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Abstract

We study estimation of dynamic panel data models with error cross-sectional dependence

generated by an unobserved common factor. We show that for a temporally dependent factor,

the standard within groups (WG) estimator is inconsistent even as both N and T tend to

infinity. Next we investigate the properties of the common correlated effects pooled (CCEP)

estimator of Pesaran [Econometrica, 2006] which eliminates the cross-sectional dependence

using cross-sectional averages of the data. In contrast to the static case, the CCEP estimator

is only consistent if next to N also T tends to infinity. It is shown that for the most relevant

parameter settings, the asymptotic bias of the CCEP estimator is larger than that of the

infeasible WG estimator, which includes the common factors as regressors. Restricting the

CCEP estimator results in a somewhat smaller asymptotic bias. The small sample proper-

ties of the various estimators are analysed using Monte Carlo experiments. The simulation

results suggest that the CCEP estimator can be used to estimate dynamic panel data models

provided T is not too small. The size of N is of less importance.
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1 Introduction

Over the last decades, estimation of dynamic panel data models has received a lot of attention.

Nickell (1981) demonstrated that in dynamic panel data regressions the within groups (WG)

estimator is inconsistent for fixed T and N → ∞. Given that the asymptotic bias may be

quite sizable in many cases relevant to applied research, various alternative estimators have been

suggested ranging from, among others, general method of moments (GMM) estimators (Arellano

and Bond, 1991; Blundell and Bond, 1998), over analytical bias corrected WG estimators (Kiviet,

1995; Bun and Carree, 2005) to a bootstrap-based bias corrected WG estimator (Everaert and

Pozzi, 2007). However, new challenges arise when it comes to the estimation of dynamic panel

data models. The recent panel data literature shifted its attention to the estimation of models

with error cross-sectional dependence. A particular form that has become popular is a common

factor error structure with a fixed number of unobserved common factors and individual-specific

factor loadings (see e.g. Coakley et al., 2002; Phillips and Sul, 2003; Bai and Ng, 2004; Pesaran,

2006).

The most obvious implication of error cross-sectional dependence is that standard panel data

estimators are inefficient and estimated standard errors are biased and inconsistent. Phillips and

Sul (2003) for instance show that if there is high cross-sectional correlation there may not be

much to gain from pooling the data. However, cross-sectional dependence can also induce a bias

and even result in inconsistent estimates. In general, inconsistency arises as an omitted variables

bias when the observed explanatory variables are correlated with the unobserved common factors

(see e.g. Pesaran, 2006). More specifically, Phillips and Sul (2007) show that in dynamic panel

data models with fixed T and N → ∞, the unobserved common factors induce additional small

sample bias and variability in the inconsistency of the WG estimator. This is true, even under the

assumption of temporarily independent factors1. This bias disappears as T → ∞. Sarafidis and

Robertson (2009) show that also dynamic panel data IV and GMM estimators (either in levels or

first-differences) are inconsistent for fixed T and N →∞ as the moment conditions used by these

estimators are invalid under error cross-sectional dependence.

In this paper we further analyze the impact of error cross-sectional dependence in linear dy-

namic panels. Explicit asymptotic bias formulas are derived for both the standard WG estimator,

which ignores error cross-sectional dependence, and the common correlated effects pooled (CCEP)

estimator of Pesaran (2006), which is explicitly designed to deal with unobserved common factors

in the error term. We first extend the work of Phillips and Sul (2007) by relaxing the assumption

of a temporally independent common factor. In line with their results we find that for fixed T and

N →∞ the inconsistency of the WG estimator is a combination of the nonrandom dynamic panel

data bias, as obtained by Nickell (1981), and a random component induced by the common factor

in the error term. Importantly, the latter component of the inconsistency becomes nonrandom

but does not disappear as also T → ∞ since the temporal dependence in the unobserved com-

1This implies that the factors are uncorrelated with the lagged dependent variable.
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mon factor implies that the error term is correlated with the lagged dependent variable even for

(N,T )seq →∞2. This finding should warn against the use of the WG estimator in cross-sectionally

dependent dynamic panels even when T is large. Second, we extend the work of Pesaran (2006)

by analyzing the asymptotic behaviour of the CCEP estimator in a dynamic panel data setting.

The basic idea of CCEP estimation is to deal with error cross-sectional dependence by filtering

out the unobserved common factors using the cross-section averages of both the dependent and

the explanatory variables. We show that contrary to the static model, the CCEP estimator is

no longer consistent for N → ∞ and fixed T . Similar to the results for the WG estimator, the

inconsistency is a combination of the standard nonrandom dynamic panel data bias and a ran-

dom component which is now induced by orthogonalising on the cross-sectional averages. The

main difference is that both components of the inconsistency disappear as we also let T → ∞.

As a benchmark, we derive the asymptotic bias of the infeasible WG estimator, which includes

the unobserved factor as an observed explanatory variable. This infeasible WG estimator has a

random inconsistency for fixed T and N → ∞ which disappears for (N,T )seq → ∞. However,

for the cases most relevant to applied research, the asymptotic bias of the CCEP is bigger than

that of the infeasible WG estimator. One possible reason for this is that the CCEP estimator

as suggested by Pesaran (2006) ignores the restrictions on the individual-specific factor loadings

as implied by the derivation of the cross-sectional averages augmented specification of the model.

Imposing these restrictions, the asymptotic bias of the restricted CCEP estimator is closer to that

of the infeasible WG estimator.

We next analyse the small sample properties of the WG and CCEP estimators using Monte

Carlo experiments. First, the infeasible WG estimator is biased for small T , with the bias increas-

ing in the degree of temporal dependence in both the model and in the common factor. Second,

both the unrestricted and the restricted CCEP estimators have a higher bias than the infeasible

WG estimator for small values of T but the restricted CCEP estimator outperforms the unre-

stricted CCEP estimator and is not much worse than the infeasible WG estimator for moderate

T . Interestingly, the performance of the CCEP estimators is highly similar comparing N = 20

with N = 50. This shows that these estimators are not very sensitive to the size of N . Finally,

the results illustrate that the standard WG estimator, ignoring cross-sectional dependence, has a

persistent (as N and T growing larger) bias for temporally dependent factors, is inefficiency com-

pared to the CCEP estimators and has substantially biased estimated standard errors. Overall, the

results suggest that the CCEP estimator is quite useful for estimating cross-sectional dependent

dynamic panel data models provided T is not too small.

The remainder of this paper is organized as follows: Section 2 sets out the basic model and its

assumptions. Section 3 explores the asymptotic behaviour of the naive WG, the infeasible WG and

the unrestricted and restricted CCEP estimators in a dynamic model with error cross-sectional

dependence. Section 4 adds exogenous explanatory variables. Section 5 reports the Monte Carlo

results. Section 6 concludes.

2Denote (N,T )seq → ∞ as the sequential limit, i.e., N → ∞ first and T → ∞ later.
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2 Model and assumptions

Consider the following first-order autoregressive panel data model

yit = αi + ρyi,t−1 + νit, |ρ| < 1, (i = 1, . . . , N ; t = 1, . . . , T ) (1)

with yit being the observation of the dependent variable for the ith cross-sectional unit at time t.

For notational convenience we assume yi0 is observed. We further assume:

Assumption A1. (Cross-section dependence) The error term νit has a single-factor structure

νit = γiFt + εit, (2)

Ft = θFt−1 + µt, |θ| < 1, (3)

where Ft is an individual-invariant time-specific unobserved effect with µt ∼ i.i.d.
(
0, σ2

µ

)
. The

individual-specific factor loadings γi are nonrandom parameters satisfying plim
N→∞

1

N

N∑
i=1

γ2i = m2
γ .

εit satisfies A2.

The restriction of a single-factor structure is for expositional purposes only.

Assumption A2. (Error condition) εit ∼ i.i.d.
(
0, σ2

ε

)
across i and t and is independent of Fs

for all i, t, s.

Assumption A3. (Fixed effect condition) αi ∼ i.i.d.
(
0, σ2

α

)
across i and independent of Ft for

all i, t.

The model in equations (1)-(3) can be written in a convenient component form as

yit = y+it + γiF
+
t , (4a)

y+it = αi + ρy+i,t−1 + εit, (4b)

F+
t = (1− ρL)

−1
Ft = (ρ+ θ)F+

t−1 − ρθF
+
t−2 + µt. (4c)

For further discussion, stacking (1)-(2) for each i yields

yi = αi + ρyi,−1 + γiF + εi, (5)

where yi = (yi1, . . . , yiT )
′
, yi,−1 = (yi0, . . . , yi,T−1)

′
, F = (F1, . . . , FT )

′
and εi = (εi1, . . . , εiT )

′
.
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3 Estimators

In this section we analyse the properties of various estimators for ρ in equation (1) given the

error structure in A1-A3. We start with two ‘extreme’ approaches, i.e. the naive within groups

(WGn) estimator which ignores cross-sectional dependence and the infeasible within groups (WGi)

estimator which adds the unobserved common factor Ft as an observed explanatory variable to the

model. Next, we analyse an unrestricted and a restricted version of the CCEP estimator suggested

by Pesaran (2006) and compare their properties to those of the WGn and WGi estimators.

3.1 Naive within groups

Consider the naive within groups (WGn) estimator for ρ in (1)

ρ̂
WGn

=
(1 /NT )

∑N
i=1 y

′
i,−1MIyi

(1 /NT )
∑N
i=1 y

′
i,−1MIyi,−1

= ρ+
(1 /NT )

∑N
i=1 y

′
i,−1MI (γiF + εi)

(1 /NT )
∑N
i=1 y

′
i,−1MIyi,−1

, (6)

where MI = IT − ι (ι′ι)
−1
ι′ and ι a (Tx1) vector of ones. The exact form of the inconsistency and

its large T expansion are given in the following Proposition. All proofs are in appendix A.

Proposition 1. In model (1) with errors satisfying A1-A3, the WGn estimator is inconsistent as

N →∞

plim
N→∞

(ρ̂
WGn
− ρ) =

−A(ρ, T ) +
m2
γ

σ2
ε

∑T
t=1 F

+
t−1F̃t

B(ρ, T ) +
m2
γ

σ2
ε

∑T
t=1

(
F̃+
t−1

)2 , (7)

where A(ρ, T ) = 1
1−ρ

(
1− 1

T
1−ρT
1−ρ

)
, B(ρ, T ) = T−1

1−ρ2

(
1− 1

T−1
2ρ
1−ρ

[
1− 1

T
1−ρT
1−ρ

])
, F̃t = Ft − F ,

F̃+
t−1 = F+

t−1 − F
+

−1, F = 1
T

∑T
t=1 Ft and F

+

−1 = 1
T

∑T
t=1 F

+
t−1.

