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Abstract 

Controlling for unobserved heterogeneity (or “common errors”), such as industry-specific 

shocks, is a fundamental challenge in empirical research. This paper discusses the 

limitations of two approaches widely used in corporate finance and asset pricing research: 

demeaning the dependent variable with respect to the group (e.g., “industry-adjusting”) 

and adding the mean of the group’s dependent variable as a control. We show that these 

methods produce inconsistent estimates and can distort inference. In contrast, the fixed 

effects estimator is consistent and should be used instead. We also explain how to 

estimate the fixed effects model when traditional methods are computationally infeasible. 
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Controlling for unobserved heterogeneity is a fundamental challenge in empirical finance research 

because asset prices and most corporate policies depend on factors that are unobservable to the 

econometrician. If these factors are correlated with the variables of interest, then without proper 

treatment, omitted variables bias infects the estimated parameters and precludes causal inference. In many 

settings, important sources of unobserved heterogeneity are common within groups of observations. For 

example, unobserved risk factors, which affect both stock returns and corporate decisions, are often 

common to firms of similar size. Potential unobserved factors abound: unobserved differences in local 

economic environments, management quality, and the cost of capital, to name a few. 

Although the empirical finance literature uses various estimation strategies to control for 

unobserved group heterogeneity, there is little understanding of how these approaches differ and under 

which circumstances each provides consistent estimates. Our paper examines this question and shows that 

some commonly used approaches provide inconsistent estimates and can distort inference.  

We focus on two popular estimation strategies that are applied when there are a large number of 

groups and the number of observations per group is small relative to the number of groups (e.g., firm-

panel data that is grouped into industry-years). The first estimation strategy, which we refer to as 

“adjusted-Y” (AdjY), demeans the dependent variable with respect to the group before estimating the 

model with ordinary least squares (OLS). A common example is when researchers “industry-adjust” their 

dependent variable so as to remove common industry factors in a firm-level analysis. A second approach, 

which we refer to as “average effects” (AvgE), uses the mean of the group’s dependent variable as a 

control in the OLS specification. A common implementation of AvgE uses observations’ state-year mean 

to control for time-varying differences in local economic environments.   

Both AdjY and AvgE are widely used in empirical finance research. Articles published in top 

finance journals, including in the Journal of Finance, Journal of Financial Economics, and Review of 

Financial Studies, have used both approaches since at least the late 1980s, and they continue to be used 

today.
1
 Among articles published in these three journals in 2008–2010, we found over 60 articles, split 

about evenly between corporate finance and asset pricing, that employed at least one of the two 

                                                            
1 The exact origin of the two estimators in finance is unclear; we suspect they were adapted from the event studies 

literature, in which stock returns are regressed on market-average returns. AdjY may have been inspired by analyses 

of market-adjusted returns, and AvgE by estimations of the market model.  
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Controlling for unobserved heterogeneity is a fundamental challenge in empirical finance research 

because asset prices and most corporate policies depend on factors that are unobservable to the 

econometrician. If these factors are correlated with the variables of interest, then without proper 

treatment, omitted variables bias infects the estimated parameters and precludes causal inference. In many 

settings, important sources of unobserved heterogeneity are common within groups of observations. For 

example, unobserved risk factors, which affect both stock returns and corporate decisions, are often 

common to firms of similar size. Potential unobserved factors abound: unobserved differences in local 

economic environments, management quality, and the cost of capital, to name a few. 

Although the empirical finance literature uses various estimation strategies to control for 

unobserved group heterogeneity, there is little understanding of how these approaches differ and under 

which circumstances each provides consistent estimates. Our paper examines this question and shows that 

some commonly used approaches provide inconsistent estimates and can distort inference.  

