinations of MAF and variant impact thresholds that exhibited the strongest 836 

association with ALS. For these transcripts and variants, we applied Firth logistic regression on 837 

individuals overlapping the GWAS and WGS dataset (5,158 cases and 2,167 controls). To assess 838 

whether the rare variant burden association and the signal from GWAS were conditionally 839 

independent we subsequently included the genotype of the top-associated SNP within that locus as 840 

covariate. 841 

Short tandem repeat screen 842 

For all individuals that were sequenced on the HiSeqX dataset (5,392 cases, 1,795 controls) we 843 

screened all loci harboring SNPs associated with ALS meeting genome-wide significance for expansions 844 

of known and new short tandem repeats (STRs) using ExpansionHunter73 and ExpansionHunter 845 

Denovo74.  846 

First we used ExpansionHunter (v4.0) to screen for expansions of known STRs located within 1 MB of 847 

the top ALS-associated SNP. For this we used the STR catalogue of the ExpansionHunter software which 848 

is based on STRs identified from indels in 18 high quality genomes and the gangSTR STR catalogue 849 

based on STR annotations in the reference genome75. From these catalogues, we excluded all 850 

homopolymers. Repeat length was subsequently regressed on case-control status using Firth logistic 851 

regression including the first 20 principal components as covariates, recoding the STR size to a biallelic 852 

variant using a sliding window over all observed repeat lengths. To correct for multiple testing across 853 

all possible thresholds, we applied Benjamini Hochberg correction per STR.  854 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=9245195364172797&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:9f92a855-c9c2-4910-ac4e-c7affbc14f75
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=0502223981382417&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:598f2168-c9e9-4b97-a5f8-5ff322eb3354
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=0371594712082276&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:36250cba-4afe-4a33-a924-c84118aebdfa


36 
 

36 
 

To screen for extremely long STR expansions (similar to the C9orf72 repeat expansion) at loci that not 855 

included in the predefined STR catalogues, we applied ExpansionHunter-Denovo74. This method aims 856 

to only find STR expansions that exceed the sequencing read-length (> 150 bp) by identifying reads 857 

(mapped, mismapped and unmapped) that contain STR motifs, using their mate pairs for de novo 858 

mapping to the reference genome. 859 

For all STRs we calculated linkage disequilibrium statistics (r2 and |D’|) between recoded repeat 860 

genotypes at the optimal threshold and the top associated GWAS SNP. Subsequently, we conditioned 861 

the SNP association on the repeat genotype in a Firth logistic regression. 862 

Summary-based Mendelian randomization  863 

We used multi-SNP SMR76,77 to infer the effect of gene expression variation on ALS using eQTLs (the 864 

association of a SNP with expression of a gene) on ALS risk. MetaBrain is a harmonized set of 8,727 865 

RNA-seq samples from 7 regions of the central nervous system from 15 datasets, and we selected 866 

eQTLs derived from the cortex region of the brain in samples of European ancestry (MetaBrain Cortex-867 

EUR eQTLs) as our instrument variable20. The European-only ALS summary statistics were used as the 868 

outcome. To supplement this analysis, we also used eQTLs in blood from the eQTLGen consortium, as 869 

this is the largest eQTL resource available. European-ancestry samples in the Health and Retirement 870 

study (HRS, cohort 65 of this GWAS) were used as LD reference panel. SNP with MAF ≥ 1% in HRS were 871 

included. Further SMR settings were left as default, meaning probes with at least one eQTL with P ≤ 5 872 

× 10-8 were included.  873 

We subsequently performed SMR using DNA methylation QTL (mQTL) data and European-only ALS 874 

summary statistics. Human prefrontal cortex and whole blood DNA mQTLs were generated as part of 875 

ongoing analyses by the Complex Disease Epigenomics Group at the University of Exeter 876 

(www.epigenomicslab.com) using the Illumina EPIC HumanMethylation array that quantifies DNAm at 877 

>850,000 sites across the genome21. The prefrontal cortex mQTL dataset was generated using DNA 878 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=18287359242498658&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:598f2168-c9e9-4b97-a5f8-5ff322eb3354
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=5898962486522109&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:82d7398b-4520-4a75-b4a3-748d9dcb3732,f3834698-7128-44f6-b0be-3eb9e7063be7:420ab3dc-e449-4d6d-a51f-1982ece541e8
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=6200084904980782&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:a107412f-adb2-4fb8-86f1-19d4404fcecf
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=04202049937185104&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:f53927b6-b022-4ded-b565-304c669ae520
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methylation and SNP data from 522 individuals from the Brains for Dementia Research cohort22 and 879 

included 4,623,966 cis mQTLs (distance between QTL SNP and DNAm site ≤ 500 kb) between 1,744,102 880 

