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Abstract One unifying explanation for the complexity of

Autism Spectrum Disorders (ASD) may lie in the disruption

of excitatory/inhibitory (E/I) circuit balance during critical

periods of development. We examined whether Parvalbumin

(PV)-positive inhibitory neurons, which normally drive

experience-dependent circuit refinement (Hensch Nat Rev

Neurosci 6:877–888, 1), are disrupted across heterogeneous

ASD mouse models. We performed a meta-analysis of PV

expression in previously published ASD mouse models and

analyzed two additional models, reflecting an embryonic

chemical insult (prenatal valproate, VPA) or single-gene

mutation identified in human patients (Neuroligin-3, NL-3

R451C). PV-cells were reduced in the neocortex across

multiple ASD mouse models. In striking contrast to controls,

both VPA and NL-3 mouse models exhibited an asymmetric

PV-cell reduction across hemispheres in parietal and occipital

cortices (but not the underlying area CA1). ASD mouse

models may share a PV-circuit disruption, providing new

insight into circuit development and potential prevention by

treatment of autism.
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A severe neurobehavioral syndrome with a heterogeneous

phenotype, autism spectrum disorders (ASD) are among the

most heritable neurodevelopmental disorders of early

childhood with an incidence as high as one child in 166.

ASD is primarily a genetic disorder of prenatal and early

postnatal brain development involving multiple risk genes,

disrupted epigenetic pathways and possible environmental

insults [2]. At present, there is no wholly effective treatment

nor is it understood which biological pathways are

specifically disrupted in individuals with autism. The

diagnostic indicators of autism are core behavioral symp-

toms, rather than definitive neuropathological markers.

Autistic children exhibit impaired language, abnormal

social interactions and repetitive behaviors. One third of

ASD patients have seizures and evidence of altered

inhibition in the brain [3].

One unifying explanation for the complexity of ASD

may lie in the disruption of excitatory/ inhibitory (E/I)

circuit balance during critical periods of development [4–6].

Neuronal circuits are refined by extraordinary levels of

plasticity during sensitive periods in early development,

which are diminished in adulthood. It is during these

“critical periods” that single neurons acquire multiple

functional properties through an experience-dependent

maturation. Recent findings have revealed that E/I circuit

dynamics can dictate the normal timing of critical periods

in brain development [1]. Gene-targeted deletion of a
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GABA-synthetic enzyme (GAD65 KO) in mice delays

plasticity onset within the visual cortex indefinitely [7],

which can be rescued at any age with benzodiazepines [8].

Detailed local circuit analysis in vivo has further identified

a single GABAergic cell type — the Parvalbumin (PV)-

positive basket cell (Fig. 1) — as the key player for critical

period plasticity [9–11]. The calcium-binding protein PV

marks the largest class of inhibitory interneuron in the cortex

and makes up ~40% of the GABA cell population [12]. They

are born in the medial ganglionic eminence (MGE) on

embryonic day E13.5 [13] and can later be found throughout

the brain, including hippocampus, thalamus and cortex.

In neocortex, the two primary types of PV-cell are axon

initial segment-targeting chandelier cells and soma-targeting

large basket cells. The latter have a large, round soma with

several prominent radial dendrites. PV expression begins near

postnatal day P12 in layer 5 and matures in an inside-out

laminar progression by around P21 in visual cortex and

somewhat earlier in somatosensory and other cortical regions

[12, 14]. With age, PV-cells become preferentially enwrapped

in chondroitin sulphate proteoglycans that form a perineuro-

nal net, which may buffer the ionic environment surrounding

these cells [15] or act to limit growth and sprouting of

impinging thalamic axon terminals [16]. Interestingly, remov-

al of these nets can reactivate critical period plasticity in adult

animals [17].

The mouse model system provides a method to experi-

mentally test whether postnatal neurodevelopmental disorders

of human cognition involve dysfunction of such critically

timed activity-dependent processes. Mouse models of ASD

have been developed that reflect genetic alterations associated

with autism [18]. Some are based on monogenic aberrations

(Neuroligin-3, Neuroligin-4, MeCP2, TSC1/2, FMR1, ubiq-

uitin protein ligase 3A (Ube3A)) that underlie syndromes

associated with autistic-like behavior. Other mutant lines are

relevant to loci for autism susceptibility, identified by

association or linkage in human populations. Advances have

included the evaluation of mouse models with behavioral

assays designed to reflect disease symptoms, including

impaired social interaction, communication deficits and

repetitive behaviors, and symptom onset during the neonatal

period.