The inconsistency in (7) has the following asymptotic representation as (N,T )seq →∞

plim
N→∞

(ρ̂WGn − ρ) =

(
−1 + ρ

T
+

(
1 − ρ2

)
θ

(1 − θρ)(1 − θ2)

m2
γσ

2
µ

σ2
ε

)(
1 +

(1 + θρ)

(1 − θρ) (1 − θ2)

m2
γσ

2
µ

σ2
ε

)−1

+ op (1) . (8)

Proposition 1 shows that the inconsistency of ρ̂
WGn

for N →∞ and fixed T is induced by two

components. The first is the standard Nickell dynamic panel data bias, which depends on the

persistence ρ in yit and on the time dimension T . This can be seen by setting the error cross-

sectional dependence to zero (m2
γ = 0) such that equation (7) reduces to the standard Nickell

bias formula −A(ρ, T ) /B(ρ, T ) and equation (8) to its large T approximation − (1 + ρ) /T . The

second component stems from the error cross-sectional dependence. It is apparent from equation

(7) that the inconsistency induced by the common factor is random for fixed T as 1 /T
∑T
t=1 F

+
t−1F̃t

depends on the particular realisation for Ft. Also letting T →∞, it can be seen from equation (8)

that for a temporally independent factor (θ = 0) this random inconsistency disappears. Inertia

in Ft (θ 6= 0) results in an additional random inconsistency that, as (N,T )seq → ∞, becomes
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nonrandom, but does not disappear since 1 /T
∑T
t=1 F

+
t−1F̃t does not converge to zero. Essentially,

this is an omitted variable bias as θ 6= 0 implies E (yi,t−1Ft) 6= 0 such that omitting Ft from the

regression results in an inconsistent estimator for ρ.

3.2 Infeasible within groups

The infeasible within groups (WGi) estimator for ρ, including Ft as an observed regressor, is given

by

ρ̂
WGi

=
(1 /NT )

∑N
i=1 y

′
i,−1MḞ yi

(1 /NT )
∑N
i=1 y

′
i,−1MḞ yi,−1

= ρ+
(1 /NT )

∑N
i=1 y

′
i,−1MḞ εi

(1 /NT )
∑N
i=1 y

′
i,−1MḞ yi,−1

, (9)

where MḞ = IT − Ḟ
(
Ḟ ′Ḟ

)−1
Ḟ ′ and Ḟ = (ι, F ).

Proposition 2. In model (1) with errors satisfying A1-A3, the WGi estimator is inconsistent as

N →∞

plim
N→∞

(ρ̂
WGi
− ρ) =

−A(ρ, T )−
∑T−1
t=1 ρt−1g̃F,t

B(ρ, T )− 1
1−ρ2

(
1 + 2ρ

∑T−1
t=1 ρt−1g̃F,t

)
+ T

m2
γ

σ2
ε
h̃F

, (10)

where g̃F,t =
∑T
s=t+1 τ̃s,s−t with τ̃s,s−t being the (s, s− t) th element in F̃

(
F̃ ′F̃

)−1
F̃ ′, F̃ =(

F̃1, . . . , F̃T

)′
and h̃F = 1

T

∑T
t=1

(
F̃+
t−1

)2(
1− ( 1

T

∑T
t=1 F̃tF̃

+
t−1)

2

1
T

∑T
t=1 F̃

2
t

1
T

∑T
t=1 (F̃+

t−1)
2

)
.

The inconsistency in (10) has the following asymptotic representation as (N,T )seq →∞

plim
N→∞

(ρ̂
WGi
− ρ) = − 1

T

(
1 + ρ+

θ
(
1− ρ2

)
(1− θρ)

)(
1 +

m2
γ

(1− θρ)
2

σ2
µ

σ2
ε

)−1
+ op

(
1

T

)
. (11)

Proposition 2 shows that the inconsistency of the WGi estimator for N → ∞ is also induced

by two components. The first is again the standard Nickell bias. The second part now stems

from orthogonalizing on the observed factor Ft. For fixed T , this induces randomness in the

inconsistency as the orthogonalisation depends on the particular realization of the process Ft.

Moreover, equation (11) shows that temporary dependence in the common factor (θ 6= 0) also

induces a nonrandom inconsistency, which disappears as (N,T )seq → ∞. The intuition for this

result is that for fixed T the transformed error term MḞ εi in (9) is, next to being a function of the

average error term εi due to the within transformation, now also a function of the entire series F

(as represented by g̃F,t) due to the orthogonalisation on Ft which results in correlation with the

explanatory variable yi,t−1. The denominator of equation (11) further shows that the inconsistency

is smaller when the cross-sectional dependence is stronger as this implies more variability in the

explanatory variable yi,t−1, which is induced by Ft−1 and is not completely filtered out by including

Ft as a control variable in the regression. This additional variability is captured by the term h̃F

in the denominator of equation (11).
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3.3 CCEP

The CCEP estimator suggested by Pesaran (2006) eliminates the unobserved common factors by

including cross-section averages of the dependent and the explanatory variables. Taking cross-

sectional averages of equation (1) gives

1

N

N∑
i=1

yit =
1

N

N∑
i=1

αi + ρ
1

N

N∑
i=1

yi,t−1 + Ft
1

N

N∑
i=1

γi +
1

N

N∑
i=1

εit,

yt = α+ ρyt−1 + γFt + εt, (12)

which can be solved for Ft as

Ft =
1

γ
(yt − α− ρyt−1 − εt). (13)

Note that

plim
N→∞

εt = 0, (14)

plim
N→∞

yt = plim
N→∞

(
y+t + γF+

t

)
= (1− ρ)−1α+ γF+

t . (15)

Inserting (13) in (1) yields the following augmented form3

yit = αi + ρyi,t−1 +
γi
γ

(yt − α− ρyt−1 − εt) + εit,

= α∗i + ρyi,t−1 + γ1iyt + γ2iyt,−1 + ε∗it, (16)

with γ1i = γi /γ , γ2i = ργ1i, α
∗
i = αi − γ1iα and ε∗it = εit − γ1iεt.

3.3.1 Unrestricted CCEP

Ignoring the restrictions on γ1i, γ2i and α∗i , the unrestricted CCEP estimator for ρ in (16) is given

by

ρ̂
CCEPu

=
(1 /NT )

∑N
i=1 y

′
i,−1MĠyi

(1 /NT )
∑N
i=1 y

′
i,−1MĠyi,−1

= ρ+
(1 /NT )

∑N
i=1 y

′
i,−1MĠε

∗
i

(1 /NT )
∑N
i=1 y

′
i,−1MĠyi,−1

, (17)

where MĠ = IT − Ġ(Ġ′Ġ)−1Ġ′ and Ġ = (ιt, G) with G = (y, y−1), y = (y1, . . . , yT )
′

and y−1 =(
y0, . . . , yT−1

)′
.

Theorem 1. In model (1) with errors satisfying A1-A3, the CCEPu estimator is inconsistent as

3See Phillips and Sul (2007) for an expression with multiple factors.
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N →∞

plim
N→∞

(ρ̂CCEPu − ρ) =
−A(ρ, T )−

∑T−1
t=1 ρt−1g̃+F,t

B(ρ, T )− 2
1−ρ2

(
1 + ρ

∑T−1
t=1 ρt−1g̃+F,t

) , (18)

where g̃+F,t =
∑T
s=t+1 τ̃

+
s,s−t with τ̃+s,s−t being the (s, s− t) th element in H̃

(
H̃ ′H̃

)−1
H̃ ′, H̃ =(

F̃+, F̃+
−1

)
, F̃+ =

(
F̃+
1 , . . . , F̃

+
T

)′
and F̃+

−1 =
(
F̃+
0 , . . . , F̃

+
T−1

)′
.

The inconsistency (18) has the following asymptotic representation as (N,T )seq →∞

plim
N→∞

(ρ̂CCEPu − ρ) = − 1

T

(
1 + 2ρ+

θ(1− ρ2)

1− θρ

)
+ op

(
1

T

)
. (19)

The implication of Theorem 1 is that the CCEPu estimator is consistent for (N,T )seq → ∞
but has a different asymptotic bias compared to the WGi estimator for N →∞ and T fixed. The

intuition for this is that the error term εit is now orthogonalised on a constant, yt and yt−1 with, as

can be seen from (15), the latter two converging to F+
t and F+

t−1 respectively as N →∞. For fixed

T , this implies two differences compared to the WGi estimator. First, orthogonalising on F+
t−1,

next to on a constant and on F+
t , results in extra correlation between the orthogonalised error

term and the explanatory variable yi,t−1 as the latter is by construction a function of F+
t−1. As

such, comparing (11) and (19), the numerator of the latter contains an extra term in ρ. Second, the

extra variability in the explanatory variable yi,t−1 induced by Ft−1 is now completely filtered out

by orthogonalising on F+
t−1. As such, stronger cross-sectional dependence raises the denominator

in (11) but doesn’t affect (19). Further comparing (11) and (19), it is clear that both asymptotic

biases need not have the same direction and that the absolute value of the asymptotic bias of

the CCEPu estimator is not necessarily bigger than that of the WGi estimator. However, for

the majority of values for ρ and θ, the absolute value of the asymptotic bias is larger for the

CCEPu estimator. For the most relevant case of both ρ > 0 and θ > 0, both the WGi and

CCEPu estimator have a downward asymptotic bias. However, the downward bias of the latter

is bigger compared to the former. Thus, in these cases, approximating the unobserved Ft using

cross-sectional averages of the observed data comes at the cost of a higher asymptotic bias for

N →∞ and T fixed compared to a situation where Ft is observed.

3.3.2 Restricted CCEP

Taking into account the restrictions on γ1i, γ2i and α∗i , the restricted CCEP estimator for ρ in

(16) can be obtained by minimizing the objective function

SNT (ρ, F ) =
1

NT

N∑
i=1

(yi − ρyi,−1)
′
MḞ (yi − ρyi,−1) . (20)

8



Although F is not observed when estimating ρ and similarly, ρ is not observed when estimating F ,

we can replace the unobserved quantities by initial estimates and iterate until convergence. The

continuously-updated estimator for (ρ, F ) is defined as

(
ρ̂CCEPr , F̂

)
= argmin

ρ,F
SNT (ρ, F ) . (21)

More specifically,
(
ρ̂

CCEPr
, F̂
)

is the solution to the following two equations

ρ̂
CCEPr

=
(1 /NT )

∑N
i=1 y

′
i,−1M ̂̇F yi

(1 /NT )
∑N
i=1 y

′
i,−1

̂̇Fyi,−1 = ρ+
(1 /NT )

∑N
i=1 y

′
i,−1M ̂̇F (γiF + εi)

(1 /NT )
∑N
i=1 y

′
i,−1M ̂̇F yi,−1

, (22)

F̂ =
1

γ

(
y − ρ̂

CCEPr
y−1 − α̂

)
, (23)

where M ̂̇F = IT− ̂̇F (̂̇F ′ ̂̇F)−1 ̂̇F ′ with ̂̇F =
(
ι, F̂
)

. Note that the restricted CCEP estimator bears

some similarities with the continuously updated (Cup) estimator presented in Bai et al. (2009).

The difference being that the CCEP estimates the unobserved components via the cross-sectional

averages of both dependent and indepent variables, whereas the Cup estimator uses a principal

component approach.

