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Abstract

Background: Huntington’s disease (HD) is a devastating brain disorder with no effective treatment or cure available.

The scarcity of brain tissue makes it hard to study changes in the brain and impossible to perform longitudinal studies.

However, peripheral pathology in HD suggests that it is possible to study the disease using peripheral tissue as a

monitoring tool for disease progression and/or efficacy of novel therapies. In this study, we investigated if blood can

be used to monitor disease severity and progression in brain. Since previous attempts using only gene expression

proved unsuccessful, we compared blood and brain Huntington’s disease signatures in a functional context.

Methods: Microarray HD gene expression profiles from three brain regions were compared to the transcriptome of

HD blood generated by next generation sequencing. The comparison was performed with a combination of

weighted gene co-expression network analysis and literature based functional analysis (Concept Profile Analysis).

Uniquely, our comparison of blood and brain datasets was not based on (the very limited) gene overlap but on the

similarity between the gene annotations in four different semantic categories: “biological process”, “cellular

component”, “molecular function” and “disease or syndrome”.

Results: We identified signatures in HD blood reflecting a broad pathophysiological spectrum, including alterations

in the immune response, sphingolipid biosynthetic processes, lipid transport, cell signaling, protein modification,

spliceosome, RNA splicing, vesicle transport, cell signaling and synaptic transmission. Part of this spectrum was

reminiscent of the brain pathology. The HD signatures in caudate nucleus and BA4 exhibited the highest similarity

with blood, irrespective of the category of semantic annotations used. BA9 exhibited an intermediate similarity, while

cerebellum had the least similarity. We present two signatures that were shared between blood and brain: immune

response and spinocerebellar ataxias.

Conclusions: Our results demonstrate that HD blood exhibits dysregulation that is similar to brain at a functional

level, but not necessarily at the level of individual genes. We report two common signatures that can be used to

monitor the pathology in brain of HD patients in a non-invasive manner. Our results are an exemplar of how signals in

blood data can be used to represent brain disorders. Our methodology can be used to study disease specific

signatures in diseases where heterogeneous tissues are involved in the pathology.
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Background
Huntington’s disease (HD) is a devastating disease that is

inherited in an autosomal dominant manner. The genetic

cause of the disease is a CAG repeat expansion in the

coding region of the huntingtin gene (HTT). This is trans-

lated to an expanded stretch of glutamine amino acids in

the huntingtin protein (HTT) and this mutant protein is

the main cause of neuropathology in HD. While extensive

research has been done since 1993, when the genetic cause

of the disease was discovered [1], there is still no cure for

this disease nor an effective treatment.

Clinical and imaging biomarkers have been developed

that measure the disease state and progression [2]. Nev-

ertheless, these biomarkers can be expensive and often

cannot monitor changes before onset of clinical symp-

toms. To develop an intervention that starts before disease

onset it is important to have biomarkers that can accu-

rately measure changes between controls and HD patients

before symptoms first arise. To date, promising clinical tri-

als targeting the mutant protein are under development

and robust as well as reliable biomarkers are essential

to advance these novel therapeutic strategies into the

clinic.

Although the main pathology of HD is found in the

brain, human brain tissue cannot be used to measure

molecular biomarkers to monitor disease state and pro-

gression in living patients. However, due to the ubiquitous

expression of the mutant protein, the HD phenotype is

not limited to the brain. Symptoms such as weight loss,

skeletal muscle wasting and cardiac failure, point out an

altogether complex pathology that involves many tissues

[3, 4]. This opens the opportunity to investigate HD

related pathology in more accessible tissues that can be

obtained in a non-invasive manner. Transcriptional dys-

regulation is a prominent feature of the disease. Expres-

sion profiling studies in brain have shown that in the

caudate nucleus 21 % (9763) of the probe sets demon-

strated significant differential expression [5]. Investigating

gene expression changes in peripheral tissue can provide

new insights that can lead to the development of new

therapies and biomarkers to monitor disease progression.

Using post mortem brain tissue can however introduce

biases when studying disease mechanisms due to non-

disease specific effects of post mortem interval and spe-

cific agonal conditions such as coma, hypoxia and seizures

[6]. Several studies have focused on the analysis of blood

using microarray technology, to study the pathology in

HD. However, HD-specific gene expression changes are

less pronounced in blood and it has proven difficult to val-

idate them across studies [7, 8]. For example, Borovecki

et al. analyzed global changes in mRNA expression in the

blood samples of HD patients, compared with controls

and identified a set of 12 genes that were able to clearly

distinguish controls and patients with HD [9]. Although

this work was highly promising, to this date their results

have proven difficult to replicate.

More promising biomarkers emerged with the advances

in next-generation sequencing. Mastrokolias et al. iden-

tified a HD signature that included 40 genes that were

previously reported in at least one HD gene expression

study with the same direction in expression change [10].

However, Cai et al. [11] showed that little preservation

occurs in mean expression levels between the brain and

blood. It is however possible that signals are preserved

at levels beyond gene expression. For instance, Chuang

et al. pointed out that subnetwork markers in a protein-

network-based approach were significantly more repro-

ducible than individual gene markers in two different

cancer cohorts [12].