A meta-analysis of previously published reports reveals

that PV-cells are consistently reduced in the neocortex of

multiple mouse models of ASD (Table 1). Such a shared

circuit defect from heterogeneous genetic origins may

further our understanding of the complex etiology of ASD

and offers novel targets for therapeutic intervention. We

therefore examined a representative embryonic insult and

single-gene mutation model in greater detail from a PV-cell

perspective.

Global genetic perturbations are produced by prenatal or

neonatal environmental challenges, including early expo-

sure to the HDAC inhibitor valproic acid (VPA) or

inflammatory agents that have been suggested as autism

risk factors by clinical surveys. A robust model has

previously been developed in rats based on the fact that

treatment of epilepsy or bipolar disorder in pregnant

women around 20–24 days post-conception with the drug

VPA is linked to an increased incidence of ASD in their

children [19–21]. The physically healthy offspring of

pregnant rats treated with a single dose of VPA at an

equivalent gestational time point recapitulate the human

ASD phenotype [22, 23]. Related VPA mouse models have

been attempted, but most involve postnatal VPA treatment

not consistent with human studies [24, 25]. One group used

a slightly higher dose at a later time point, but they did not

evaluate behaviors implicated in autism [24].

Fig. 1 Specific GABA circuits

(large basket PV-cells) trigger a

developmental critical period.

PV, parvalbumin; CR, calretinin;

SOM, somatostatin; CCK,

cholecystokinin; a1-6, GABA-A

receptor a-subunit
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We translated the well-established rat model into mice by

using the same dose at an equivalent injection time point and

evaluated behavior of the offspring [26, 27]. Five out of nine

VPA-injected pregnant females (500 mg/kg, i.p.) gave birth

to viable litters, and of these, two litters included some mice

with minor skeletal defects like bent tails and fused fingers.

We concluded that this dose was appropriate because it was

strong enough to have a teratogenic effect, but not too strong

to cause gross impairments. We then compared PV-cell

anomalies in the brain by immunostaining of VPA-treated

mice and a representative single-gene mutant of Neuroligin-3

(NL-3 R451C) reported to exhibit autistic features [28]

concomitant with enhanced cortical inhibitory synapse

function [6]. Note that an independently generated R451C

mutant mouse line revealed a different behavioral phenotype,

but was not characterized for expression of mutant NL-3 and

its electrophysiological consequences [29], making it unclear

how similar the line is to the original R451C mutant mice.

Common disruption of parvalbumin-positive GABA

circuits in ASD models

To determine whether our VPA mouse model shares a

similar disruption of inhibitory circuits with other mouse

models of ASD, we analyzed the distribution of PV-positive

interneurons in the brains of adult mice (>P60). In contrast

to the even distribution across the neocortex of control

animals, several areas in the neocortex of VPA-exposed

mice entirely lacked PV-cells or had substantially reduced

PV-cell numbers especially in the upper layers (Fig. 2a).

These zones of sparse or absent PV-cell labeling (“PV-

empty zones”) spanned several hundred micrometers in the

rostro-caudal extent and did not match any single modality

but rather partially affected several functional compart-

ments, such as the primary somatosensory and secondary

visual cortices. PV-empty zones were surrounded by areas

that displayed normal PV-cell densities.

The precise location and extent of PV-empty zones were

slightly variable among littermates that shared concomitant

prenatal VPA exposure, including a small subset that did

not exhibit any noticeable abnormality. However, the

majority of VPA-treated mice shared a common PV-empty

zone in a region around the caudal part of primary

somatosensory cortex. We therefore decided to analyze this

region quantitatively, by defining a region of interest

between Bregma −1.70 mm and −2.06 mm (rostro-caudal

level, Paxinos) in the upper half of the neocortex (see

Suppl. Fig. 1 and Methods for details). In order to

investigate whether the PV deficiency in the neocortex

was generally present in other brain regions, we analyzed

PV-cell numbers in the hippocampal CA1 area beneath the

affected cortex (same rostro-caudal level; see Suppl. Fig. 1

and Methods for details of the region of interest). We found

no significant difference of PV-cell densities in CA1

between VPA- and saline-treated animals (Fig. 2b).