We focus on two popular estimation strategies that are applied when there are a large number of 

groups and the number of observations per group is small relative to the number of groups (e.g., firm-

panel data that is grouped into industry-years). The first estimation strategy, which we refer to as 

“adjusted-Y” (AdjY), demeans the dependent variable with respect to the group before estimating the 

model with ordinary least squares (OLS). A common example is when researchers “industry-adjust” their 

dependent variable so as to remove common industry factors in a firm-level analysis. A second approach, 

which we refer to as “average effects” (AvgE), uses the mean of the group’s dependent variable as a 

control in the OLS specification. A common implementation of AvgE uses observations’ state-year mean 

to control for time-varying differences in local economic environments.   

Both AdjY and AvgE are widely used in empirical finance research. Articles published in top 

finance journals, including in the Journal of Finance, Journal of Financial Economics, and Review of 

Financial Studies, have used both approaches since at least the late 1980s, and they continue to be used 

today.1 Among articles published in these three journals in 2008–2010, we found over 60 articles, split 

about evenly between corporate finance and asset pricing, that employed at least one of the two 

                                                            
1 The exact origin of the two estimators in finance is unclear; we suspect they were adapted from the event studies 

literature, in which stock returns are regressed on market-average returns. AdjY may have been inspired by analyses 

of market-adjusted returns, and AvgE by estimations of the market model.  
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techniques. The techniques are used to study a variety of finance topics, including banking, capital 

structure, corporate boards, governance, executive compensation, and corporate control. Articles using 

these estimation methods have also been published in economics, including in the American Economic 

Review, Journal of Political Economy, and Quarterly Journal of Economics, and in accounting, including 

the Accounting Review, Journal of Accounting and Economics, and Journal of Accounting Research. 

Our paper shows that, despite their popularity, the AdjY and AvgE estimators rarely provide 

consistent estimates; both estimators can exhibit severe biases (where “bias” here refers to the difference 

between the probability limit of the estimate and the true parameter). The AdjY estimator suffers from an 

omitted variable bias because it fails to control for the group average of the independent variables. This 

omission is problematic when any explanatory variable is correlated with its group average, which is 

likely in practice. The AvgE estimator suffers from a measurement error bias because the sample mean of 

the group’s dependent variable measures the true unobserved heterogeneity with error. AvgE is 

inconsistent when AdjY is inconsistent and also when any independent variable is correlated with the 

unobserved heterogeneity. Even when the underlying data structure exactly matches the AdjY or AvgE 

specifications, both estimators are inconsistent. For both estimators, the bias can be large and 

complicated; trying to predict even the sign of the bias is typically impractical because it depends on 

numerous correlations.  

The shortcomings of the AdjY and AvgE estimators stand in stark contrast to the “fixed effects” 

(FE) estimator—another approach available to control for unobserved group heterogeneity. The FE 

estimator, which instead adds group indicator variables to the OLS estimation, is consistent in the 

presence of unobserved group heterogeneity. When there is only one source of unobserved group 

heterogeneity, the FE estimator is equivalent to demeaning all of the dependent and independent variables 

with respect to the group and then estimating the model using OLS. 

The differences between the estimators are important because the AdjY and AvgE estimators can 

lead researchers to make incorrect inferences. We show that AdjY and AvgE estimates can be more 

biased than OLS and even yield estimates with the opposite sign of the true coefficient. AdjY and AvgE 

can also be inconsistent even in circumstances in which the original OLS estimates would be consistent. 

When estimating a few textbook finance models using each of the different techniques to control for 

2



 

 

unobserved heterogeneity, we find large differences between the AdjY, AvgE, and FE estimates and 

confirm that AdjY and AvgE can exhibit larger biases than OLS and can yield coefficients of the opposite 

sign as FE. These differences confirm the presence of unobserved group heterogeneity in these settings 

and of correlations within these commonly used data structures that cause the AdjY and AvgE estimators 

to be inconsistent and potentially quite misleading in practice.  

Based on these findings, we argue that AdjY, AvgE, and related estimators should not be used to 

control for unobserved group heterogeneity. Any estimation that transforms the dependent variable but 

not the independent variables typically yields inconsistent estimates. For example, subtracting the group 

median, or the mean or median of a comparable set of firms, from the dependent variable also yields 

inconsistent estimates by failing to account for how the corresponding median or mean of the independent 

variables affects the adjusted dependent variable.  