The most robust HD disease signature based on tran-

scriptomics data to be used for drug development and

disease progression biomarkers should be present in both

blood and brain [13, 14]. Because the blood signature is

derived from non-neuronal tissue and the brain signature

is masked by non-HD related processes such as hypoxia,

the shared signature is likely the most informative from

a mechanistic and therapeutic point of view. We used a

systems biology approach that combines Weighted Gene

Co-expression Network Analysis (WGCNA) [15, 16]

and literature mining technology [17, 18] to assess the

similarity between brain and blood tissue using previ-

ously published gene expression studies in brain and blood

[5, 10]. We prioritized signatures that were shared

between blood and brain tissue at a systems level, based

on mechanisms that involve multiple genes and proteins.

In general, genes that are part of the same mechanism,

exhibit similar expression changes. At the mechanis-

tic level we can compare signature signals from post-

mortem HD brain tissue and blood to provide novel

biomarkers that can be measured in blood to mon-

itor the brain pathology in living patients. Such an

approach offers many advantages and can also be use-

ful for other neurodegenerative disorders. Apart from the

non-invasive nature of blood sampling, it is also cost

effective and widely available. This can lead to the devel-

opment of more standardized tests and offer more robust

measurements.

Methods

Blood dataset

The blood dataset used in this work consists of tran-

scriptomics data obtained by next generation sequenc-

ing (NGS) from whole blood. The dataset consists of 33

controls, 27 presymptomatic mutation carriers and 64

symptomatic mutation carriers. The phenotypes associ-

ated with this dataset that we used in this analysis were

carrier status, CAG repeat length, and two clinical scores

namely motor score and Total Functional Capacity (TFC)
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score. The TFC score is inversely correlated to the motor

score and the CAG repeat, and it reflects the disease

severity with lower numbers indicating higher severity of

the disease. The carrier status was assigned ’0’ for con-

trols and ’1’ for HD carriers. The CAG repeat values

ranged between 17 and 53, covering both controls and HD

samples. The motor score of the control subjects ranged

between 0 and 11 and between 0 and 107 for the HD

subjects. The TFC score for the control subjects ranged

between 11 and 13 and for the HD subjects between 0

and 13.

We used the processed blood data set that is publicly

available in the NCBI Gene Expression Omnibus (GEO)

database under accession number GSE51799. Details for

the dataset can be found in the original publication [10].

We removed the presymptomatic samples from the

blood samples because there were only 3 presymptomatic

samples in the brain study. We also removed transcripts

with low tag count (less than 94). The dataset was nor-

malized using the calcNormFactors (TMMmethod) from

the edgeR bioconductor package for RNA-Seq [19]. In

addition, the dataset was transformed using the method

described in [20].

Brain dataset

The HD human brain data used in this analysis were

obtained from the public repository NCBI Gene Expres-

sion Omnibus, entry GSE3790. The data set was orig-

inally created and analyzed by Hodges et al. [5]. It

contains 44 HD gene positive cases and 36 age and sex

matched controls. They analyzed three different brain

regions, caudate nucleus, frontal cortex (BA4 and BA9

regions) and cerebellum, with an Affymetrix Microarray

GeneChip (Human Genome U133A and U133B). In addi-

tion, they classified the HD cases based on Vonsattel grade

of disease pathology (scale = 0 –4). We used the pro-

cessed data from the Human Genome array U133A to

construct the WGCNA network. The dataset was log2

transformed.

Application of weighted gene co-expression network

analysis (WGCNA)

The transformed blood and brain datasets were used

to construct the weighted gene co-expression networks.

We used the original WGCNA algorithm as described

in [15].

The parameters were chosen based on the assumption

of a scale-free topology of the co-expression network,

according to WGCNA guidelines, and also in order to

make modules from each network of comparable sizes.

Other parameters followed default settings that are based

on earlier investigations of the WGCNA method by

Horvath et al. [15, 16]. The soft threshold for each net-

work was: caudate: 9, BA4: 3, BA9: 5, cerebellum: 5, blood:

9. The parameter minModuleSize was assigned to 15 for

all networks. We performed module identification using

the dynamic tree cut algorithm [21]. The parameters for

the module identification were chosen as to avoid creat-

ing many large modules. We chose method = “hybrid”

for all networks, deepSplit = 2 for all brain networks and

deepSplit = 0 for the blood network. Changing the deep-

Split parameter that results in larger or smaller modules

appeared to have minimal effect on the composition of

genes and annotations of modules (data not shown). The

parameter cutHeight was chosen as cutHeight = 0.999 for

all brain networks and cutHeight = 0.995 for the blood

network. For the blood network we chose MEDissThres

= 0.30 for merging modules whose expression profile was

similar. In order to keep the module sizes of the brain net-

works comparable to the blood network the MEDissThres

parameter for all four brain networks was chosen to be

MEDissThres = 0.0001. In total we identified 34 modules

in the blood dataset consisting of a median of 66 genes

(mean:233). In the brain dataset we identified in total 55

modules in the caudate nucleus, 67 in BA4, 118 in BA9 and

81 in cerebellum. Details on the association of modules

per network with the disease phenotypes can be found in

Additional file 1.