Strikingly, PV-empty zones were primarily found to affect

only one hemisphere, while the neighboring hemisphere at the

same rostro-caudal level seemed to be intact (Fig. 3a). We

therefore compared the visibly affected hemisphere of VPA

mice to either side of saline-treated control animals. This

analysis revealed a highly significant reduction of PV-cells

by prenatal VPA exposure (Fig. 2b). A lack of PV-cells in one

but not the other hemisphere suggests a strong imbalance in

fast, perisomatic inhibition between the two sides of the brain.

To quantify the extent of this imbalance, we calculated the

interhemispheric ratio (PV-cell number in the hemisphere with

lower density / PV-cell number in the opposite hemisphere).

While saline-exposed animals exhibited interhemispheric

ratios close to unity, VPA-exposed mice exhibited a robust

50% reduction of PV-cells in one of the two hemispheres. To

determine if this imbalance was general, we compared PV-cell

densities in the hippocampal CA1 region. No significant

difference in interhemispheric ratios between VPA- and

saline-treated mice were found in area CA1, indicating a

neocortex-specific deficit.

To address the possibility that the lack of PV-cells in

neocortex and an interhemispheric imbalance in inhibitory

circuits is a more robust hallmark of ASD models, we

investigated a single-gene mutation model of ASD, the

Gene/Condition Region Age Reference

FMRP somatosensory cortex P365 [94]

MeCP2 somatosensory cortex P14 [95]

CAPS2 motor cortex P17 [96]

uPAR anterior cingulate cortex parietal cortex >P90 [97]

NL-3 somatosensory cortex >P60 this study

VPA parietal cortex >P60 this study

prenatal immune challenge medial prefrontal cortex adult [98]

NPN2 hippocampus area CA3/CA1 >P60 [99]

En-2 hippocampus area CA3 P150 [100]

Table 1 PV-cell deficits across

ASD mouse models
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NL-3 R451C mutant mouse [6]. We found that NL-3

mutant mice exhibited very similar PV-cell deficiency and

interhemispheric imbalance as in the VPA model. NL-3

mutant mice were analyzed in the same way as described

above for prenatal VPA-treated animals. Once again, a

highly significant reduction of PV-cells in one hemisphere

was observed specific to the neocortex, as it was absent

from underlying CA1 (Fig. 2b). Inter-hemispheric ratios of
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Fig. 2 PV-cell deficit in VPA and NL-3 mutant mice. a Representa-

tive photomicrographs of PV immunohistochemistry in coronal

sections of saline-treated (SAL; top left), valproic acid-treated (VPA;

top right) Neuroligin3 wildtype (NL3 WT; bottom left) and mutant

(NL3 MUT; bottom right) mice. Scale bar: 500µm. b Quantitative

analysis of PV-cells in neocortex and hippocampal CA1 (see Suppl.

Fig. 1 and Mehods for details). For all animals, the hemisphere with

the lowest PV+ cell numbers was plotted. Note the specific reduction

of PV-cells in the neocortex of VPA-treated and NL3 mutant mice.

One-way ANOVA test: *** p<0.0001; Bonferroni multiple compar-

ison test, p<0.001; ns=not significant
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Fig. 3 Interhemispheric asymmetry of PV-cell deficit in VPA and

NL-3 mutant mice. a Representative photomicrographs of PV

immunohistochemistry in coronal sections of valproic acid treated

(VPA; top) and Neuroligin3 mutant (NL3 MUT; bottom) mice. Note

the difference in PV-cells in the two hemispheres. Scale bar: 500µm.

b Interhemispheric PV ratios calculated by dividing PV-cell numbers

in the two hemispheres at the same anterior-posterior level (ratio=

PV low density/PV high density hemisphere). One-way ANOVA

test: *** p<0.0001; Bonferroni multiple comparison test, p<0.001;

ns=not significant; SAL, saline control; WT, wild-type
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PV-cell numbers in NL-3 mutant mice were reduced >50%

specifically in the neocortex (Fig. 3). Whether hemispheric

asymmetries of PV-cells are evident in other ASD mouse

models (Table 1) remains to be explored.

We further confirmed an increase of GAD65 puncta in the

NL-3 mutant (Suppl. Fig. 2), consistent with the original

report by Tabuchi et al [6]. Normally, PV regulates the

dynamics of calcium levels and GABA release during action

potential bursts in this specific interneuron subset [30].

Interestingly, PV knockout mice themselves have recently

been reported to exhibit autistic features (B. Schwaller,

personal communication). A loss of PV expression in VPA-

treated or NL-3 mutant mice may then exacerbate an E/I

imbalance in favor of inhibition [6], as in other models of

ASD (Table 1). Thus, disparate genetic origins may underlie

a common circuit defect in ASD.