Our findings apply to a diverse set of estimations undertaken in the literature. The practice of 

industry-adjusting dependent variables is common in many corporate finance papers. Even a simple 

comparison of industry- or benchmark-adjusted outcomes before and after events—as in many analyses 

of corporate control transactions, stock issues, and other sets of 0/1 events—does not reveal the true effect 

of the events. Corporate governance analyses of the effects of business combination laws across U.S. 

states while controlling for industry-year and state-year averages of the dependent variable are also not 

properly specified. Our criticism also applies to estimators in some asset pricing studies. The method of 

characteristically adjusting stock returns in asset pricing subtracts the return of a benchmark portfolio 

containing stocks with similar characteristics, before sorting and comparing these stock returns across 

subsamples. This method is problematic because it does not control for how the variable used to sort the 

adjusted stock returns varies across the benchmark portfolios.  

Our analysis also highlights related problems with other estimators that are not designed to 

control for unobserved heterogeneity. For example, the omitted variable problem of AdjY applies to any 

dependent variable that is constructed using multiple observations. Our analysis also raises concerns 

about instrumental variable (IV) estimators that instrument for an endogenous independent variable using 

its group average. This estimator’s exclusion restriction is violated whenever an unobserved group factor 

is correlated with the regressor.  
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FE estimators should be used instead of AdjY or AvgE to control for unobserved heterogeneity. 

FE estimators are consistent because they are equivalent to transforming both the dependent and 

independent variables so as to remove the unobserved heterogeneity. For any AdjY or AvgE estimator, 

there is a corresponding FE estimator that properly accounts for correlations in the independent variables. 

For example, rather than industry-adjusting a dependent variable or controlling for the industry mean of 

the dependent variable, researchers should instead estimate a model with industry fixed effects. Likewise, 

rather than correlating benchmark-portfolio-adjusted stock returns with an explanatory variable of 

interest, a researcher should instead estimate a model with fixed effects for each benchmark portfolio.2 

The FE estimator, however, also has limitations. Although the FE estimator controls for 

unobserved group heterogeneties, it is unable to control for unobserved within-group heterogeneities. FE 

estimation also cannot identify the effect of independent variables that do not vary within groups and is 

subject to attenuation bias in the presence of measurement error. We discuss these limitations, how they 

can be addressed, and when FE estimation is appropriate.  

Finally, we address another limitation of FE that has motivated some researchers to use AdjY or 

AvgE rather than FE—computational difficulties that can arise when estimating FE models that have 

multiple types of unobserved heterogeneity. As the size and detail of datasets has increased, researchers 

are increasingly interested in controlling for multiple sources of unobserved heterogeneity. For example, 

executive compensation may be affected by unobserved managerial skill and by unobserved firm quality 

(Graham, Li, and Qui, 2012; Coles and Li, 2011a). Likewise, researchers who use firm-level data are 

increasingly concerned about both unobserved firm-level characteristics and time-varying heterogeneity 

across industries, such as industry-level shocks to demand. When there are multiple sources of 

unobserved group heterogeneity in an unbalanced panel, demeaning the data multiple times is not 

equivalent to fixed effects. FE estimation of such models requires a large number of indicator variables, 

which can pose computational problems. The computer memory required to estimate these models can 

exceed the resources available to most researchers.  

We discuss techniques that provide consistent estimates for models with multiple, high-

                                                            
2 To help interested researchers, we have also posted code and additional resources on our website, 

http://www.kellogg.northwestern.edu/faculty/matsa/htm/fe.htm, to show how common implementations of AdjY 

and AvgE can be transformed into consistent FE estimators. 
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dimensional group effects, while avoiding the computational constraints of a standard FE estimator. One 

approach is to interact all values of the multiple group effects to create a large set of fixed effects in one 

dimension that can be removed by transforming the data. A second approach, which helps to avoid 

potential attenuation biases and allows the researcher to estimate a larger set of parameters, is to maintain 

the multidimensional structure but to make estimation feasible by reducing the amount of information that 

needs to be stored in memory. This can be accomplished by using the properties of sparse matrices and/or 

by employing iterative algorithms. We discuss the relative advantages of each approach and how these 

techniques can be implemented easily in the widely used statistical software Stata. 