SNPs and 43,337 DNA methylation sites. The whole blood mQTL dataset was generated using DNAm 881 

and SNP data from 2,082 individuals78 and included 30,432,023 cis mQTLs between 4,030,902 SNPs 882 

and 167,854 DNA methylation sites. mQTLs reaching the significance threshold P ≤ 1 × 10-10 were taken 883 

forward for SMR analysis as described by Hannon and colleagues78. To map CpG sites to their putative 884 

target genes we used the expression quantitative trait methylation (eQTM) results from a paired 885 

methylation and gene expression (RNA-seq) study in blood79. For CpG sites where no eQTM were 886 

present in this dataset, we used positional mapping based on the basal regulatory domains and 887 

extended regulatory domains as defined in the Genomic Regions Enrichment of Annotations Tool 888 

(GREAT)80 which is applied in the `cpg_to_gene` function in the CpGtools toolkit81. 889 

Polygenic Priority Score (PoPS) 890 

We used the polygenic priority score (PoPS24 v0.1) to rank genes according to the gene features that 891 

were enriched in ALS. For this we applied MAGMA in the European ancestries GWAS since it depends 892 

on an LD reference panel (1000 Genomes Project, EUR population) to obtain gene-wise association 893 

statistics. We used the default 57,543 gene features that were based on expression data, protein-894 

protein interaction networks and pathway membership. Genes were ranked based on the Polygenic 895 

Priority Score. 896 

Cross-trait analyses in neurodegenerative diseases. 897 

Datasets and data preparation 898 

GWAS summary statistics for clinically-diagnosed Alzheimer’s disease (AD)26, Parkinson’s disease 899 

(PD)27, frontotemporal dementia (FTD)28, corticobasal degeneration (CBD)29, and progressive 900 

supranuclear palsy (PSP)15 in European ancestry individuals were obtained. For Alzheimer’s disease we 901 

https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=15989021386858193&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:730f05d0-36b2-48c1-b081-5f226bc359d3
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=1438430712411588&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:f3d65d40-c03f-4fc4-bd5d-5e7ffbda789f
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=5287944069876479&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:f3d65d40-c03f-4fc4-bd5d-5e7ffbda789f
https://app.readcube.com/library/f3834698-7128-44f6-b0be-3eb9e7063be7/all?uuid=11499960503245221&item_ids=f3834698-7128-44f6-b0be-3eb9e7063be7:d0f07a74-40b9-47f7-bea2-7497e7cdc650
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used the clinically diagnosis as case definition to avoid spurious genetic correlations that could have 902 

been introduced through the by-proxy design30 where by-proxy cases are defined as having a parent 903 

with Alzheimer’s disease. Although this is a powerful design for gene discovery and the genetic 904 

correlation with clinically diagnosed Alzheimer’s disease is high82, mislabeling by-proxy cases when 905 

parents suffer from other types of dementia (e.g. Lewy-body dementia, Parkinson’s dementia, FTD, or 906 

vascular dementia) can lead to spurious genetic correlations with ALS and other neurodegenerative 907 

diseases. For FTD, we primarily used the results of the cross-subtype meta-analysis which includes 908 

behavioral variant FTD (bvFTD), semantic dementia (sdFTD), progressive non-fluent aphasia (pnfaFTD) 909 

and motor neuron disease FTD (mndFTD). For CBD, allele coding were missing and effect alleles were 910 

inferred by matching allele frequencies to those observed in the Haplotype Reference Consortium. 911 

SNPs with minor allele frequency > 0.4 were excluded. Since downstream methods rely on LD-scores 912 

or population-specific LD patterns, the European ancestry summary statistics from the present study 913 

were used for ALS. For sample size parameters, effective sample size was calculated as described 914 

previously.  915 

Genetic correlation 916 

We first assessed residual confounding through estimating the LD Score regression60 intercept using 917 

LDSC (v.1.0.0): ALS = 1.03 (SE 0.0073), AD = 1.03 (SE 0.013), PD = 0.98 (SE 0.0065), PSP = 1.05 (SE 918 

0.0076), CBD = 0.98 (SE 0.0073), FTD = 1.00 (SE 0.0071), showing limited inflation of test statistics due 919 

to confounding across these studies. Genome-wide genetic correlation between neurodegenerative 920 

traits was calculated using LDSC (v1.0.0). Pre-computed LD-scores of European individuals in the 1000 921 

Genomes project for high-quality HapMap3 SNPs were used (eur_w_ld_chr). A free intercept was 922 

modelled to allow for potential sample overlap. 923 
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Colocalization 924 