Impact of PV-cell defects in ASD

Unlike principal excitatory neurons, GABAergic interneurons

comprise a diverse group that consists of dozens of different

types. Cortical interneuron subtypes can be classified by their

morphology, electrophysiological properties, molecular con-

tent and specific connectivity patterns. The PV-positive, large

basket cells have been implicated in two functions (Fig. 4): 1)

initiation of a critical period for cortical plasticity [1], and 2)

generation and synchronization of gamma (γ)-oscillations in

the hippocampus and neocortex [31]. Both phenomena have

been suggested to be impaired in the etiology of cognitive

developmental disorders such as ASD, and can strikingly both

be accounted for by the common PV-cell deficit reported here.

Critical periods

Hubel and Wiesel were among the first to find physiological

evidence for developmental time windows when specific

brain circuits are more susceptible to experience-dependent

changes [1]. Monocular occlusion of one eye produces a shift

of neuronal response (ocular dominance) in favor of the open

eye only when deprivation occurs during a specific ‘critical

period’. Since then critical periods have been identified

across a variety of brain regions, sensory systems and species

[32]. Electrophysiological recording and morphological

analyses in vivo in genetically manipulated mice have

furthered our understanding of the mechanisms and demon-

strated the importance of PV-cells.

Beginning with the discovery that GABA-deficient

GAD65 knockout mice do not initiate a critical period

and that this deficit could be rescued at any age with

diazepam [7, 8], the theory emerged that a requisite E/I

balance within the cortex enables plasticity at the appropri-

ate time (Fig. 4a). Diazepam is a positive allosteric

modulator of GABAA channels that binds specific subunits

to increase channel open probability and increase inhibi-

tion. Diazepam administration can prematurely open the

critical period of wild-type mice, but targeted point

mutation of the α1 receptor subunit prevents diazepam

binding as well as its precocious initiation of plasticity [9].

GABAA receptors containing the α1 subunit are located on

the soma-proximal dendrite region of pyramidal cells. PV-

large basket cells preferentially target the same area

(Fig. 1), which undergoes an experience-dependent regula-

tion of receptor number during the critical period [10]. The

non-cell autonomous homeoprotein Otx2 is crucial for the

a b
plasticity

postnatal age

Fig. 4 Two functions of PV-cells that might be altered in ASD mouse

models. a Initiation of critical periods of brain development may be

delayed or accelerated in specific regions exhibiting PV-cell deficits. b

Generation of γ-oscillations during cognition and sensory processing

may be dampened asymmetrically across hemispheres, potentially

impairing long-range synchronization and communication [64, 80,

81]. Adapted from ref. 61
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maturation of PV-cells and, consistently is an essential

transcription factor for critical period initiation [11].

Taken together, these findings underscore the crucial

role PV-cells play in timing neocortical plasticity

(Fig. 4a), suggesting that PV-cell deficits may predictably

delay critical periods in specific ASD brain regions

(Table 1). Rescue of ASD models, such as the FMR1

knockout mouse by mGluR5 manipulation [33], can then

be reconsidered in terms of rebalancing PV-cell recruitment,

as mGluR5 is essential for long-term potentiation of

excitatory synapses onto these fast-spiking GABAergic

neurons [34]. Other direct strategies to enhance PV-cell

function, such as benzodiazepine agonists or the delivery of

Otx2 [11], may also prove fruitful. Conversely, to recali-

brate PV-cell discrepancies across hemispheres in adult

mice (Fig. 3), the administration of chondrotinases to

remove peri-neuronal nets that preferentially enwrap mature

PV-basket cells may be effective [17].

Gamma oscillations

EEG gamma (γ)-oscillations (30–80 Hz fluctuations of

neuronal activity) have received special attention because of

their suspected roles in “higher” cognitive functions such as

sensory binding [35], short-term memory storage [36] and

attention [37, 38]. γ-oscillations are prevalent in the hippo-

campus and sensory cortex and have been studied both in vivo

and in vitro. They are generated or reset in vivo by sensory

stimulation in mouse visual, auditory and somatosensory

cortex [39–41], exploratory behavior, sniffing in rodents,

visual attention in primates and during REM sleep [38, 42].