Theorem 2. In model (1) with errors satisfying A1-A3, the CCEPr estimator is consistent as

(N,T )seq →∞,

ρ̂
CCEPr

−→
p
ρ, (24)

Theorem 3. In model (1) with errors satisfying A1-A3, the CCEPr estimator is inconsistent as

N →∞

plim
N→∞

(ρ̂CCEPr − ρ) =
−A(ρ, T )−

∑T−1
t=1 ρt−1g̃F̂ ,t

B(ρ, T )− 2
1−ρ2

(
1 + ρ

∑T−1
t=1 ρt−1g̃F̂ ,t

) , (25)

where g̃F̂ ,t =
∑T
s=t+1

̂̃τs,s−t with ̂̃τs,s−t being the (s, s− t) th element in
̂̃
F

(̂̃
F
′ ̂̃
F

)−1 ̂̃
F
′
.

Using theorem 2, it can be shown that the inconsistency of (25) has the following asymptotic

representation as (N,T )seq →∞

plim
N→∞

(ρ̂
CCEPr

− ρ) = − 1

T

(
1 + ρ+

θ(1− ρ2)

1− θρ

)
+ op

(
1

T

)
. (26)

Comparing (26) and (11), the asymptotic bias of the CCEPr equals the asymptotic bias of the

WGi multiplied by a factor
(

1 +
m2
γ

(1−θρ)2
σ2
µ

σ2
ε

)
> 1. This implies that the asymptotic CCEPr bias

has the same direction and is bigger than that of the WGi estimator. The intuition for this is

9



that for fixed T , the deviation of F̂t from Ft is a function of F+
t−1, as can be seen from (A-27),

which induces extra correlation between the error term εit and yi,t−1 after orthogonalisation on

F̂t. Further comparing (26), (19) and (11), the asymptotic bias of the CCEPr estimator is smaller

than that of the CCEPu estimator and closer to that of the WGi estimator for the most relevant

case of ρ > 0 and θ > 0.

4 Including exogenous variables

This section extends the model in (1) by including a vector of exogenous variables, xit
4. Consider

the following autoregressive model

yit = αi + ρyi,t−1 + x′itβ + νit, |ρ| < 1, (i = 1, . . . , N ; t = 1, . . . , T ) , (27)

with xit =
(
x1it, . . . , x

K
it

)′
a (K × 1) vector of explanatory variables and β a (K × 1) coefficient

vector. In addition to assumptions A1 - A3, we assume

Assumption A4. (xit condition) xit is strictly exogenous with respect to the residuals εit but

allowed to be correlated with the individual effects and common components

E(xitεjs) = 0, E(xitαi) = σ2
xα, E(xitFt) = σ2

xF , ∀i, t, j, s (28)

with σ2
xα and σ2

xF being (K × 1) vectors.

Stacking the model in (27) and (2) for each i yields

yi = αi + ρyi,−1 + xiβ + γiF + εi. (29)

The WGi and CCEPu estimators5 for ρ and β in (29) can be written as

ρ̂ =

(
1

NT

N∑
i=1

y⊥
′

i,−1Mx⊥y
⊥
i,−1

)−1(
1

NT

N∑
i=1

y⊥
′

i,−1Mx⊥y
⊥
i

)
, (30a)

β̂ =

(
1

NT

N∑
i=1

x⊥
′

i x
⊥
i

)−1(
1

NT

N∑
i=1

x⊥
′

i

(
y⊥i − ρ̂y⊥i,−1

))
, (30b)

where y⊥i = MQ̇yi, y
⊥
i,−1 = MQ̇yi,−1, x⊥i = MQ̇xi and ε⊥i = MQ̇εi. MQ̇ = IT − Q̇

(
Q̇′Q̇

)−1
Q̇′ is

a matrix which orthogonalizes out both individual effects and unobserved common factors with

Q̇ = (ι, Q). For the WGi estimator Q = F while Q =
(
y, y−1, x

)
for the CCEPu estimator with

4For the case of endogenous variables, Harding and Lamarche (2011) and Everaert and Pozzi (2010) respectively
describe an IV and GMM approach based on the pooled CCE estimator.

5Restricting our attention to these two estimators is for notational purposes only. Derivations for the naive WG
are similar to the ones of the WGi and CCEPu. Formulae for CCEPr estimator directly follow from rewriting the
proofs of theorems 2 and 3 into matrix notation.
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x = (x1, . . . , xT )
′
, xt =

(
x1t , . . . , x

K
t

)′
and xkt = 1

N

∑N
i=1 x

k
it.

Next, letting N →∞, (30a) and (30b) are given by

plim
N→∞

(ρ̂− ρ) =

(
plim
N→∞

1

NT

N∑
i=1

yi,−1MQ̇Mx⊥yi,−1

)−1(
plim
N→∞

1

NT

N∑
i=1

yi,−1MQ̇ε

)
, (31a)

plim
N→∞

(β̂ − β) = −

 plim
N→∞

(
1

NT

N∑
i=1

xiMQ̇xi

)−1
1

NT

N∑
i=1

xiMQ̇yi,−1

 plim
N→∞

(ρ̂− ρ), (31b)

where use is made of the fact that (i) x⊥i an exogenous variable, (ii) for the WGi estimator Q̇

contains F and (iii) for the CCEPu estimator

F =
1

γ

(
y − α− ρy−1 − xβ − ε

)
,

with plimN→∞ ε = 0 such that for N → ∞ the factor F is eliminated by orthogonalising on(
y, y−1, x

)
and a constant.

Adding an additional vector of exogenous explanatory variables to our original model (1) has

little implications with respect to our earlier findings. For plimN→∞(ρ̂− ρ), (31a) indicates that

an additional, positive term is added to the denominator. This follows directly from rewriting

model (27) to its compontent form

yit = y0it + x0itβ, y0it = αi + ρy0i,t−1 + γiFt + εit, x0it = (1− ρL)
−1
xit, (32)

where y0it is equivalent to the model described by (1), and inserting it into the denominator. This

wil lessen the degree of the bias. The nominator is almost identical to our earlier findings. The

nominator of the CCEPu estimator for (27) differs slightly from the one given by (18) due to

the fact that xt is added to the orthogonalisation matrix MQ̇. The corresponding expansion for

T →∞ of this matrix will depend on the specification of xt. Turning to the asymptotic behaviour

of plimN→∞(β̂ − β), equation (31b) reveals that the inconsistency depends (i) on the asymptotic

behaviour of (ρ̂− ρ) and (ii) on the relationship between the exogenous variables xit and yi,t−1.

5 Monte Carlo simulation

In this section we investigate the small sample properties of the WGn, WGi, CCEPu and CCEPr

estimators under cross-sectional dependence6. We are interested in the effects of (i) the extent of

cross-sectional dependence, (ii) the degree of inertia in both the dependent variable and the factor

and (iii) the relative importance of the variance of the factor loadings and the idiosyncratic errors.

6Sarafidis and Robertson (2009) explore the behaviour of GMM estimators under error cross-sectional depen-
dence. They find that (i) the standard moment conditions of GMM estimators are no longer valid and (ii) the
WGn often outperforms the naive first-difference GMM in terms of root median squared error. Therefore, we do
not include a naive GMM estimator in our simulations.
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5.1 Experimental design

The data generating process we consider is given by

yit = αi + ρyi,t−1 + βxit + γiFt + εit,

xit = φiFt + ωit, (33)

Ft = θFt−1 + µt,

with εit, ωit and µt randomly drawn in each replication from i.i.d.N (0, σε), i.i.d.N (0, σω) and

i.i.d.N (0, σµ) respectively and γi and φi drawn from i.i.d.U [γL, γU ] and i.i.d.U [φL, φU ] respec-

tively. We initialise yi,−49, xi,−49 and F−49 at zero and discard the first 50 observations.

When comparing the estimators over different values of the dynamic parameters ρ and θ, we

wish to control (i) the signal-to-noise ratio, (ii) the relative importance of the error components

(αi, γiFt, εit) in terms of contribution to the variance of yit and (iii) the relative importance of

factor loading heterogeneity γi in the overall cross-sectional dependence m2
γ . To this end, similar

to Sarafidis et al. (2009) we extend the Monte Carlo design of Kiviet (1995) by allowing a factor

structure in the error process. First note that the total variance in yit is given by

V ar(yit) =
1

(1− ρ)2
σ2
α +

β2

1− ρ2
σ2
ω +

(1 + θρ)(β2m2
φ +m2

γ)

(1− ρ2)(1− θ2)(1− ρθ)
σ2
µ +

1

1− ρ2
σ2
ε ,

= a1σ
2
α + a2β

2σ2
ω + a2a3σ

2
µ + a2σ

2
ε , (34)

where a1 = 1
(1−ρ)2 , a2 = 1

1−ρ2 and a3 =
(1+θρ)(β2m2

φ+m
2
γ)

(1−θ2)(1−ρθ) with m2
φ = plim

N→∞

1

N

N∑
i=1

φ2i . The terms

on the right hand side of (34) capture the contributions to the variance of yit of the individual

effects, the exogenous variable, the common factor and the idiosyncratic error term respectively.

As such, we can control the relative importance of

• the individual effects and the idiosyncratic error term by setting ψ1

ψ1 =
a1σ

2
α

a2σ2
ε

, (35)

• the common factor and idiosyncratic error term by setting ψ2

ψ2 = a3
σ2
µ

σ2
ε

, (36)

• the mean γ and the variance σ2
γ of γi within the overall degree of cross-sectional dependence

12



m2
γ by setting ψ3

7

ψ3 =
γ2

γ2 + σ2
γ

=
γ2

m2
γ

. (37)

After applying the normalisations σ2
ε = σ2

µ = 1, β = 1−ρ, (φL, φU ) = (0, 1) (implying m2
φ = 1/3),

for given values of ρ and θ the values for σ2
α, m2

γ and (γL, γU ) follow from (35), (36) and (37)

respectively.

We further define the signal, σ2
s , as the amount of variance in yit induced by information

contained in yi,t−1 and xit

σ2
s = V ar (yit − αi /(1− ρ) − γiFt − εit) , (38)

=
β2

1− ρ2
σ2
ω +

(
(1 + θρ)(β2m2

φ +m2
γ)

(1− ρ2)(1− θ2)(1− θρ)
−

m2
γ

1− θ2

)
σ2
µ +

ρ2

1− ρ2
σ2
ε . (39)

The signal-to-noise ratio is then given by ξ = σ2
s/σ

2
γiFt+εit

. Setting ξ to a specific value, allows us

to calculate σ2
ω.

We conduct experiments for combinations of the following parameter values: ρ ∈ {0.4; 0.6; 0.8},
θ ∈ {0; 0.4; 0.8}, ψ2 ∈ {0.5; 1; 2}, ψ3 ∈ {0.4; 0.8} and ψ3 ∈ {3; 10}. ψ1 is set fixed at 1. Experiment

1 serves as a point of reference and has the following settings: ρ = 0.6, β = 0.4, θ = 0.4,

ξ = 3, ψ1 = 1, ψ2 = 1, ψ3 = 0.80 and ξ = 3. The other simulations assess the impact on the

small sample properties of the estimators for (i) a higher persistence in both yit and the common

factors, (ii) different degrees of error cross section dependence, (iii) the degree of heterogeneity

of γi and (iv) a change in the signal-to-noise ratio. T and N respectively take the following

values:{5;10;20;30;40;50} and {20;50}. The estimators are compared in terms of (i) mean bias

(bias), (ii) mean estimated standard error (stde), (iii) standard deviation (stdv) and (iv) root

mean squared error (rmse). All experiments are based on 5000 iterations.