Module size per network in the brain datasets were for

the caudate median: 105.0, mean: 335, for the cerebel-

lum median: 75, mean: 275.1, for the BA4 median: 67,

mean: 332.6 and for the BA9 mean: 51.5, median: 188.

The association of modules with the disease phenotypes

was performedwith an implementation of the R’s standard

cor function in the WGCNA package. The correlation

method that was used was Pearson correlation.

Concept profile analysis

We performed Concept profile analysis (CPA) which was

previously described in [17, 18]. In short, CPA is based

on comparing concept profiles that were mined from

the literature. To construct a concept profile, PubMed

abstracts are indexed by Peregrine (https://trac.nbic.nl/

data-mining/), using a thesaurus of biomedical and chem-

ical concepts that has been prepared in-house for text

mining [22, 23]. For every concept in the thesaurus that

is associated to at least five PubMed records, a concept

profile is created. A concept profile is a vector contain-

ing all concepts related to the main concept (by direct

co-occurrence in PubMed abstracts). Each relation is

weighted by the symmetric uncertainty coefficient. Con-

cept profiles are matched with each other to identify

similarities via their shared concepts (indirect relations).

Any distance measure can be used for this matching

such as the mutual information, inner product, cosine,

angle, Euclidean distance or Pearson’s correlation. The

CPA Web Services that we used for our analysis use the

inner product measure.

https://trac.nbic.nl/data-mining/
https://trac.nbic.nl/data-mining/
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Module annotation - parameters and semantic types

The modules were annotated with concepts of a certain

semantic type using the Taverna [24, 25] workflow which

is publicly available from the myExperiment repository

http://www.myexperiment.org/workflows/3921.html.

This workflow orchestrates a series of CPA web services

for module annotation which use literature that was

mined up to July 2012.We used a selection of 4 predefined

concept sets from our local database of concept profiles.

A concept set is a collection of concept profiles related to

a particular semantic type (e.g. biological processes). The

concept sets that we used in our analysis were: biological

processes (ID:5), cellular component (ID:3), molecular

function(ID:4) and disease or syndrome (ID:82). The

first three concepts sets are based on the Gene Ontology

(GO). Gene Ontology (GO) terms are often given as

words or phrases that are infrequently found in normal

texts. To still provide broad coverage of GO terms, we

previously developed a procedure specifically for GO

[17]. In short, the GO concept profiles were created based

on the literature (PubMed identifiers) provided in the GO

database itself. That includes literature based on all gene-

GO term associations and GO-terms without an explicit

association with genes (version 2012-07-14, direct down-

load link: http://archive.geneontology.org/lite/2012-07-

14/go_20120714-assocdb.rdf-xml.gz). The disease or

syndrome concept set provides information about dis-

eases or syndromes that currently exist in the UMLS [26]

and OMIM databases [27], by using information from the

complete literature. The top 20 annotations (based on the

sum of their similarity scores with all of the genes in a

module) from each concept set was used to annotate each

module. The annotation of modules was performed by

matching the concept profiles of the genes in the module

with each of the concept sets. To subsequently define the

similarity between a pair of modules (one from brain and

one from blood), we counted the number of overlapping

annotations between each module pair.

Randomization approach and significance of the modules

The following algorithm was applied separately for each

of the comparisons between the datasets and for each

semantic annotation category separately. Suppose we have

identified n modules A1,A2, . . . ,An in blood and m mod-

ules B1,B2, . . . ,Bm in one of the brain regions. We use

CPA to annotate each module and compute similarity

scores Sij for all pairs (Ai,Bj), based on the number

of overlapping annotations. To assess the significance

of these similarity scores, we use a permutation-based

approach as follows. For k = 1, 2, . . . 100, we gen-

erate sets of random modules A1k ,A2k , . . . ,Ank and

B1k ,B2k , . . . ,Bmk of the same size as the original modules

A1,A2, . . . ,An and B1,B2, . . . ,Bm. We compute similarity

scores Sijk l for each pair (Aik ,Bjl). On the basis of these

10,000 permutation-scores, we use Westfall and Young’s

minP method [28] to compute the significance of each

module pair (Ai,Bj). Note that this method aims to control

the familywise error rate (FWER) by adjusting for the fact

that we make n × m comparisons. As explained in [29],

the fact that the scores are discrete causes the Westfall-

Youngmethod to be conservative. To counter this, we have

decided to set the significance level at 10 %. We do point

out that to reach this level of significance, the observed

similarity score should be the most extreme among all

permutations. Also, driven by biological interpretation of

module pairs that are associated with sexual differentia-

tion that had a large number of overlapping annotations

and number of overlapping genes we decided to include

module pairs up to a significance level of 50 %. Thesemod-

ule pairs are indicated in Additional file 2 with dashed

lines.

Results

Workflow to identify HDmodules in blood and common

functional signatures between blood and brain

In order to identify common Huntington disease-specific

signatures in brain and blood, we created groups of

co-expressed genes (modules) using weighted gene co-

expression network analysis (WGCNA). We first applied

WGCNA to the blood and brain dataset and identified

modules that were associated with the disease phenotype.