Persistent γ-oscillations can be stimulated in vitro with

carbachol to activate muscarinic cholinergic receptors or by

application of kainate to increase excitability of glutamatergic

receptors [43, 44]. They are also reliably generated in slices of

auditory and somatosensory cortex by thalamic stimulation,

but are short in duration (200–500 ms) [45].

Regardless of stimulus protocol, γ-oscillations can be

abolished by application of the GABAAR antagonist

bicuculline [31]. Current-source density analysis combined

with voltage-dye imaging reveal an alternating current sink

and source near pyramidal cell somata, consistent with peri-

somatic inhibition during the oscillation [42]. When

excitatory drive is selectively reduced onto PV-cells either

by GluR-D knockout or conditional ablation of GluR-A

subunit of their AMPA receptors,γ-power is reduced [46], but

not when synaptic inhibition is ablated in PV-cells [47]. Most

recently, direct optical activation of PV-cells is shown to be

sufficient for inducing γ-rhythms and controlling sensory

responses to enhance cortical circuit performance [48, 49].

Both chandelier and large basket PV-cells are fast-spiking

(FS) cells that are interconnected via gap junctions and

inhibitory chemical synapses to form distributed networks.

FS-cells have short duration action potentials and respond to a

depolarizing current with high frequency, non-adapting action

potential trains [51, 52]. PV-cells express Kv3.1 channels, a

class of inward rectifying K+ channels that contributes to

their fast-spiking characteristics. PV-cells normally undergo

maturation of a number of intrinsic physiological properties

that contribute to their precise and rapid firing including an

experience-dependent increase in Kv3.1 channels [50], a

decrease in input resistance and action potential width and an

increase in action potential amplitude and frequency [53, 54].

Kv3.1 knockout mice exhibit an increase in γ-power, most

prominently during waking in the 40–55-Hz range [55].

Gap junctions strongly aid the synchrony and strength of

γ-oscillations, since the blockers octanol and carbexeno-

lone eliminate oscillations [56, 57], but deletion of the major

neuronal gap junction subunit, connexin 36, still allows weak

and less synchronous γ-oscillations both in vitro [58] and in

vivo [59]. Careful study of the spike timing of different

classes of interneurons has shown that while both excitatory

and different classes of inhibitory neuron are capable of

firing phase-locked with the γ-oscillation, inhibitory neurons

are more likely to be synchronized with FS interneurons

capable of firing on every cycle (Fig. 4b) [60, 61].

These findings lead to a model of a network of

interconnected inhibitory neurons, namely the PV-basket

cells, which generate the γ-oscillations [31]. Sensory

information is relayed from the environment and earlier

peripheral stages to the cortex via the thalamus. Thalamo-

cortical fibers target both principal cells and interneurons,

but input onto FS-cells is stronger than that onto excitatory

pyramidal cells [62]. Fast, precise inhibition provided by

the PV-cells allows a brief window for excitation of the

cortical network that is followed by an interval of strong

inhibition. Gap junctions and reciprocal chemical GABA

synapses connecting PV-cells meanwhile act as coincidence

detectors, amplifying synchronous excitatory currents and

dampening asynchronous inputs [63]. Asymmetrically

weakened PV-cell function in the ASD brain (Fig. 3) would

then be expected to have a powerful impact on sensory

processing and cognition [64].

Impaired oscillations in cognitive disorders

A dysregulation of oscillations could prevent discrimination

of intrinsic versus extrinsic signals [65]. In schizophrenic

subjects, abnormal γ-oscillations are thought to promote

hallucinations. Decreased GABA signaling is now well-

established in schizophrenia [66], which is seen not only as

a reduction of GABA concentration and GAD67 in

postmortem brain, but also as a restricted deficit of PV

staining [67, 68]. A specific association between disrupted

γ-oscillations, PV-cell reduction, and schizophrenic traits

has recently been demonstrated in the methyl azoxy-
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methanol acetate (MAM) model of schizophrenia. These

rats exhibit a specific loss of PV-cells in the prefrontal

cortex and a correlated lack of sound induced γ-oscillations

in the prefrontal cortex during a fear-conditioning task [69].

In auditory cortex of autistic adolescents, magneto-

encephalographic (MEG) recordings show a deficit of

evoked γ-oscillations phase-locked to the stimulus —

strikingly just in one hemisphere [70]. A similar finding

that the onset of γ-oscillations during a visual task is

disrupted in autism, suggests that there are signal-to-noise

processing problems [71, 72]. Of particular relevance is the

recent finding that visual attention preferentially modulates

FS interneurons in parietal areas [73], which we find are

prone to PV-cell deficits in ASD mouse models (Table 1).