For each locus (top-SNP +/- 100KB) harboring SNPs with an association with any of the 925 

neurodegenerative diseases at P < 1 × 10-5 we performed colocalization analysis using the `coloc` 926 

package in R.83 We set the prior probabilities to π 1 = 1 × 10-4, π 2 = 1 × 10-4, π12 = 1 × 10-5 for a causal 927 

variant in trait 1, trait 2 and a shared causal variant between trait 1 and 2 respectively. Using the same 928 

parameters, we performed colocalization analysis for ALS and each of the FTD subtypes (bvFTD, sdFTD, 929 

pnfaFTD, mndFTD). 930 

Enrichment analyses 931 

LD-score regression annotation-specific enrichment analysis  932 

We used LDSC (v1.0.0) to calculate SNP-based heritability, the LDSC intercept and SNP-based 933 

heritability enrichment for partitions of the genome. In all LDSC analyses, summary statistics excluding 934 

the HLA region of only European ancestry samples were included. LD scores and partitioned LD scores 935 

provided by LDSC were used for genome-wide and genic region-based heritability analyses. The option 936 

--overlap-annot was used in the partitioned heritability analysis to allow for overlapping SNP between 937 

MAF bins. SNPs with a MAF > 5% were included. 938 

Tissue and cell-type enrichment analysis 939 

Tissue and cell-type enrichment analyses were performed using the GWAS summary statistics of the 940 

European ancestries meta-analysis and FUMA32 software v1.3.6a. FUMA performs a genic aggregation 941 

analysis of GWAS association signals to calculate gene-wise association signals using MAGMA v1.6 and 942 

subsequent tests whether tissues and cell-types are enriched for expression of these genes. For tissue 943 

enrichment analysis we used the GTEx v8 reference set. For cell-type enrichment analyses33 we used 944 

human-derived single-cell RNA sequencing data on major brain cell-types (GSE67835 without fetal 945 
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samples84), the Allen Brain Atlas Cell-type85 for the human-derived major neuronal subtypes and the 946 

DropViz86 dataset for mouse-derived brain cell-types across all brain regions. 947 

Pathway enrichment analysis 948 

We used the Downstreamer software20 to identify enriched biological pathways and processes. First, 949 

gene-based association statistics are obtained through the PASCAL method87 which aggregates SNP 950 

association statistics including SNPs up to 10kb up- and downstream of a gene, accounting for linkage 951 

disequilibrium using the non-Finish European individuals from the 1000 Genomes Project phase 3 (ref. 952 

88) as a reference. In the Downstreamer method, putative core genes are defined as those that are 953 

coexpressed with disease-associated genes and can therefore be implicated in disease. Co-expression 954 

networks are based on either a large, multi-tissue transcriptome dataset including 56,435 genes and 955 

31,499 individuals, or brain-specific RNA-sequencing data obtained in the MetaBrain resource. The 956 

gene-based association statistics, co-expression matrix and gene Z-scores per pathway or HPO term 957 

are then combined in a generalized least squares regression model to obtain enrichment statistics.20 958 

Enrichment analyses were performed for Reactome, Gene Ontology and Human Phenotype Ontology 959 

(HPO) terms using the multi-tissue or brain-specific transcriptome datasets to calculate the co-960 

expression matrix. 961 

The distribution of enrichment Z-score statistics were compared between the analyses using the multi-962 

tissue or the brain-specific co-expression matrices. Using the ‘pyhpo’ module in Python, all HPO terms 963 

were assigned to their parent term(s) in the “Phenotypic abnormality” (HP:0000118) branch which 964 

includes phenotypic abnormalities grouped per organ system. 965 

Mendelian Randomization 966 

Causal inference through MR analysis was performed for 22 exposures for which large-scale GWAS are 967 

available and for which there is prior evidence for an association with ALS. These include 7 behavioral 968 
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related traits: body mass index (anthropometric)89, years of schooling (educational attainment)90, 969 

alcoholic drinks per week, age of smoking initiation and cigarettes per day from Liu et al.91, days per 970 

week moderate physical activity and days per week vigorous activity from UK Biobank92; 4 blood 971 

pressure traits: coronary artery disease93, stroke94, diastolic blood pressure and systolic blood 972 

pressure95; 7 immune system traits from Vuckovic et al.96 (basophil, eosinophil, lymphocyte, monocyte, 973 

neutrophil and while blood cells) and C-reactive protein97; and 4 lipid traits from Willer et al.98 (HDL 974 

cholesterol, LDL cholesterol, total cholesterol and triglycerides). A full description of the included 975 

studies is provided in Supplementary Table 25. From these GWASs, SNPs to serve as instruments for 976 