Overall, our paper provides practical guidance on empirical estimation in the presence of 

unobserved group heterogeneity, which is a pervasive identification challenge in empirical finance 

research. A small, but impactful, set of recent articles have addressed other challenges researchers face. 

For example, Bertrand, Duflo, and Mullainathan (2004) and Petersen (2009) recommend methods to 

account for correlation across residuals in computing standard errors; Erickson and Whited (2012) 

compare methods used to account for measurement error in investment regressions; and Fee, Hadlock, 

and Pierce (2011) evaluate the use of F-tests on indicator variables in managerial style regressions.   

The remainder of this paper is organized as follows. In Section 1, we describe the underlying 

identification concern of estimating a model with unobserved group heterogeneity and why AdjY and 

AvgE provide inconsistent estimates. In Section 2, we contrast the AdjY and AvgE estimators with the 

FE estimator and discuss why other related estimation techniques, which are commonly used in the 

literature, yield inconsistent estimates. In Section 3, we show that differences between the estimation 

techniques can be important in practice. In Section 4, we discuss the limitations of the FE estimator and 

describe when its use is appropriate. We conclude in Section 5 and provide derivations and proofs in the 

Appendix.  

 

1. Estimation Techniques Used to Control for Unobserved Group Heterogeneity  

Consider the case in which an independent variable of interest, X, affects a dependent variable, y, 

which also has unobserved group heterogeneity that is possibly correlated with X. Specifically, assume 

the data exhibits the following structure:  
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where i indexes groups of observations (e.g., industries) and j indexes observations within each group 

(e.g., firms). There is a random sample of N groups (yi,1,…,yi,J, Xi,1,…, Xi,J) with J observations per group. 

As is typical in finance regressions, we assume that J is small, N is large, and both the independent 

variable of interest, X, and the residual, ε, are i.i.d. across groups but not necessarily i.i.d. within groups, 

and neither f nor the independent variable of interest, X, covary with the residual, ε. For ease of 

exposition, we assume that the intercept and the means of both the group term and the independent 

variable are zero (i.e., μX = μf = 0); these assumptions simplify the analysis but have no effect on the 

estimate of β under the different estimation techniques we analyze.    

The model in Equation (11) can be augmented to reflect more complicated sources of unobserved 

heterogeneity without affecting our subsequent analysis. For example, a model with two types of 

unobserved heterogeneity, such as firm and year group effects in panel data, can be captured by adding an 

additional heterogeneity term to Equation (1). Time-varying omitted factors (such as industry shocks that 

vary over time) can be captured by adding an additional subscript t to each variable, including the 

unobserved heterogeneity f.  

 It is well known that using OLS to estimate  , the effect of X on y, yields an inconsistent 

estimate when there exists a nonzero covariance, Xf , between the unobserved heterogeneity and 

independent variable of interest.3 OLS estimates the following specification: 

  , , ,

OLS OLS

i j i j i jy X u . (2) 

The OLS estimate is 

 


 


 
2

ˆ XfOLS

X

. (3) 

By failing to control for the group term, ˆOLS conflates the effects of X and f on the dependent variable, y. 

                                                            
3 Throughout the paper, we use the standard large-sample approach to determine an estimate’s consistency by taking 

the number of groups, N, to infinity, while holding group size, J, constant.  
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The bias, 2/Xf X  , represents the standard omitted variable bias in a univariate regression; it equals the 

coefficient from a regression of the omitted variable, f, onto the included variable, X, multiplied by the 

coefficient on the omitted variable in the true model, which in this case is 1 [see Angrist and Pischke 

(2009), Section 3.2.2, for a derivation of the omitted variable bias formula].  

Because OLS is inconsistent when 0Xf  , researchers must rely on other estimation techniques. 