Clinical studies suggest that decreased inhibitory input

and connectivity lead to altered synchronicity between

different brain regions, which may be a key contributing

factor to the features of ASD [35, 64, 74–76]. Consistent

anatomical evidence reveals narrower cortical minicolumns

in autistic patients [77–79] due to the loss of local inhibitory

projections [77]. This may result in further altered long-range

connectivity [80, 81], vital for communication between

neocortical modules and hemispheres [74, 82–85].

Interestingly, among several inbred strains [86], it is the

acallosal BTBR T+tf/J mouse that most closely exhibits

behavioral changes specific to autism, including reduced

social approach, altered ultrasonic vocalization, and resistance

to change in routine [87]. Moreover, network architecture and

synchronicity are altered in cultured neuronal networks

transfected with the autism-associated R451C NL-3 mutation

studied here [88]. The MeCP2-null hippocampal CA3 circuit

has diminished basal inhibitory rhythmic activity, which in

turn renders the circuitry prone to hyperexcitability [89].

Finally, a recent report demonstrates that γ-oscillations are

diminished in the FMR1 knockout mouse model of ASD

[90], consistent with their PV-cell deficit (Table 1).

Thus, studying γ-oscillation development in ASD mouse

models can serve as a useful readout of impaired PV-cell

network activity, which is now amenable to powerful, direct

molecular genetic manipulation [eg. 91]. Future work will

explore the hemispheric asymmetry in VPA or NL-3 mutant

mice described here, whether this can be rescued by

treatments aimed at restoring PV-cell balance [11, 17] and

ultimately reversing this heterogeneous neuro-developmental

disorder [92, 93].

Materials and methods

Animals

C57BL/6 females were mated overnight with C57BL/6

males and pregnancy was determined by the presence of a

vaginal plug on embryonic day E0. Valproic Acid (VPA)

solution was prepared from sodium salt of VPA (NaVPA;

Sigma-Aldrich, St. Louis, MO) and was dissolved in 0.9%

saline to a final concentration of 150 mg/mL at pH 7.3. At

E10.5, pregnant females were briefly anesthetized with

isofluorane and injected intraperitoneally with either a

single dose of VPA or 0.9% saline (control). Mice were

weighed prior to injection and the volume was adjusted for

a final dose of 500 mg/kg. This dose and time point is

identical to the conditions used in previous studies with rats

[22]. NL-3 R451C mice were bred, genotyped and

maintained as described previously [6]

Immunohistochemistry

Adult mice (2–3 months old) were transcardially per-

fused with ice-chilled 4% paraformaldehyde in PBS

(50 ml) and post-fixed overnight in the same solution

at 4°C. Sixty μm thick coronal sections were cut on a

Vibratome (Leica VT1000S). Free-floating sections were

permeabilized and blocked for 4 hours at room temper-

ature (RT) in 20% Bovine Serum Albumin (BSA) / 0.5%

TritonX100 in PBS. Sections were then incubated with

primary, rabbit anti-Parvalbumin (PV) (Swant) or GAD6

(DSHB, Iowa), and subsequently secondary, Alexa Fluor

546 (Invitrogen), antibodies (3–4 h each at RT, 1:500

(PV), 1:1000 (Alexa Fluor) in 5% BSA in PBS).

Between and after antibody incubations, sections were

washed 3x, 10 min each, in 5% BSA in PBS on a

shaker. Sections were then mounted in Vectashield Hard

Set (Vector Laboratories) and imaged.

Image acquisition and analysis

Images were acquired on a Nikon Eclipse 80i epifluores-

cent microscope equipped with a Coolsnap EZ camera

(Photometrics) and AR acquisition software (NIS Elements)

using a 4x air objective. Microscope images were processed

and analyzed using Photoshop (Adobe). For quantification,

images of the upper half of coronal brain sections, collected

between Bregma −1.70 mm and −2.06 mm (anterior-

posterior level, Paxinos), were taken (Suppl. Fig. 1). PV-

positive cells were counted in the neocortex and in the

hippocampal area CA1. Regions of interest were defined by

perpendicular lines along the upper blade and outer edge of

the dentate gyrus curve (Suppl. Fig. 1). PV-positive cells

were counted separately for the two hemispheres. Analysis

was performed blind to genotype or treatment by two

independent investigators.
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