We then used Concept Profile Analysis (CPA) technol-

ogy to annotate each module separately with different

semantic annotation categories and assess the similarity

between the different networks (blood versus the four

brain regions) based on the overlap of the module anno-

tations (Fig. 1). The annotations were based on four

semantic categories: biological processes, cellular compo-

nent, molecular function and disease or syndrome. The

categories correspond to the main branches in the gene

ontology as a natural way to distinguish between differ-

ent views on biological function [30]. The gene enrich-

ment analysis that CPA performs differs from the classical

GO gene enrichment analysis because CPA annotates

genes by mining biomedical literature, allowing the iden-

tification of more specific GO categories as previously

demonstrated in [30], while the GO annotations are man-

ually curated.

Disease signatures identified in the blood data set

For our functional analysis of HD signals in blood data, we

used our blood network modules that were identified by

WGCNA. We identified in total 8 modules that were cor-

related with the disease phenotype from a total number

of 34 modules (Fig. 2). Each module was annotated using

CPA and the most representative annotations comprised

the signature of that particular module. The extended list

of the bloodmodules and their associated annotations can

http://www.myexperiment.org/workflows/3921.html
http://archive.geneontology.org/lite/2012-07-14/go_20120714-assocdb.rdf-xml.gz
http://archive.geneontology.org/lite/2012-07-14/go_20120714-assocdb.rdf-xml.gz
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Fig. 1Workflow for the identification of common signatures between

blood and brain tissue. The blood and brain datasets are transformed

into gene co-expression networks using Weighted Gene Co-

expression Network Analysis (WGCNA). The networks are represented

by modules, groups of highly co-expressed genes. Modules

significantly correlated with HD are identified. The modules are

annotated using Concept Profile Analysis (CPA), using four semantic

annotation categories i.e. Biological Processes, Cellular Component,

Molecular Function and Disease or Syndrome. Next, the similarity

between the annotated modules from each network is assessed (for

each semantic annotation category) based on the total number of

overlapping annotations between each blood-brain module pair

(pairwise matching). The significance of each module pair is assessed

by repeating the entire analysis using randomly composed modules

of the same gene size as the original ones. The random distribution

was used to assign a significance value for each module pair. At the

bottom of the figure, the module pairs that cross our threshold

(P value < 0.05) which compose our two blood-brain signatures

be found in Additional file 3 and more detailed informa-

tion about gene composition and annotations per module

in Additional files 4 and 5. Here, we describe the top 5

signatures.

• Immune response (violet module) was positively

correlated with TFC score and negatively correlated

with CAG repeat length and motor score.

Inflammation can be detected in monocytes from

presymptomatic patients [31] and a gene expression

inflammation signature was also reported by

Mastrokolias et al. [10].
• Cell cycle and protein transport (green module) were

positively correlated with motor score and CAG

repeat. Recent studies in mouse models of HD

suggest that abnormalities in the cell cycle may

contribute to the HD pathogenesis [32, 33].
• Sphingolipid biosynthetic process (thistle2 module)

was positively correlated with TFC score and

negatively correlated with motor score. Sphingolipids

are essential for brain function and recently they were

reported as candidate biomarkers in Alzheimer’s

disease based on evidence that sphinglolipid levels are

associated with cerebrospinal fluid (CSF) amyloid

β42 concentration [34]. In addition, an independent

study reported sphingolipids being associated with

restoration of motor behavior in HD mice [35].
• Cell signaling and synaptic transmission (orangered4

module) were positively correlated with motor score

and negatively with TFC score. The HAP1 gene is

included in this module that encodes for the

huntingtin associated protein 1 which directly binds

to huntingtin [36].
• Phospholipid transport and dephosphorylation, and

RNA splicing (salmon4 module) were positively

correlated with CAG repeat and carrier status.

Phospholipids have been proposed as targets for

therapeutic intervention in HD, because of the

finding that mutant huntingtin is able to interact with

phospholipids in membranes [37], with different

affinity and preference for specific phospholipids,

depending on the polyglutamine expansion [38].

The number of genes that were part of the 8 modules

that were correlated with HD accounted for 8.72 % of

the total number of genes detected in the blood exper-

iment. In contrast, only 1.03 % of genes was identified

as differentially expressed using classical differential gene

expression (DGE) analysis [10]. Investigating this further,

we find an overlap of twelve genes between the differ-

entially expressed genes from the DGE analysis and the

genes that were part of the significantly correlated mod-

ules. Ten out of the 62 genes from the inflammation

module overlapped with this common set of 12 genes,
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Fig. 2 Significantly correlated blood modules with 4 different disease phenotypes. Each module was assigned a different color name, cf standard

WGCNA. Significant modules were identified by correlating the module eigengenes (first principle component of the summary of gene expression

profiles within a module) to the disease phenotypes, i.e. carrier status, CAG repeat, motor score and Total Functional Capacity (TFC) score, a measure

for disease severity. On the y-axis: the top 8 correlated modules, x-axis: the disease phenotypes. The numbers represent the Pvalue for the

correlation per module. Green: negative correlation, red: positive correlation. The intensity of the color depicts the strength of the correlation

suggesting a strong disease effect on the expression of

these genes.