5.2 Simulation Results

The simulation results can be found in the tables in appendix B. Table 1 reports the results for

the benchmark experiment. With respect to estimating ρ, the following conclusions stand out.

First, the WGn estimator is biased for all combinations of N and T , with the bias being negative

for small T and positive for larger values of T . This switch in sign is due to the fact as T increases

the Nickell part of the bias, which is negative, diminishes whereas the positive bias originating

from the unobserved common components does not. Second, for small values of T the bias of

the WGi estimator is highly similar to that of the WGn estimator but as T increases, this bias

shrinks to zero. Third, the CCEP estimators both have a considerably larger bias compared to

the WG estimators for small values of T but CCEPr clearly outperforms CCEPu. For both CCEP

7Setting ψ3 to one results in a homogeneous time-effect.
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estimators the bias diminishes as T increases and is more or less comparable to that of the WGi

estimator for T = 50. Fourth, looking at the standard deviations, the WGi estimator is clearly

more efficient than the other estimators. Also note that for small values of T , the WGn estimator

has smaller standard deviations compared to the CCEP estimators but the CCEP estimators

become more efficient when T increases and even have standard deviations that are not much

bigger than the WGi estimator for T = 50. Fifth, in terms of estimated standard errors, all

estimators substantially underestimate the true standard deviations for small T . For larger values

of T , estimated standard errors converge to the true standard deviations for the WGi and CCEP

estimators but not for the WGn estimator. Turning to the estimates of β, a small bias is found for

T = 5 for all estimators. This bias disappears as T increases for the WGi and CCEP estimators

but again not for the WGn estimator. Finally, note that the size of the cross-sectional dimension

N does not affect the size of the bias for any of the considered estimators, i.e. in all of the

experiments there is virtually no difference between setting N = 20 or N = 50. Therefore, when

analysing deviations from the benchmark experiment in Tables 2-6, we only report simulation

results setting N = 50 8.

Tables 2 and 3 demonstrate that higher persistence in yit, by increasing either the persistence

in the model through the dynamic coefficient ρ or the persistence in the common factor through the

coefficient θ, results in a larger downward bias for all estimators. Especially the CCEP estimators

are strongly downward biased when θ = 0.8 and T is small. Table 4 shows that a higher degree

of error cross-sectional dependence (governed by ψ2), reduces the small T bias of all estimators.

For a larger value of T , the bias of the WGn estimator increases though. Table 5 shows that the

heterogeneity in the cross-sectional dependence (keeping overall heterogeneity fixed) does not affect

the size of the bias. Table 6 illustrates that the stronger the signal contained in the explanatory

variables, the smaller the small sample bias is.

6 Conclusion

This papers examines the effects of error cross-sectional dependence, modelled as an unobserved

common factor, on WG and CCEP estimators in a linear dynamic panel data model. In general,

the asymptotic behaviour as N → ∞ of each estimator breaks down in two parts: the well

known Nickell dynamic panel data bias and a random asymptotic bias which depends on the

particular realisation of the unobserved common factor. First, in line with Phillips and Sul (2007),

we find that the naive WG estimator is inconsistent for N → ∞ and T fixed. For a cross-

sectionally dependent factor, the inconsistency remains even for (N,T )seq → ∞. Second, the

benchmark infeasible WG estimator, including the unobserved common factor as an observed

explanatory variable, is also inconsistent for N →∞ and fixed T but this inconsistency disappears

as (N,T )seq → ∞. Third, contrary to the findings in Pesaran (2006) for a static model the

unrestricted CCEP estimator is inconsistent for N → ∞ and fixed T . For a relevant range of

8The simulation results for N = 20 are available upon request
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parameter combinations, the asymptotic bias is larger compared to the infeasible WG estimator.

Restricting the CCEP estimator by taking into account the restrictions on the individual-specific

factor loadings as implied by the derivation of the specification of the model augmented with cross-

sectional averages results in a somewhat smaller asymptotic bias. Letting (N,T )seq → ∞, both

the unrestricted and the restricted CCEP estimators are consistent. The small sample properties

of the various estimators are analysed using Monte Carlo experiments. The simulation results

confirm the breakdown of the naive WG estimator under error cross-sectional dependence and

shows that the performance of the CCEP estimators is not that different from the infeasible WG

estimator provided T is not too small.
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Appendices

Appendix A Proofs

Lemma A-1.

Under Assumption A1 we have from (4c)

λ0 = E
(
F+
t

)2
= (ρ+ θ)λ1 − ρθλ2 + σ2

µ,

λ1 = E
(
F+
t F

+
t−1
)

= (ρ+ θ)λ0 − ρθλ1,

λs = E
(
F+
t F

+
t−s
)

= (ρ+ θ)λs−1 − ρθλs−2, ∀s ≥ 2 (A-1)

which can be solved to obtain

λ0 =
1 + θρ

(1− θρ) (1− θ − ρ+ θρ) (1 + θ + ρ+ θρ)
σ2
µ,

=
1 + θρ

(1− θρ) (1− θ2) (1− ρ2)
σ2
µ, (A-2)

λ1 =
θ + ρ

(1− θρ) (1− θ2) (1− ρ2)
σ2
µ. (A-3)

Next, using that Ft = F+
t − ρF+

t−1 we have

E
(
FtF

+
t−1
)

= E
(
F+
t F

+
t−1
)
− ρE

(
F+
t−1
)2

= λ1 − ρλ0 =
θ

(1− θρ) (1− θ2)
σ2
µ. (A-4)

Proof of Proposition 1. Suppose Assumptions A1-A2 hold, then:

plim
N→∞

(ρ̂
WGn
− ρ) = plim

N→∞

(1 /NT )
∑N
i=1 y

′
i,−1MI (γiF + εi)

(1 /NT )
∑N
i=1 y

′
i,−1MIyi,−1

,

=

plim
N→∞

(1 /NT )

N∑
i=1

T∑
t=1

(
y+i,t−1 + γiF

+
t−1
) [
γi

(
Ft −

1

T

T∑
s=1

Fs

)
+

(
εit −

1

T

T∑
s=1

εis

)]

plim
N→∞

(1 /NT )

N∑
i=1

T∑
t=1

[(
y+i,t−1 −

1

T

T∑
s=1

y+i,s−1

)
+ γi

(
F+
t−1 −

1

T

T∑
s=1

F+
s−1

)]2 ,

=

1
T

∑T
t=1 plim

N→∞

1

N

N∑
i=1

[
−y+i,t−1

1

T

T∑
s=1

εis + γ2i F
+
t−1Ft − γ2i F

+
t−1

1

T

T∑
s=1

Fs

]

1
T

∑T
t=1 plim

N→∞

1

N

N∑
i=1

(
y+i,t−1 −

1

T

T∑
s=1

y+i,s−1

)2

+ γ2i

(
F+
t−1 −

1

T

T∑
s=1

F+
s−1

)2 ,

=
− 1

1−ρ

(
1− 1

T
1−ρT
1−ρ

)
+

m2
γ

σ2
ε

∑T
t=1 F

+
t−1F̃t

T−1
1−ρ2

(
1− 1

T−1
2ρ
1−ρ

[
1− 1

T
1−ρT
1−ρ

])
+

m2
γ

σ2
ε

∑T
t=1

(
F̃+
t−1

)2 , (A-5)

with F̃t = Ft − F , F̃+
t−1 = F+

t−1 − F
+

−1, F = 1
T

∑T
t=1 Ft and F

+

−1 = 1
T

∑T
t=1 F

+
t−1.
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Next, letting T →∞ and using Lemma A-1, we have

1

T

T∑
t=1

(
F+
t−1 − F

+

−1

)2
= E

(
F+
t−1
)2

+Op

(
1√
T

)
=

1 + θρ

(1− θρ) (1− θ2) (1− ρ2)
σ2
µ +Op

(
1√
T

)
,

1

T

T∑
t=1

(
F+
t−1Ft − F

+
t−1F

)
= E

(
F+
t−1Ft

)
+Op

(
1√
T

)
=

θ

(1− θρ) (1− θ2)
σ2
µ +Op

(
1√
T

)
,

where use is made of 1
T

∑T
t=1 F

+
t−1F

+

−1, 1
T

∑T
t=1

(
F

+

−1

)2
and 1

T

∑T
t=1 F

+
t−1F all being Op

(
1
T

)
.

Thus, the inconsistency in (7) has the following asymptotic representation as T →∞

plim
N→∞

(ρ̂WGn − ρ) =
− 1

1−ρ

(
1− 1

T
1−ρT
1−ρ

)
+ T

m2
γ

σ2
ε

(
θ

(1−θρ)(1−θ2)σ
2
µ + op (1)

)
T−1
1−ρ2

(
1− 1

T−1
2ρ
1−ρ

[
1− 1

T
1−ρT
1−ρ

])
+ T

m2
γ

σ2
ε

(
1+θρ

(1−θρ)(1−θ2)(1−ρ2)σ
2
µ + op (1)

) ,
=

(
−1 + ρ

T
+

(
1− ρ2

)
θ

(1− θρ)(1− θ2)

m2
γσ

2
µ

σ2
ε

)(
1 +

(1 + θρ)

(1− θρ) (1− θ2)

m2
γσ

2
µ

σ2
ε

)−1
+ op (1) .

Proof of Proposition 2. First, the probability limit as N → ∞ of the numerator of equation

(9) is given by

plim
N→∞

1

NT

N∑
i=1

y′i,−1MḞ εi = plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1

[
(εit − εi)−

T∑
s=1

τ̃st (εis − εi)

]
,

=
1

T

T∑
t=1

plim
N→∞

1

N

N∑
i=1

yi,t−1εit −
1

T

T∑
t=1

(
1−

T∑
s=1

τ̃st

)
plim
N→∞

1

N

N∑
i=1

yi,t−1εi

− 1

T

T∑
t=1

T∑
s=1

τ̃st plim
N→∞

1

N

N∑
i=1

yi,t−1εis, (A-6)

where τ̃st = F̃sF̃t

/∑T
t=1 F̃

2
t . Using

plim
N→∞

1

N

N∑
i=1

yi,t−1εi,t−s = σ2
ερ
s−1 ∀s ≥ 1, (A-7)

= 0 ∀s < 1, (A-8)

the first term of (A-6) drops and the last term rewrites to

1

T

T∑
t=1

T∑
s=1

τ̃st plim
N→∞

1

N

N∑
i=1

yi,t−1εis = −σ2
ε

1

T

T∑
t=2

t−1∑
s=1

τ̃stρ
s+t−1 = −σ2

ε

1

T

T∑
t=2

t−1∑
s=1

τ̃t,t−sρ
s−1,

= −σ2
ε

1

T

(
T∑
t=2

τ̃t,t−1 + ρ

T∑
t=3

τ̃t,t−2 + ρ2
T∑
t=4

τ̃t,t−3 + . . .+ ρT−2τ̃T,1

)
,

= −σ2
ε

1

T

T−1∑
t=1

ρt−1
T∑

s=t+1

τ̃s,s−t = σ2
ε

1

T

T−1∑
t=1

ρt−1g̃F,t, (A-9)

18



where g̃F,t =
∑T
s=t+1 τ̃s,s−t =

∑T
s=t+1 F̃sF̃s−t

/∑T
t=1 F̃

2
t .