MR analyses were selected at two different p-value cut-offs (P < 5 × 10-8 and P < 5 × 10-5) and then LD 977 

clumped to obtain independent SNPs. SNP effect estimates on ALS risk were obtained from the 978 

European ancestries only GWAS and if needed an LD-proxy was selected (r2 > 0.8). 979 

After harmonizing effect-alleles and excluding palindromic SNPs, we performed a series of quality 980 

control steps to avoid biased estimates of causal effects, checking for each exposure the (i) instrument 981 

coverage (> 85% overlapping SNPs, Supplementary Table 30), (ii) instrument strength (F-statistic36,99,100 982 

> 10, Supplementary Table 31), (iii) distribution and significance of the Wald ratios (visual inspection 983 

of volcano plots, Supplementary Table 32) and (iv) heterogeneity across the instrument-exposure 984 

effects (Q-statistic at P < 0.05 indicating heterogeneity, Supplementary Table 33). 985 

We applied 5 different MR methods: Inverse variance weighted (IVW) using the random effects model, 986 

MR-Egger, simple mode, weighted median and weighted mode methods.  When only a single SNP was 987 

available the Wald ratio (WR) test was conducted.  MR analysis was conducted in R using the `mr()` 988 

function in the `TwoSampleMR` package101.   989 

Subsequently, Radial MR analysis was conducted to determine if Wald ratio outliers needed to be 990 

removed from the IVW or MR-Egger MR estimates37.  In addition, we conducted a Q-test to identify 991 

outlier SNPs (P < 0.05).  These outliers were then removed from the original MR analyses (across all 5 992 

MR methods). The Radial MR analysis was conducted using the RadialMR R package 993 
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(https://github.com/WSpiller/RadialMR). In order to determine that the MR effects were orientated 994 

in the correct direction (from exposure to ALS) we conducted both reverse MR102 and Steiger filtering103 995 

on our top MR findings.    996 

Finally, we explored whether the MR effects of our total and LDL cholesterol and systolic blood 997 

pressure exposures may be confounded by the effect we observed for years of schooling by conducting 998 

multivariate MR analysis104.  Conditional F and Q statistics were calculated using the `MVMR` 999 

package105 in R. 1000 
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Figures

Figure 1

Manhattan plot of cross-ancestry meta-analysis. Horizontal dotted line re�ects threshold for calling SNPs
genome-wide signi�cant (P = 5 × 10-8). Gene labels re�ect those prioritized by gene prioritization
analysis.

Figure 2

Shared genetic risk among ALS and neurodegenerative diseases. (a) Genetic correlation analysis. Genetic
correlation was estimated with LD-score regression between each pair of neurodegenerative diseases
being ALS, Alzheimer’s disease (AD), corticobasal degeneration (CBD), Parkinson’s disease (PD),



progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Lower left triangle shows
correlation estimate and upper right triangle shows -log10(P-value). Correlations marked with an asterisk
were statistically signi�cant P < 0.05. (b) SNP associations of ALS lead SNPs or LD-proxies in
neurodegenerative diseases. Effective sample size is shown on the left. Posterior probabilities of the
same causal SNP affecting two diseases were estimated through colocalization analysis and highlighted
as connections.

Figure 3

Tissue and cell-type enrichment analysis. (a) Enrichment of tissues and brain regions included in the
GTEx v8 illustrates a brain-speci�c enrichment pattern in ALS, similar to Parkinson’s disease but
contrasting Alzheimer’s disease. (b) Cell-type enrichment analyses indicate neuron-speci�c enrichment for
glutamatergic neurons. No enrichment was found for microglia or other non-neuronal cell-types,
contrasting the pattern observed in Alzheimer’s disease. Statistically signi�cant enrichments after



correction for multiple testing with a false discovery rate (FDR) < 0.05 are marked with an asterisk. ALS =
amyotrophic lateral sclerosis, PD = Parkinson’s disease, AD = Alzheimer’s disease, Cx = cortex, OPC =
oligodendrocyte progenitor cells.

Figure 4

Causal inference of total cholesterol and years of schooling in ALS. (a) Mendelian randomization results
for ALS and total cholesterol. Results for the �ve different Mendelian Randomization methods for two
different P-value cut-offs for SNP instrument selection. All methods show a consistent positive effect for
an increased risk of ALS with higher total cholesterol levels. There is no evidence for reverse causality. (b)
Mendelian randomization results for ALS and years of schooling. Error-bars re�ex 95% con�dence
intervals. Statistically signi�cant effects that pass Bonferroni correction for multiple testing for all tested
traits and MR methods are marked with an asterisk. Z = genetic instrument, MR = Mendelian



Randomization, IVW = inverse-variance weighted, bxy = estimated causal effect for one standard
deviation increase in genetically predicted exposure.
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