WGCNA in the brain dataset

We also applied WGCNA to the four brain regions sep-

arately to identify modules that are correlated with the

disease phenotype. WGCNA has been applied before in

the same brain dataset [39–41] but we had to reanalyze

this data to obtain module sizes that were comparable

with the modules from the blood dataset.

We found the highest number of modules associated

with the HD phenotype in the caudate nucleus (37 mod-

ules). Cerebellum and BA4 follow with 29 and 23 modules

respectively (Additional files 1 and 6). BA9 exhibited poor

association with HD since none of the BA9 modules were

significantly correlated with the disease state. However,

a large number of modules exhibited a strong associa-

tion with the disease staging phenotype (Additional files 1

and 6).

Because the semantic annotations of the modules from

each brain network can be relevant for future research, we

report here the processes that were prominently present

in all brain regions: immune response, chromatin remod-

eling, histone modification, cell-cycle, myelination and

cell differentiation (oligodendrocyte, axon and Schwann

cells), synaptic activity, protein transport, nuclear activity,

protein kinase activity and RNA splicing.

Our analysis confirmed the neurodegeneration pat-

tern in HD as previously described in [5], and was also

described by the WGCNA analysis in [39]. Overall the

functional comparison of our semantic annotations with

the results from [39] showed a high degree of similar-

ity. For instance, RNA splicing, protein transport, protein

modification, immune response, chromatin organization

and DNA damage were identified by both analyses.

Association of modules between different tissues - module

pairing

In order to identify signatures that represent mechanisms

that are common inHDblood and brain tissue we used the

annotated modules from each network (blood, caudate

nucleus, cerebellum, BA9 and BA4) to compare them pair-

wise and calculate the number of overlapping annotations

for each blood-brain pair for the four semantic annotation

categories separately (Fig. 1). Only significant blood-brain

pairs were considered for further analysis. The signifi-

cance of each module pair was assessed by repeating the

entire analysis using randomly composed modules of the
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same number of genes, which we annotated using the

same four annotation categories. A significance value was

assigned to each module pair using a random distribution.

The similarity between blood and each brain region was

assessed by the total number of significant module pairs

per semantic annotation category. Caudate nucleus and

BA4 exhibited the highest similarity with blood (Fig. 3),

in all semantic annotation categories. BA9 exhibited an

intermediate similarity, while cerebellum had the least

similarity with only one significant module pair in the

cellular component annotation category. None of the

brain regions exhibited similarity with blood based on

the molecular function annotation category.

Common signatures shared by blood and brain

We define a blood-brain module pair to represent a com-

mon disease signature when it meets the following crite-

ria: 1: significance value of the blood-brain module pairs,

2: each module separately is associated with at least one

of the HD phenotypes as identified by WGCNA. We

named the signatures according to their most representa-

tive annotation. From the total number of associatedmod-

ules between blood and brain (Fig. 3) we identified in total

two common disease signatures based on these criteria

(Fig. 4; Additional files 7 and 8). We named the signatures

according to their most representative annotation.

Signature 1. The immune response signature was shared

between blood and caudate (Fig. 4a). This signature was

identified based on the biological processes annotation

category. Common annotations included major histo-

compatibility complex location, lymphocyte activation,

cytokine activity, T cell activation and adaptive immune

response. The caudate nucleus module consisted mainly

of HLA genes of the major histocompatibility complex

class I (A, B, C, F, G).

Signature 2. The Spinocerebellar ataxias (SCAs) signa-

ture was shared between blood and the caudate nucleus

(2 modules) (Fig. 4b), based on the disease or syndrome

annotation category. The link that was shared between

one of the caudate nucleus modules (saddlebrown; indi-

cated with a dashed line) and blood achievedmarginal sig-

nificance, with FWER of 30 %. The annotations that were

common in this signature were multiple forms of SCAs,

from both the polyglutamine and non-polyglutamine

repeat disease class (SCA types 1,2,3,6,7,8,10,12 and 17).

Comparison with preservation and gene wise overlap

To investigate how our method compares to other meth-

ods, we compared the results of the blood - caudate

nucleus semantic analysis to gene overlap counts between

blood and caudate nucleus modules, and to the preser-

vation statistics method from the WGCNA itself (Fig. 5).