The second term is given by

1

T

T∑
t=1

(
1−

T∑
s=1

τst

)
plim
N→∞

1

N

N∑
i=1

yi,t−1εi =
1

T 2

σ2
ε

1− ρ

T∑
t=1

(1− ρt−1)

(
1−

F̃t
∑T
s=1 F̃s∑T

t=1 F̃
2
t

)

=
1

T 2

σ2
ε

1− ρ

T∑
t=1

(1− ρt−1) =
1

T

[
σ2
ε

T

1

1− ρ

[
T − 1− ρT

1− ρ

]]
,

=
1

T
σ2
εA(ρ, T ). (A-10)

Using (A-7) - (A-10), equation (A-6) can be written as

plim
N→∞

1

NT

N∑
i=1

y′i,−1MḞ εi = −σ
2
ε

T
A(ρ, T )− σ2

ε

1

T

T−1∑
t=1

ρt−1g̃F,t. (A-11)

Second, the probability limit as N →∞ of the denominator of equation (9) is given by

plim
N→∞

1

NT

N∑
i=1

y′i,−1MḞ yi,−1 = plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1

[(
yi,t−1 − yi,−1

)
−

T∑
s=1

τ̃st
(
yi,s−1 − yi,−1

)]
,

= plim
N→∞

1

NT

N∑
i=1

T∑
t=1

[
y2i,t−1 − yi,t−1yi,−1

]
− plim
N→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

τ̃styi,t−1yi,s−1

+ plim
N→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

τ̃styi,t−1yi,−1,

=
1

T

T∑
t=1

plim
N→∞

1

N

N∑
i=1

[
y2i,t−1 − yi,t−1yi,−1

]
− 1

T

T∑
t=1

T∑
s=1

τ̃st plim
N→∞

1

N

N∑
i=1

yi,t−1yi,s−1

+
1

T

T∑
t=1

T∑
s=1

τ̃st plim
N→∞

1

N

N∑
i=1

yi,t−1yi,−1. (A-12)

The first and second term can be written as

1

T

T∑
t=1

plim
N→∞

1

N

N∑
i=1

[
y2i,t−1 − yi,t−1yi,−1

]
=

1

T

T∑
t=1

plim
N→∞

1

N

N∑
i=1

[
y+i,t−1 − y

+
i,−1

]2
+ γ2i

[
F+
t−1 − F

+

−1

]2
,

=
σ2
ε

T

T − 1

1− ρ2

[
1− 1

T − 1

2ρ

1− ρ

[
1− 1

T

1− ρT

1− ρ

]]
+m2

γ

1

T

T∑
t=1

[
F+
t−1 − F

+

−1

]2
,

=
σ2
ε

T
B(ρ, T ) +m2

γ

1

T

T∑
t=1

(
F̃+
t−1

)2
, (A-13)

and

plim
N→∞

1

N

N∑
i=1

yi,t−1yi,s−1 = plim
N→∞

1

N

N∑
i=1

(
y+i,t−1 + γiF

+
t−1
) (
y+i,s−1 + γiF

+
s−1
)
,
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= plim
N→∞

1

N

N∑
i=1

y+i,t−1y
+
i,s−1 + plim

N→∞

1

N

N∑
i=1

γ2i F
+
t−1F

+
s−1,

=
ρ|t−s|

1− ρ2
σ2
ε +m2

γF
+
t−1F

+
s−1. (A-14)

The last term in (A-12) can be dropped since

1

T

T∑
t=1

T∑
s=1

τ̃st plim
N→∞

1

N

N∑
i=1

yi,t−1yi,−1 =
1

T

T∑
t=1

(
F̃t
∑T
s=1 F̃s∑T

t=1 F̃
2
t

)
plim
N→∞

1

N

N∑
i=1

yi,t−1yi,−1 = 0.

Thus, equation (A-12) can be written as

plim
N→∞

1

NT

N∑
i=1

y′i,−1MḞ yi,−1

=
σ2
ε

T
B(ρ, T ) +m2

γ

1

T

T∑
t=1

(
F̃+
t−1

)2
− 1

T

T∑
t=1

T∑
s=1

τ̃ts

(
ρ|t−s|

1− ρ2
σ2
ε +m2

γF
+
t−1F

+
s−1

)
,

=
σ2
ε

1− ρ2

(
1− ρ2

T
B(ρ, T )− 1

T

T∑
t=1

T∑
s=1

τ̃tsρ
|t−s|

)
+m2

γ

(
1

T

T∑
t=1

(
F̃+
t−1

)2
− 1

T

T∑
t=1

T∑
s=1

τ̃stF
+
t−1F

+
s−1

)
,

=
σ2
ε

1− ρ2

(
1− ρ2

T
B(ρ, T )−

(
1

T

T∑
t=1

τ̃tt + 2ρ
1

T

T∑
t=2

t−1∑
s=1

τ̃t,t−sρ
s−1

))
+

m2
γ

1

T

T∑
t=1

(
F̃+
t−1

)21−
∑T
t=1 F̃tF

+
t−1
∑T
s=1 F̃s

(
F+
s−1
)

∑T
t=1 F̃

2
t

∑T
t=1

(
F̃+
t−1

)2
 ,

=
σ2
ε

1− ρ2

(
1− ρ2

T
B(ρ, T )− 1

T

(
1 + 2ρ

T−1∑
t=1

ρt−1g̃F,t

))
+m2

γ h̃F , (A-15)

where

h̃F =
1

T

T∑
t=1

(
F̃+
t−1

)21−

(∑T
t=1 F̃tF

+
t−1

)2
∑T
t=1 F̃

2
t

∑T
t=1

(
F̃+
t−1

)2
 .

Dividing (A-11) by (A-15) yields the result in equation (10).

Next, letting T →∞

g̃F,t =

T−t
T

(
E (FsFs−t) +Op

(
1√
T

))
E (F 2

t ) +Op

(
1√
T

) =
T − t
T

θt +Op

(
1√
T

)
,

h̃F = E
((
F+
t−1
)2)1−

E
(
FtF

+
t−1
)2

E (F 2
t )E

((
F+
t−1
)2)

+Op

(
1√
T

)
,

=
1

(1− θρ)
2

(1− ρ2)
σ2
µ +Op

(
1√
T

)
,
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where use is made of lemma A-1. Hence, as T →∞,

T−1∑
t=1

ρt−1g̃F,t =

T−1∑
t=1

ρt−1
(
T − t
T

θt +Op

(
1√
T

))
= θ

T−1∑
t=1

(ρθ)
t−1 − 1

ρ

1

T

T−1∑
t=1

t (ρθ)
t

+Op

(
1√
T

)
,

= θ
1− (θρ)

T−1

1− θρ
− 1

ρ

1

T

(
θρ

1− (θρ)
T−1

(1− θρ)
2 − (T − 1)

(θρ)
T

1− θρ

)
+Op

(
1√
T

)
,

=
θ

1− θρ

[
1− 1

T

1− θT ρT

1− θρ

]
+Op

(
1√
T

)
=

θ

1− θρ
+Op

(
1√
T

)
. (A-16)

Thus, taking limits as N →∞ followed by an expansion as T →∞, equation (10) is given by

plim
N→∞

(ρ̂WGi − ρ) =
1

T

−A(ρ, T )− θ
1−θρ + op (1)

1
1−ρ2 −

1
T

1
1−ρ2

(
1 + 2ρ θ

1−θρ

)
+ 1

(1−θρ)2(1−ρ2)
m2
γσ

2
µ

σ2
ε

+ op (1)
,

= − 1

T

(
1 + ρ+

θ
(
1− ρ2

)
1− θρ

)(
1 +

m2
γ

(1− θρ)
2

σ2
µ

σ2
ε

)−1
+ op

(
1

T

)
. (A-17)

Proof of Theorem 1. Using (14) and (15), the probability limit as N →∞ of the numerator of

equation (17) equals

plim
N→∞

1

NT

N∑
i=1

y′i,−1MĠε
∗
i = plim

N→∞

1

NT

N∑
i=1

y′i,−1MḢεi, (A-18)

with MḢ = IT − Ḣ
(
Ḣ ′Ḣ

)−1
Ḣ ′, Ḣ =

(
ι, F+, F+

−1
)
. Similar to the derivation of (A-11), (A-18)

rewrites to

plim
N→∞

1

NT

N∑
i=1

y′i,−1MḢεi = plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1

[
(εit − εi)−

T∑
s=1

τ̃+st (εis − εi)

]
,

= − 1

T

T∑
t=1

plim
N→∞

1

N

N∑
i=1

yi,t−1εi −
1

T

T∑
t=1

T∑
s=1

τ̃+st plim
N→∞

1

N

N∑
i=1

yi,t−1εis,

= −σ
2
ε

T
A(ρ, T )− σ2

ε

1

T

T−1∑
t=1

ρt−1g̃+F,t, (A-19)

where g̃+F,t =
∑T
s=t+1 τ̃

+
s,s−t and

τ̃+st =
1

α̃0

(
α̃1F̃

+
t F̃

+
s − α̃2F̃

+
t F̃

+
s−1 + α̃3F̃

+
t−1F̃

+
s−1 − α̃2F̃

+
t−1F̃

+
s

)
, (A-20)

with α̃0 = α̃1α̃3 − α̃2
2, α̃1 =

∑T
t=1

(
F̃+
t−1

)2
, α̃2 =

∑T
t=1 F̃

+
t F̃

+
t−1 and α̃3 =

∑T
t=1

(
F̃+
t

)2
.

Second, as (15) implies that for N → ∞ MĠF
+ = 0 such that MĠyi,−1 = MĠy

+
i,−1, the
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probability limit as N →∞ of the denominator of equation (17) is given by

plim
N→∞

1

NT

N∑
i=1

y′i,−1MĠyi,−1 = plim
N→∞

1

NT

N∑
i=1
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′

i,−1MĠy
+
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N→∞

1
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T∑
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(
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+
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,
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1
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N∑
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T∑
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(
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)2 − plim
N→∞

1
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N∑
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T∑
t=1

T∑
s=1

τ̃+sty
+
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+
i,s−1
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N→∞

1
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N∑
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T∑
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T∑
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+
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+
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=
1

T

T∑
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1

N
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+
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T

T∑
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T∑
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1

N
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y+i,t−1y
+
i,s−1,

=
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ε

T
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1− ρ2

[
1− 1

T − 1

2ρ

1− ρ

[
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1− ρT

1− ρ
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T
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(
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1− ρ2
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ε

)
,

=
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T
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T
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1

T
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1

T
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1− ρ2

T
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T

(
1 + ρ
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ρt−1g̃+F,t
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. (A-21)

Dividing (A-19) by (A-21) yields the result in equation (18).