The gene overlap analysis identified in total 3 blood mod-

ules exhibiting significant gene overlap with the caudate

nucleus modules, of which none was significantly corre-

lated with the disease phenotype. The preservation from

the WGCNA identified in total 6 blood modules that

were preserved in the caudate nucleus (Zcore values:

2 < Zcore < 10) of which two were significantly cor-

related with HD (blue and salmon4). Our methodology,

using CPA, identified in total 5 blood modules associ-

ated with the caudate nucleus modules; three of which

were significantly correlated with the disease (violet,

plum1, orangered4) (Fig. 5). This shows that our analy-

sis is comparable to other well-established methods and

can produce results that are rather complementary for

Fig. 3 Semantic comparison between the modules of four brain regions and blood. The total number of blood-brain pairs per semantic type above

our significance threshold (FWER <= 10 %) is depicted by each color bar. Blood exhibits the highest similarity with both the caudate and BA4. BA9

and cerebellum follow with slightly higher scores for BA9
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Fig. 4 The two blood brain signatures identified by our analysis. The yellow circles indicate caudate nucleus modules and red color indicates blood

modules. The line between two modules indicate a significant link (blood-brain pair) between modules (FWER <= 10 %). Dashed line indicates a

module pair with marginal significance (FWER < 50 %). Different color lines indicate an association based on each semantic annotation. Black:

Biological processes, red: Disease or Syndrome

the identification of common disease signatures between

blood and brain.

Discussion
In this paper we usedWGCNA and literature information

to identify modules in blood that are associated with the

HD phenotype and to identify disease signatures that are

shared between blood and brain. To our knowledge, this is

the first time that the similarity between blood and brain

tissue was successfully assessed based on a combination of

WGCNA and literature information. WGCNA was used

in order to group genes of the same tissue that are co-

expressed (modules), while literature information (CPA)

was used to annotate and evaluate the similarity between

modules from different tissues at a functional level.

In summary, we identified 8 HD-specific modules in

blood and two distinct signatures that are shared between

blood and brain. The HD-specific modules in blood

were associated with immune response, sphingolipid

biosynthetic process, lipid transport, cell cycle, protein

modification, spliceosome, RNA splicing, vesicle trans-

port, cell signaling and synaptic transmission. This anal-

ysis points to mechanisms that are affected in HD. Some

were already known to be implicated in the brain pathol-

ogy, but their role in blood has not been elucidated yet

[31, 32, 42, 43].

The scarcity of HD brain tissue has driven research

to use blood to identify biomarkers that can be used

to study disease state and disease progression that are

most clearly observed in the brain. In previous studies the

similarity between blood and brain was assessed based

on the conservation of gene expression patterns only

[8–10]. Such assessments are usually very difficult,

because blood and brain are two inherently different tis-

sues composed of very different cell types. Nevertheless,

in our study, we discovered signatures that are based

on a functional similarity between blood and brain. We

argue that the same function may partially be executed

Fig. 5 Comparison of the results between CPA in four semantic annotation categories, gene overlap counts, and module preservation. For the

preservation analysis, we used the Z-summary metric, a composite preservation measure that identifies modules that are preserved in other

networks based on their connectivity and density statistics. Significant module pairs for the gene wise overlap were computed the same way as for

the annotation overlap using CPA (Methods). The figure shows the blood modules that were significantly associated with the caudate nucleus

network. Each different method is depicted with a green diamond. The oval shapes with thick black lines represent modules significantly correlated

with the disease phenotype. Only one module is shared by all three approaches (lightcyan1), which is not significantly correlated with the disease

phenotype. The overall overlap between the methods is small
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by different gene products in different cell types, also

considering that our current knowledge may have dif-

ferent gaps across cell types. At the functional level the

active units are not merely the genes, but cells and organs.

Cells of different types that play a role in the execu-

tion of a biological function express different genes that

are thus associated with that function. It is therefore a

fair assumption that when comparing between cell types,

we should look beyond the level of individual genes.

For instance, microglia and macrophages both partici-

pate actively in the immune response but different sets

of genes are expressed in microglia or macrophages [44].

Another example where two different gene products carry

out the same function is hemoglobin andmyoglobin. Both

genes are associated with transport of oxygen, but one

is expressed in red blood cells and the other in mus-

cle [45–47]. Therefore, signatures based on co-expression

and functional annotation are more likely to represent

disease-specific mechanisms. We speculate that a com-

mon signature at the functional level is more robust,

which makes it attractive to monitor disease progression

or the efficacy of a particular treatment. The blood-brain

signature allows us to focus on a specific part of the blood

signal to monitor the HD-affected brain.

Our findings suggest that mechanisms associated with

inflammatory response and SCA are important mecha-

nisms that are shared between blood and brain in HD

(Fig. 4). The inflammation response may be an impor-

tant component of HD pathology that contributes to the

neuropathological damage. This finding supports previ-

ous detection of abnormal activation of immune response

in HD patients [31]. In addition, this signature links the

well-established neuroinflammation signature in brain to

a parallel inflammatory response in blood, triggered upon

expression of the mutant huntingtin. The same signa-

ture was also identified by Horvath and colleagues in

their study of the preservation of brain modules in two

large blood cohorts of healthy individuals [11]. Although

they were unable to identify full module preservation,

they found that a subset of the genes that was preserved

was functionally enriched in, among others, infectious

disease and infection mechanisms. Both analyses point

to an immune response mechanism as a shared chan-

nel between blood and brain. Although the mechanisms

preserved in those datasets came only from healthy indi-

viduals, we conclude that this preserved signal is also

specific for HD.

In addition, we showed that blood exhibits similari-

ties with brain based on different criteria (Fig. 3). These

criteria reflect similarities on a functional level i.e. bio-

logical processes, cellular component, molecular function,

and functions associated with the same disease or syn-

drome. The disease or syndrome annotation led us to

the identification of the SCA signature (Fig. 4b). The

association of blood modules with brain disorders is by

itself an interesting topic for further research. A signature

based on commonality in disease or syndrome annota-

tions would have been difficult to identify by approaches

that only focus on gene expression or traditional annota-

tion schemes (e.g. GO based annotation). Genes that were

part of this signature on the brain side were the TCF4,

ATN1, PPP2R2B, ATXN10 and ATXN3, which are associ-

ated with neurodegenerative and developmental disorders

such as Pitt-Hopkins Syndrome [48], Dentatorubral pal-

lidoluysian atrophy [49], SCA12 [50], SCA10 [51] and

SCA3 [52]. On the blood side of this signature were

among others the PPP2R2B gene associated with SCA12,

CAPNS2, which was recently found to play a benefi-

cial role against polyglutamine toxicity [53], and SETBP1

which is associated with the Schinzel-Giedion syndrome

[54, 55].

The comparison of the results of our methodology

with those obtained by the preservation statistics from

WGCNA, and those from assessing the gene overlap

between blood and brain, shows that the three method-

ologies are complementary. The overlap between the

three methods was very small (Fig. 5) indicating that they

identify similarities based on different criteria. In fact,

the signature that was identified by all methods was not

associated with the HD phenotype, but with sexual dif-

ferentiation. The modules in this signature are strongly

co-expressed and composed mainly of genes expressed on

the X and Y chromosome. The identification of this signa-

ture served also as a control for testing the validity of each

method. Depending on the hypothesis that drives one’s

analysis, one or a combination of these methods could be

used. Our method has the advantage that for identifying

similarity we solely look at similarity at a functional level,

i.e. without bias in terms of overlapping genes or similarity

in expression patterns between the two tissues.

Additional disease relevant signatures

In addition to the aforementioned signatures that were

selected by the most strict criteria, we identified two addi-

tional module pairs based on less stringent criteria that

we considered interesting for HD. The first criterion that

we used in this analysis was that a module pair needed to

achieve a significance level of 10 % of FWER. As explained

in the Methods section, we define a “gray” significance

level of up to 50 %, based on the significance levels that

we observed for the sexual differentiation modules that

served as internal control. The second criterion was that

each module in particular needed to be significantly cor-

related (P value < 0.05) with at least one of the disease

phenotypes. Detailed information about these common

signatures can be found in Additional files 9 and 10.

The synapse signature was shared between blood and

the caudate nucleus based on the cellular component
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annotation category (Additional file 2A). The caudate

nucleus module (indicated with a dashed circle) was

marginally associated with the disease staging phenotype

(P value = 0.074; Additional file 1) while the blood mod-

ule was associated with motor and TFC score. Common

annotations in this signature were associated with synapse

activity and dendrites. Albeit the absence of cells with

synapses in the blood, the annotation of the blood module

with concepts like “synapse” hints at the presence of gene

products with a function in the neuronal synapse and an

alternative function in the blood, which may be used as

a surrogate marker for the effect of disease on neuronal

transmission.

The genes that contribute themost to the synaptic activ-

ity annotation are NOS1, HAP1, GRIK2, HTR6. Literature

supports that at least three of them are directly implicated

in HD [36, 56, 57]. In fact, HAP1 was one of the first pro-

teins that were described to interact with huntingtin [36].

The genes encode ubiquitously expressed proteins with a

known function in brain, but their role in blood remains

elusive. GRIK2 was proposed as a candidate biomarker

in Chronic Fatigue Syndrome (CFS) after it was detected

in the peripheral blood of CFS patients as differentially

expressed [58]. NOS1 was also associated in studies as

being able to regulate blood pressure [59].

In addition, 7 out of 18 members of this module

(MTRNR2L1, LAPTM5, QRICH1, MOAP1, AKR1B1,

NOS1, ZNF260) were found to be indirectly associated

with huntingtin through the interaction with the UBC

protein that is known to interact with huntingtin [60–65].

Finally, cell-cell signaling (NOS1, HAP1, GRIK2, HTR6),

ion transport (HAP1, UNC80, KCNAB1), cell death,

and apoptosis (LAPTM5, MTRNR2L1, MOAP1, QRICH1)

were secondary annotations associated with this blood

module. The majority of the genes in this module encode

ubiquitously expressed proteins that are likely to have a

catalytic role in the HD blood, similar to their effect in

brain. The synaptic signature can potentially be of great

value for monitoring synaptic activity in brain bymonitor-

ing these genes in HD blood.

The vesicle trafficking and protein transport signature

was shared between blood and BA4 based on the cellu-

lar component annotation category (Additional file 2B).

In this signature, the blood module was marginally associ-

ated with the CAG repeat phenotype and also this module

pair was identified with a significance level of 50 % of

FWER. The annotations that were shared in this signa-

ture were related to endosomes, trans-golgi network and

clathrins. This signature was also identified by Horvath et

al. as a preserved mechanism between blood and brain in

healthy individuals [11].