Turning to the expression for T →∞, first note that using Lemma A-1

1

T

T∑
s=t+1

F̃+
s F̃

+
s−t =

T − t
T

E(F+
s F

+
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(
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)
=
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T
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(
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)
,

such that
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1

+Op

(
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)
,

with ωt = λt/λ0. Next

− 1

T
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ρt−1g̃+F,t = − 1

T
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2ωt − ω1ωt+1 − ω1ωt−1
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(
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2
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1

T
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,
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= − (1 + θρ)
1

T

T−1∑
t=1

ρt−1
(
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T

)(
ωt − ρωt−1

1− ρ2
+
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(
1

T

)
,
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T
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1− θρ
+
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)
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(
1

T

)
, (A-22)

where use is made of ωt = (θ + ρ)ωt−1 − θρωt−2 ∀t ≥ 2 and

T−1∑
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(
1− t

T

)
ρt−1ωt = (θ + ρ)
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((
1− 2

T

)
ρω1 + ρ
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,
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.

Using (A-22), as T →∞ (A-19) and (A-21) are given by
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2
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ε

1
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, (A-23)
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. (A-24)
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Thus taking limits letting N →∞, followed by T →∞, equation (19) is given by
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. (A-25)

Proof of Theorem 2. Letting
(
ρ0, F 0

)
denote the true parameter ρ and the true factor F

respectively such that, after centering, the objective function in (20) is given by
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Using that for N,T →∞
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N∑
i=1

y′i,−1MF̃ ε̃i =
1

NT

N∑
i=1

y′i,−1ε̃i −
1

N

N∑
i=1

y′i,−1F̃

T

(
F̃ ′F̃

T

)−1
F̃ ′ε̃i
T

= op (1) ,

1

NT

N∑
i=1

λiF
0′MF̃ ε̃i =

1

NT

N∑
i=1

λiF
0′ ε̃i −

1

N

N∑
i=1

λiF
0′ F̃

T

(
F̃ ′F̃

T

)−1
F̃ ′ε̃i
T

= op (1) ,

1

NT

N∑
i=1

ε′i
(
MF̃ −MF̃ 0

)
ε̃i =

1

N

N∑
i=1

ε′iF̃
0

T

(
F̃ 0′ F̃ 0

T

)−1
F̃ 0′ ε̃i
T
− 1

N

N∑
i=1

ε′iF̃

T

(
F̃ ′F̃

T

)−1
F̃ ′ε̃i
T

= op (1) .

we have

SNT (ρ, F ) = S̆NT (ρ, F ) + op (1) , (A-26)

uniformly over ρ and F .

First note that as MF̃ 0 F̃
0 = 0, S̆NT

(
ρ0, F 0

)
= 0. Second, we show that for any (ρ, F ) 6=(

ρ0, F 0
)
, S̆NT (ρ, F ) > 0; thus S̆NT

(
ρ0, F 0

)
attains its unique minimum value at (ρ, F ) =

(
ρ0, F 0

)
.

Define

A =
1

NT

N∑
i=1

ỹ′i,−1MF̃ ỹi,−1; B =
1

NT

N∑
i=1

λ2i ; C =
1

NT

N∑
i=1

λiMF̃ ỹi,−1.
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Then

S̆NT (ρ, F ) =
(
ρ0 − ρ

)2
A+ F̃ 0′MF̃BMF̃ F̃

0 + 2
(
ρ0 − ρ

)
C ′MF̃ F̃

0,

=
(
ρ0 − ρ

)2 (
A− C ′B−1C

)
+
(
F̃ 0′MF̃ +

(
ρ0 − ρ

)
C ′B−1

)
B
(
MF̃ F̃

0 +B−1C
(
ρ0 − ρ

))
,

=
(
ρ0 − ρ

)2
D
(
F̃
)

+ θ′Bθ,

≥ 0,

since D (F ) = A− C ′B−1C and B are both positive definite, where θ = MF̃ F̃
0 +B−1C

(
ρ0 − ρ

)
.

Note that S̆NT (ρ, F ) > 0 if either ρ 6= ρ0 or F 6= F 0. This implies that ρ̂
CCEPr

is consistent for ρ.

Proof of Theorem 3. First note that using (12) and (23)

F̂t =
1

γ

(
yt − α̂− ρ̂CCEPr

yt−1

)
=

1

γ

(
(ρ− ρ̂

CCEPr
)yt−1 + (α− α̂) + γFt + εt

)
,

Ft = F̂t +
1

γ

(
(ρ̂

CCEPr
− ρ)yt−1 + (α̂− α)− εt

)
,

which for N →∞ and using (14) and (15) reduces to

Ft = F̂t +
1

γ

(
(ρ̂

CCEPr
− ρ)

(
(1− ρ)

−1
α+ γF+

t−1

)
+ (α̂− α)

)
,

= F̂t + (ρ̂
CCEPr

− ρ)F+
t−1 + a∗, (A-27)

where a∗ = 1
γ

(
(ρ̂

CCEPr
− ρ) (1− ρ)

−1
α+ (α̂− α)

)
. Using (A-27) in (22)

plim
N→∞

(ρ̂CCEPr − ρ) =

plim
N→∞

(1 /NT )

N∑
i=1

y′i,−1M ̂̇F
(
γi plim
N→∞

(ρ̂
CCEPr

− ρ)F+
−1 + εi

)

plim
N→∞

(1 /NT )

N∑
i=1

y′i,−1M ̂̇F yi,−1
,

=

plim
N→∞

(1 /NT )

N∑
i=1

y′i,−1M ̂̇F εi
plim
N→∞

(1 /NT )

N∑
i=1

y′i,−1M ̂̇F y+i,−1
. (A-28)

Using (A-7)-(A-10), the numerator of (A-28) is given by

plim
N→∞

1

NT

N∑
i=1

y′i,−1M ̂̇F εi = plim
N→∞

1

NT

N∑
i=1

T∑
t=1

yi,t−1

[
(εit − εi)−

T∑
s=1

̂̃τst (εis − εi)

]
,

=
1

T

T∑
t=1

plim
N→∞

1

N

N∑
i=1

yi,t−1εit −
1

T

T∑
t=1

(
1−

T∑
s=1

̂̃τst) plim
N→∞

1

N
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i=1

yi,t−1εi

− 1

T

T∑
t=1

T∑
s=1
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N→∞

1

N
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i=1

yi,t−1εis,
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= − 1

T

T∑
t=1

plim
N→∞

1

N

N∑
i=1

yi,t−1εi −
1

T

T∑
t=1

T∑
s=1

̂̃τst plim
N→∞

1

N

N∑
i=1

yi,t−1εis,

= −σ
2
ε

T
A(ρ, T )− σ2

ε

1

T

T−1∑
t=1

ρt−1g̃F̂ ,t, (A-29)

where g̃F̂ ,t =
∑T
s=t+1

̂̃τs,s−t =
∑T
s=t+1

(
F̂s − F̂

)(
F̂s−t − F̂

)/∑T
t=1

(
F̂t − F̂

)
.

Similarly to the derivation of (A-15), the denominator of equation (A-28) is given by

plim
N→∞

1

NT

N∑
i=1

y′i,−1M ̂̇F y+i,−1
= plim
N→∞

1

NT

N∑
i=1

T∑
t=1

[
y+i,t−1 + γF+

t−1
] [(

y+i,t−1 − y
+
i,−1

)
−

T∑
s=1

̂̃τst (y+i,s−1 − y+i )
]
,

= plim
N→∞

1

NT

N∑
i=1

T∑
t=1

(
y+i,t−1 − y

+
i,−1

)2 − plim
N→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

̂̃τsty+i,t−1y+i,s−1,
=

σ2
ε

1− ρ2

(
1− ρ2

T
B(ρ, T )− 2

T

(
1 + ρ

T−1∑
t=1

ρt−1g̃F̂ ,t

))
. (A-30)

Deviding (A-29) by (A-30) yields the result in equation (25).

Next, letting T →∞, from (A-27) and theorem 2 follows

F̂t = Ft + op (1) . (A-31)

Thus,

g̃F̂ ,t =

∑T
s=1

(
Fs − F

) (
Fs−t − F

)∑T
t=1

(
Ft − F

)2 + op (1) = g̃F,t + op (1) . (A-32)

The asymptotic representation of the CCEPr for (N,T )seq →∞ then follows from substituting

(A-31) in (25) and using similar derivations as to obtain (11).
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Appendix B Tables Monte Carlo simulations

Table 1: ρ = 0.6, β = 0.4, θ = 0.4, ψ1 = 1, ψ2 = 1, ψ3 = 0.8 and ξ = 3

T N bias ρ stde ρ stdv ρ rmse ρ bias β stde β stdv β rmse β

5 20 WGn -0.118 0.072 0.104 0.157 0.004 0.038 0.045 0.045
WGi -0.121 0.072 0.089 0.150 -0.019 0.038 0.041 0.045
CCEPu -0.355 0.170 0.306 0.469 -0.074 0.069 0.095 0.121
CCEPr -0.206 0.077 0.151 0.255 -0.034 0.036 0.051 0.062

10 20 WGn -0.034 0.041 0.068 0.076 0.022 0.025 0.030 0.037
WGi -0.054 0.037 0.040 0.067 -0.005 0.023 0.023 0.024
CCEPu -0.118 0.055 0.073 0.139 -0.015 0.027 0.029 0.033
CCEPr -0.083 0.042 0.057 0.101 -0.009 0.022 0.025 0.026

20 20 WGn 0.009 0.026 0.048 0.048 0.026 0.018 0.021 0.033
WGi -0.025 0.023 0.023 0.035 -0.001 0.015 0.015 0.015
CCEPu -0.050 0.030 0.033 0.060 -0.004 0.016 0.017 0.017
CCEPr -0.038 0.026 0.030 0.048 -0.003 0.015 0.016 0.016

30 20 WGn 0.022 0.021 0.039 0.045 0.027 0.014 0.017 0.032
WGi -0.017 0.018 0.018 0.024 -0.001 0.012 0.012 0.012
CCEPu -0.032 0.022 0.023 0.040 -0.002 0.013 0.013 0.013
CCEPr -0.025 0.021 0.022 0.033 -0.002 0.012 0.012 0.012

40 20 WGn 0.030 0.018 0.035 0.046 0.027 0.012 0.015 0.031
WGi -0.012 0.015 0.015 0.019 -0.000 0.010 0.010 0.010
CCEPu -0.023 0.018 0.019 0.030 -0.001 0.011 0.011 0.011
CCEPr -0.018 0.017 0.019 0.026 -0.001 0.010 0.011 0.011