Both the synaptic activity and vesicle transport signa-

tures have been long implicated in HD. Huntingtin is

expressed in the cytoplasm where it directly interacts with

a number of proteins involved in synaptic activity and

vesicle transport [66]. In addition, huntingtin has been

previously described as a protein that acts as a mediator

in information trafficking between different cell compart-

ments by interacting with other proteins [67]. Recent

evidence suggests that synapse loss and other features

of the disease that involve the CNS can be treated by

targeting organs outside the CNS [68]. The blood mod-

ules involved in these signatures that link the blood with

the brain pathology could become subject for further

research to confirm whether symptoms of the disease can

be treated by targeting factors that associate with these

modules [68].

Although the blood-brain signatures that we identi-

fied are promising, there are certain limitations in our

methodology that can be improved in follow up stud-

ies. Considering that similarity was assessed by overlap

in annotations, future studies can extend the power of

the method by using the hierarchy of an ontology to

assign a score to annotations that are subclasses of the

same function. Furthermore, the results from the compu-

tational analysis can be corroborated by further validation

on additional data and by new experiments in the labo-

ratory. The genetic predictability of HD allows for testing

those signatures in carriers of the gene mutation both in

mouse and humans, even before the first symptoms arise.

We are currently investigating the analysis of data from

human blood samples that were collected from the same

subjects, but 4 years later as an accurate way of determin-

ing whether these signatures have changed over the time

andwhether they correlate with the progression of the dis-

ease. Testing these signatures in mouse models of HD to

follow the efficiency of novel disease treatment strategies

would also be beneficial for using and optimizing blood as

a diagnostic and monitoring tool.

Conclusion
In summary, we present functional HD-specific co-

expression signatures in blood samples that link specific

processes, measured in blood, to the pathology of HD.

These signatures can be used to further study changes in

blood and identify biomarkers that can track disease stage

and progression. In addition, we identified two common

signatures that are shared between blood and multiple

brain regions in Huntington’s Disease. These signatures

are likely an indication of disease changes that occur in

parallel between these two tissues. These results are a step

towards using blood as a surrogate to study the pathol-

ogy in brain in HD, by using only that part of the signal

that we can link to processes known to be in common and

associated with the disease. Having a peripheral measure

to monitor brain pathology opens new gateways to have a

more in-depth understanding at several time points of dis-

ease progression and monitor the efficacy of treatments
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in a non-invasive manner. Our approach is applicable to

other disorders where it is not feasible to obtain data from

the most affected tissues.

Additional files

Additional file 1: Significantly correlated modules in brain. This file

contains the modules from each brain region (caudate, BA4, BA9 and

cerebellum) that were associated with the disease phenotype. The

numbers (P value) indicate the correlation of each module with the disease

phenotype. Green: negative correlation, red: positive correlation. The

intensity of the color depicts the strength of the correlation. (PDF 1341 kb)

Additional file 2: Additional disease signatures. This file contains the

additional disease signatures that were identified with less stringent

statistical criteria. The yellow circle indicates a caudate nucleus module,

bluegrey circle indicates a module from the BA4 brain region and red color

indicates blood modules. The line between two modules indicates a

significant link (blood-brain pair) between modules (FWER <= 10 %).

Dashed line indicates a module pair with marginal significance

(FWER < 50 %) while dashed circles indicate modules with marginal

significance with the disease phenotype. The green line between module

pairs defines an association based on cellular component. (PNG 66.6 kb)

Additional file 3: Modules in blood significantly correlated with HD. This

file contains the 8 modules that were identified in blood as being

correlated to the HD phenotype. The file describes each module according

to the most representative annotations per semantic category (biological

processes, cellular component, molecular function, disease or syndrome).

(DOC 16.5 kb)

Additional file 4: Annotations of blood modules associated with HD. In

this file we include detailed information about the annotations per

semantic type of each module in blood that is associated with HD.

(XLS 37 kb)

Additional file 5: Gene identifiers of blood modules associated with HD.

In this file we include the gene identifiers that constitute each module in

blood that is associated with HD. (XLS 84 kb)

Additional file 6: Association of the brain regions with the disease

phenotype. This file describes the total number of modules, per brain

region, that are associated with the the two HD phenotypes; the disease

state (HD or control) and disease staging (grade 0 - 5) as that was resulted

by the WGCNA. (PNG 54.9 kb)

Additional file 7: Immune response signature. In this file we include

detailed information about the immune response signature, including the

annotations and gene identifiers of each module that participates in this

signature. (XLS 15 kb)

Additional file 8: SCA signature. In this file we include detailed

information about the SCA signature, including the annotations and gene

identifiers of each module that participates in this signature. (XLS 25 kb)

Additional file 9: Synapse signature. In this file we include detailed

information about the synapse signature, including the annotations and

gene identifiers of each module that participates in this signature.

(XLS 12.5 kb)

Additional file 10: Vesicle transport signature. In this file we include

detailed information about the vesicle transport signature, including the

annotations and gene identifiers of each module that participates in this

signature. (XLS 13 kb)
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