50 20 WGn 0.035 0.016 0.031 0.046 0.028 0.011 0.013 0.031
WGi -0.010 0.013 0.013 0.016 -0.000 0.009 0.009 0.009
CCEPu -0.018 0.016 0.017 0.025 -0.001 0.009 0.010 0.010
CCEPr -0.014 0.015 0.016 0.021 -0.001 0.009 0.009 0.009

5 50 WGn -0.114 0.045 0.090 0.146 0.006 0.024 0.032 0.033
WGi -0.120 0.045 0.069 0.139 -0.018 0.024 0.027 0.032
CCEPu -0.358 0.105 0.267 0.446 -0.074 0.043 0.075 0.105
CCEPr -0.203 0.049 0.115 0.234 -0.033 0.023 0.034 0.047

10 50 WGn -0.032 0.026 0.059 0.067 0.022 0.016 0.022 0.031
WGi -0.052 0.023 0.026 0.059 -0.005 0.014 0.015 0.016
CCEPu -0.119 0.035 0.055 0.131 -0.016 0.017 0.019 0.025
CCEPr -0.082 0.027 0.039 0.091 -0.009 0.014 0.016 0.018

20 50 WGn 0.011 0.017 0.042 0.043 0.026 0.011 0.015 0.030
WGi -0.025 0.014 0.015 0.029 -0.001 0.010 0.010 0.010
CCEPu -0.051 0.019 0.022 0.055 -0.004 0.010 0.010 0.011
CCEPr -0.037 0.017 0.019 0.042 -0.002 0.010 0.010 0.010

30 50 WGn 0.023 0.013 0.036 0.043 0.027 0.009 0.012 0.030
WGi -0.016 0.011 0.011 0.019 -0.001 0.008 0.008 0.008
CCEPu -0.031 0.014 0.015 0.035 -0.002 0.008 0.008 0.008
CCEPr -0.023 0.013 0.014 0.027 -0.001 0.008 0.008 0.008

40 50 WGn 0.030 0.011 0.031 0.044 0.027 0.008 0.011 0.029
WGi -0.012 0.009 0.009 0.015 -0.001 0.007 0.007 0.007
CCEPu -0.023 0.012 0.012 0.026 -0.001 0.007 0.007 0.007
CCEPr -0.017 0.011 0.012 0.021 -0.001 0.007 0.007 0.007

50 50 WGn 0.036 0.010 0.029 0.046 0.028 0.007 0.010 0.029
WGi -0.009 0.008 0.008 0.012 -0.000 0.006 0.006 0.006
CCEPu -0.018 0.010 0.011 0.021 -0.000 0.006 0.006 0.006
CCEPr -0.014 0.010 0.010 0.017 -0.001 0.006 0.006 0.006
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Table 2: N = 50, β = 1 − ρ, θ = 0.4, ψ1 = 1, ψ2 = 1, ψ3 = 0.8 and ξ = 3

ρ T bias ρ stde ρ stdv ρ rmse ρ bias β stde β stdv β rmse β

0.4 5 WGn -0.058 0.039 0.071 0.091 0.018 0.028 0.037 0.042
WGi -0.073 0.038 0.050 0.089 -0.015 0.028 0.030 0.034
CCEPu -0.205 0.086 0.187 0.278 -0.067 0.052 0.083 0.106
CCEPr -0.106 0.040 0.072 0.128 -0.023 0.027 0.034 0.041

10 WGn -0.004 0.024 0.051 0.051 0.033 0.019 0.026 0.042
WGi -0.032 0.021 0.023 0.040 -0.004 0.017 0.017 0.017
CCEPu -0.062 0.029 0.038 0.073 -0.010 0.019 0.021 0.023
CCEPr -0.045 0.023 0.029 0.054 -0.006 0.017 0.017 0.018

20 WGn 0.024 0.016 0.040 0.047 0.036 0.013 0.019 0.041
WGi -0.017 0.013 0.014 0.021 -0.001 0.011 0.011 0.011
CCEPu -0.029 0.017 0.018 0.034 -0.002 0.012 0.012 0.012
CCEPr -0.022 0.015 0.016 0.028 -0.002 0.011 0.011 0.012

30 WGn 0.033 0.013 0.033 0.047 0.036 0.010 0.015 0.039
WGi -0.011 0.011 0.011 0.015 -0.000 0.009 0.009 0.009
CCEPu -0.018 0.013 0.013 0.022 -0.001 0.009 0.009 0.009
CCEPr -0.014 0.012 0.013 0.019 -0.001 0.009 0.009 0.009

40 WGn 0.038 0.011 0.029 0.048 0.037 0.009 0.013 0.039
WGi -0.008 0.009 0.009 0.012 -0.000 0.008 0.008 0.008
CCEPu -0.013 0.011 0.011 0.017 -0.000 0.008 0.008 0.008
CCEPr -0.011 0.010 0.011 0.015 -0.001 0.008 0.008 0.008

50 WGn 0.041 0.010 0.027 0.049 0.037 0.008 0.012 0.039
WGi -0.006 0.008 0.008 0.010 -0.000 0.007 0.007 0.007
CCEPu -0.011 0.009 0.010 0.014 -0.000 0.007 0.007 0.007
CCEPr -0.009 0.009 0.009 0.013 -0.001 0.007 0.007 0.007

0.8 5 WGn -0.309 0.059 0.150 0.343 0.024 0.038 0.057 0.062
WGi -0.285 0.061 0.132 0.315 -0.025 0.039 0.042 0.049
CCEPu -0.794 0.132 0.380 0.880 -0.080 0.057 0.072 0.108
CCEPr -0.630 0.071 0.237 0.673 -0.054 0.035 0.045 0.070

10 WGn -0.131 0.033 0.092 0.160 0.057 0.026 0.044 0.072
WGi -0.125 0.030 0.051 0.135 -0.008 0.025 0.025 0.026
CCEPu -0.353 0.050 0.121 0.373 -0.028 0.027 0.030 0.041
CCEPr -0.281 0.039 0.101 0.299 -0.020 0.024 0.026 0.032

20 WGn -0.038 0.019 0.057 0.068 0.071 0.019 0.031 0.077
WGi -0.055 0.017 0.022 0.059 -0.002 0.017 0.017 0.017
CCEPu -0.158 0.026 0.047 0.165 -0.009 0.017 0.018 0.020
CCEPr -0.121 0.023 0.039 0.127 -0.006 0.016 0.017 0.018

30 WGn -0.010 0.015 0.043 0.044 0.073 0.015 0.026 0.077
WGi -0.035 0.012 0.015 0.038 -0.001 0.013 0.013 0.013
CCEPu -0.098 0.019 0.028 0.102 -0.004 0.014 0.014 0.015
CCEPr -0.073 0.017 0.024 0.077 -0.003 0.013 0.013 0.014

40 WGn 0.007 0.012 0.037 0.037 0.075 0.013 0.023 0.079
WGi -0.025 0.010 0.012 0.027 -0.001 0.011 0.012 0.012
CCEPu -0.071 0.015 0.021 0.074 -0.002 0.012 0.012 0.012
CCEPr -0.053 0.014 0.018 0.056 -0.002 0.011 0.012 0.012

50 WGn 0.014 0.010 0.032 0.035 0.075 0.012 0.021 0.078
WGi -0.019 0.009 0.010 0.022 -0.001 0.010 0.010 0.010
CCEPu -0.055 0.013 0.016 0.057 -0.002 0.010 0.010 0.011
CCEPr -0.040 0.012 0.015 0.043 -0.002 0.010 0.010 0.010
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Table 3: N = 50, ρ = 0.6, β = 0.4, ψ1 = 1, ψ2 = 1, ψ3 = 0.8 and ξ = 3

θ T bias ρ stde ρ stdv ρ rmse ρ bias β stde β stdv β rmse β

0 5 WGn -0.144 0.044 0.095 0.173 0.001 0.022 0.028 0.028
WGi -0.080 0.039 0.050 0.095 -0.012 0.020 0.021 0.024
CCEPu -0.241 0.091 0.217 0.324 -0.049 0.036 0.060 0.077
CCEPr -0.122 0.042 0.080 0.146 -0.018 0.019 0.025 0.031

10 WGn -0.071 0.026 0.058 0.091 0.016 0.015 0.019 0.025
WGi -0.034 0.020 0.022 0.041 -0.003 0.012 0.012 0.012
CCEPu -0.071 0.029 0.040 0.081 -0.008 0.014 0.015 0.017
CCEPr -0.048 0.023 0.028 0.056 -0.004 0.012 0.012 0.013

20 WGn -0.034 0.017 0.040 0.052 0.021 0.010 0.013 0.025
WGi -0.017 0.013 0.013 0.021 -0.001 0.008 0.008 0.008
CCEPu -0.032 0.016 0.018 0.036 -0.002 0.008 0.009 0.009
CCEPr -0.023 0.014 0.015 0.027 -0.001 0.008 0.008 0.008

30 WGn -0.023 0.013 0.033 0.040 0.022 0.008 0.010 0.024
WGi -0.011 0.010 0.010 0.014 -0.000 0.006 0.006 0.006
CCEPu -0.020 0.012 0.013 0.024 -0.001 0.006 0.007 0.007
CCEPr -0.015 0.011 0.012 0.019 -0.001 0.006 0.006 0.006

40 WGn -0.017 0.011 0.028 0.033 0.022 0.007 0.009 0.024
WGi -0.008 0.008 0.008 0.011 -0.000 0.005 0.005 0.005
CCEPu -0.015 0.010 0.010 0.018 -0.000 0.005 0.006 0.006
CCEPr -0.011 0.010 0.010 0.014 -0.000 0.005 0.005 0.005

50 WGn -0.013 0.010 0.025 0.028 0.023 0.006 0.008 0.024
WGi -0.006 0.007 0.007 0.010 -0.000 0.005 0.005 0.005
CCEPu -0.012 0.009 0.009 0.015 -0.000 0.005 0.005 0.005
CCEPr -0.008 0.008 0.009 0.012 -0.000 0.005 0.005 0.005

0.8 5 WGn -0.140 0.048 0.075 0.159 -0.003 0.028 0.033 0.033
WGi -0.214 0.057 0.102 0.237 -0.035 0.032 0.036 0.051
CCEPu -0.498 0.117 0.309 0.586 -0.104 0.053 0.091 0.138
CCEPr -0.335 0.057 0.144 0.364 -0.057 0.029 0.046 0.073

10 WGn -0.036 0.028 0.053 0.064 0.019 0.018 0.024 0.031
WGi -0.097 0.030 0.040 0.105 -0.011 0.019 0.020 0.022
CCEPu -0.195 0.042 0.077 0.210 -0.027 0.022 0.026 0.038
CCEPr -0.145 0.031 0.058 0.156 -0.017 0.019 0.022 0.028

20 WGn 0.018 0.017 0.041 0.045 0.027 0.013 0.018 0.032
WGi -0.047 0.018 0.020 0.051 -0.003 0.013 0.013 0.013
CCEPu -0.088 0.023 0.030 0.093 -0.008 0.014 0.014 0.016
CCEPr -0.067 0.020 0.027 0.072 -0.006 0.013 0.013 0.014

30 WGn 0.038 0.013 0.035 0.051 0.030 0.010 0.014 0.033
WGi -0.031 0.014 0.014 0.034 -0.001 0.010 0.010 0.010
CCEPu -0.056 0.017 0.020 0.060 -0.003 0.011 0.011 0.011
CCEPr -0.044 0.015 0.019 0.047 -0.003 0.010 0.010 0.011

40 WGn 0.049 0.011 0.032 0.058 0.030 0.009 0.013 0.033
WGi -0.023 0.011 0.012 0.026 -0.001 0.009 0.009 0.009
CCEPu -0.041 0.014 0.015 0.044 -0.002 0.009 0.009 0.009
CCEPr -0.033 0.013 0.015 0.036 -0.003 0.009 0.009 0.009

50 WGn 0.054 0.010 0.029 0.061 0.031 0.008 0.011 0.033
WGi -0.018 0.010 0.010 0.021 -0.000 0.008 0.008 0.008
CCEPu -0.032 0.012 0.013 0.035 -0.001 0.008 0.008 0.008
CCEPr -0.025 0.011 0.013 0.029 -0.002 0.008 0.008 0.008
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Table 4: N = 50, ρ = 0.6, β = 0.4, θ = 0.4, ψ1 = 1, ψ3 = 0.8 and ξ = 3

ψ2 T bias ρ stde ρ stdv ρ rmse ρ bias β stde β stdv β rmse β

0.5 5 WGn -0.128 0.045 0.069 0.145 -0.002 0.024 0.029 0.029
WGi -0.147 0.050 0.077 0.166 -0.023 0.026 0.029 0.037
CCEPu -0.379 0.108 0.277 0.470 -0.079 0.045 0.077 0.110
CCEPr -0.228 0.050 0.127 0.261 -0.037 0.025 0.036 0.052

10 WGn -0.045 0.026 0.044 0.063 0.015 0.016 0.020 0.025
WGi -0.064 0.026 0.030 0.071 -0.006 0.016 0.016 0.017
CCEPu -0.127 0.036 0.058 0.139 -0.016 0.018 0.021 0.026
CCEPr -0.090 0.028 0.043 0.100 -0.009 0.015 0.017 0.019

20 WGn -0.006 0.017 0.032 0.032 0.020 0.011 0.014 0.024
WGi -0.031 0.016 0.016 0.035 -0.002 0.010 0.011 0.011
CCEPu -0.055 0.020 0.023 0.060 -0.004 0.011 0.011 0.012
CCEPr -0.041 0.017 0.021 0.046 -0.003 0.010 0.011 0.011

30 WGn 0.007 0.013 0.026 0.027 0.021 0.009 0.011 0.023
WGi -0.020 0.012 0.012 0.024 -0.001 0.008 0.008 0.008
CCEPu -0.035 0.015 0.016 0.038 -0.002 0.009 0.009 0.009
CCEPr -0.026 0.014 0.015 0.030 -0.001 0.008 0.008 0.009

40 WGn 0.013 0.011 0.022 0.026 0.021 0.008 0.010 0.023
WGi -0.015 0.010 0.011 0.018 -0.000 0.007 0.007 0.007
CCEPu -0.025 0.012 0.013 0.028 -0.001 0.007 0.007 0.007
CCEPr -0.019 0.012 0.012 0.023 -0.001 0.007 0.007 0.007

50 WGn 0.017 0.010 0.020 0.026 0.021 0.007 0.008 0.023
WGi -0.012 0.009 0.009 0.015 -0.000 0.006 0.006 0.006
CCEPu -0.020 0.011 0.011 0.023 -0.001 0.006 0.007 0.007
CCEPr -0.015 0.010 0.011 0.019 -0.001 0.006 0.006 0.006

2 5 WGn -0.101 0.044 0.117 0.154 0.010 0.024 0.035 0.036
WGi -0.091 0.040 0.058 0.108 -0.014 0.021 0.023 0.027
CCEPu -0.316 0.100 0.246 0.400 -0.066 0.039 0.069 0.095
CCEPr -0.166 0.046 0.098 0.192 -0.027 0.021 0.029 0.040

10 WGn -0.018 0.026 0.077 0.079 0.026 0.016 0.024 0.035
WGi -0.039 0.020 0.023 0.045 -0.004 0.013 0.013 0.013
CCEPu -0.101 0.032 0.049 0.112 -0.013 0.015 0.017 0.022
CCEPr -0.068 0.025 0.033 0.076 -0.007 0.013 0.014 0.015

20 WGn 0.027 0.016 0.054 0.061 0.030 0.011 0.016 0.034
WGi -0.018 0.012 0.013 0.022 -0.001 0.008 0.008 0.009
CCEPu -0.043 0.017 0.020 0.047 -0.003 0.009 0.009 0.010
CCEPr -0.031 0.015 0.017 0.036 -0.002 0.008 0.009 0.009

30 WGn 0.041 0.013 0.047 0.062 0.031 0.009 0.013 0.034
WGi -0.011 0.009 0.010 0.015 -0.000 0.007 0.007 0.007
CCEPu -0.026 0.013 0.014 0.030 -0.001 0.007 0.007 0.007
CCEPr -0.020 0.012 0.013 0.023 -0.001 0.007 0.007 0.007

40 WGn 0.049 0.011 0.041 0.064 0.031 0.008 0.011 0.033
WGi -0.009 0.008 0.008 0.012 -0.000 0.006 0.006 0.006
CCEPu -0.019 0.011 0.011 0.022 -0.001 0.006 0.006 0.006
CCEPr -0.014 0.010 0.011 0.018 -0.001 0.006 0.006 0.006

50 WGn 0.055 0.010 0.037 0.066 0.031 0.007 0.010 0.033
WGi -0.007 0.007 0.007 0.010 -0.000 0.005 0.005 0.005
CCEPu -0.015 0.009 0.010 0.018 -0.000 0.005 0.005 0.005
CCEPr -0.012 0.009 0.009 0.015 -0.000 0.005 0.005 0.005

30



Table 5: N = 50, ρ = 0.6, β = 0.4, θ = 0.4, ψ1 = 1, ψ2 = 1 and ξ = 3

ψ3 T bias ρ stde ρ stdv ρ rmse ρ bias β stde β stdv β rmse β

0.4 5 WGn -0.119 0.045 0.089 0.148 -0.002 0.024 0.029 0.030
WGi -0.124 0.046 0.069 0.142 -0.019 0.024 0.027 0.033
CCEPu -0.356 0.105 0.266 0.444 -0.074 0.043 0.073 0.104
CCEPr -0.203 0.048 0.118 0.235 -0.035 0.023 0.033 0.048

10 WGn -0.035 0.027 0.058 0.067 0.014 0.016 0.020 0.025
WGi -0.053 0.024 0.027 0.059 -0.005 0.014 0.015 0.015
CCEPu -0.116 0.035 0.055 0.128 -0.015 0.017 0.019 0.025
CCEPr -0.081 0.026 0.040 0.090 -0.010 0.014 0.016 0.019

20 WGn 0.008 0.017 0.043 0.044 0.019 0.011 0.014 0.023
WGi -0.026 0.014 0.015 0.030 -0.001 0.010 0.010 0.010
CCEPu -0.050 0.019 0.022 0.055 -0.004 0.010 0.011 0.011
CCEPr -0.037 0.016 0.020 0.042 -0.004 0.009 0.010 0.011

30 WGn 0.021 0.013 0.036 0.042 0.019 0.009 0.011 0.022
WGi -0.016 0.011 0.011 0.020 -0.001 0.008 0.008 0.008
CCEPu -0.032 0.014 0.015 0.035 -0.002 0.008 0.008 0.008
CCEPr -0.024 0.013 0.015 0.028 -0.003 0.008 0.008 0.009

40 WGn 0.029 0.011 0.031 0.042 0.019 0.008 0.010 0.022
WGi -0.012 0.009 0.010 0.016 -0.000 0.007 0.007 0.007
CCEPu -0.023 0.012 0.012 0.026 -0.001 0.007 0.007 0.007
CCEPr -0.018 0.011 0.012 0.022 -0.003 0.007 0.007 0.008

50 WGn 0.033 0.010 0.028 0.044 0.019 0.007 0.009 0.021
WGi -0.010 0.008 0.008 0.013 -0.000 0.006 0.006 0.006
CCEPu -0.018 0.010 0.011 0.021 -0.001 0.006 0.006 0.006
CCEPr -0.015 0.010 0.010 0.018 -0.003 0.006 0.006 0.007

Table 6: N = 50, ρ = 0.6, β = 0.4, θ = 0.4, ψ1 = 1, ψ2 = 1 and ψ3 = 0.8

ξ T bias ρ stde ρ stdv ρ rmse ρ bias β stde β stdv β rmse β

10 5 WGn -0.045 0.028 0.034 0.056 -0.003 0.012 0.013 0.013
WGi -0.074 0.035 0.047 0.088 -0.012 0.014 0.015 0.020
CCEPu -0.182 0.078 0.170 0.249 -0.039 0.027 0.046 0.060
CCEPr -0.087 0.031 0.061 0.106 -0.014 0.013 0.019 0.023

10 WGn -0.010 0.016 0.024 0.026 0.003 0.008 0.009 0.009
WGi -0.033 0.017 0.020 0.039 -0.004 0.008 0.008 0.009
CCEPu -0.055 0.023 0.031 0.063 -0.008 0.010 0.010 0.013
CCEPr -0.037 0.017 0.023 0.044 -0.004 0.008 0.009 0.010

20 WGn 0.010 0.010 0.021 0.023 0.006 0.005 0.006 0.008
WGi -0.016 0.010 0.011 0.020 -0.001 0.005 0.005 0.005
CCEPu -0.024 0.012 0.014 0.028 -0.002 0.006 0.006 0.006
CCEPr -0.018 0.011 0.012 0.021 -0.001 0.005 0.005 0.006

30 WGn 0.018 0.008 0.019 0.026 0.006 0.004 0.005 0.008
WGi -0.011 0.008 0.008 0.014 -0.000 0.004 0.004 0.004
CCEPu -0.015 0.009 0.010 0.018 -0.001 0.004 0.004 0.005
CCEPr -0.012 0.008 0.009 0.015 -0.001 0.004 0.004 0.004

40 WGn 0.022 0.007 0.018 0.028 0.007 0.004 0.005 0.008
WGi -0.008 0.007 0.007 0.011 -0.000 0.004 0.004 0.004
CCEPu -0.011 0.007 0.008 0.014 -0.001 0.004 0.004 0.004
CCEPr -0.009 0.007 0.007 0.012 -0.001 0.004 0.004 0.004

50 WGn 0.024 0.006 0.016 0.029 0.007 0.003 0.004 0.008
WGi -0.006 0.006 0.006 0.009 -0.000 0.003 0.003 0.003
CCEPu -0.009 0.006 0.007 0.011 -0.000 0.003 0.003 0.003
CCEPr -0.007 0.006 0.006 0.010 -0.000 0.003 0.003 0.003

31