Two popular approaches are “adjusted-Y” (AdjY), which demeans the dependent variable with respect to 

the group before estimating the model with OLS, and “average effects” (AvgE), which uses the group’s 

mean of the dependent variable as a control in an OLS specification. In this section, we describe the AdjY 

and AvgE estimates and discuss why they typically lead to inconsistent estimates of the coefficient of 

interest,  . The source of the bias extends to models with more complicated data structures. 

 

1.1 Adjusted-Y estimation  

 The AdjY estimator attempts to remove the influence of the group term from the dependent 

variable by demeaning the dependent variable within each group. AdjY estimation is applied, for 

example, at the industry level in firm-panel datasets by subtracting the industry-mean from the dependent 

variable. When this adjustment is applied at the industry or industry-year level, researchers typically refer 

to the dependent variable as being “industry-adjusted.” 

More specifically, the researcher calculates the group mean, iy , as 

   
 

    , , ,

 i  i

1 1
i i k i k i i k

k group k group

y y X f
J J

 (4) 

and estimates the following model using OLS:4  

   , , ,

AdjY AdjY

i j i i j i jy y X u . (5) 

The AdjY estimation, however, does not provide a consistent estimate of   because the 

estimation suffers from an omitted variable problem. To see this, it is helpful to re-express the dependent 

variable’s sample group mean as    

     ,i i i iy X f  (6) 

                                                            
4 Another common implementation of AdjY is to demean the dependent variable using the sample group’s mean 

after excluding the observation at hand. In other cases, the median is used. Redefining the group mean, iy , to reflect 

these other implementations of AdjY does not affect our subsequent propositions; both of these approaches also 

yield inconsistent estimates. We discuss these estimators in Section 2. 
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where iX  and i  are the corresponding sample group means for X and ε. In the presence of unobserved 

group heterogeneity, as in Equation (11), the dependent variable in AdjY estimation can thus be written as  

        , , ,i j i i j i i j iy y X X . (7) 

Comparing the AdjY estimation (Equation (55)) to the true data structure (Equation (77)), we see that 

AdjY fails to control for iX . This leads to a biased estimate for   if iX is correlated with the 

independent variable, X. In other words, the covariance between ,i jX  and ,

AdjY

i ju  is nonzero when the 

correlation between iX  and ,i jX  is nonzero. AdjY also fails to control for i , but this does not bias the 

estimate for β under the data structure assumed in Equation (11).  

As shown in Proposition 1, letting 
XX

  represent the covariance between ,i jX  and its group 

mean, iX , we can derive the sign and magnitude of the bias in the AdjY estimate for β.       

 

Proposition 1. In the presence of unobserved group heterogeneity, as in Equation (11), the AdjY 

estimator yields an inconsistent estimate for β. Specifically, 


  


 

2
ˆ AdjY XX

X

.  

 

Similar to the OLS estimate, the bias of AdjY follows the standard omitted variable bias formula. 

The bias, 2/ XXX
  , equals the coefficient from a regression of the omitted variable, iX , on the included 

variable, ,i jX , multiplied by the omitted variable’s coefficient in the true underlying model, which is 

 (see Equation (77)). If X co-varies positively with its group mean, then the AdjY estimate for   

exhibits an attenuation bias. And, inversely, if X is negatively correlated with its group mean, then the 

AdjY estimate for  is biased away from zero.5  

In practice, positive covariance between X and its group mean is common, causing AdjY 

                                                            
5 In practice, the bias of ˆ AdjY  is typically attenuating because it is unusual for X to be negatively correlated with its 

group mean when there is also a group component, f, that has nonzero correlation with X (as in Equation (11)). 

Specifically, the covariance matrix for the underlying data structure implied by Equation (11) is positive definite 

only if 
, ,

2( 1)/( 1)
i j i jX X XfJ J 


   , where 

, ,i j i jX X


is the correlation between Xi,j and Xi,-j , and Xf is the 

correlation between Xi,j and fi. While this condition places a lower bound on the 2/ XXX
  term of the AdjY bias, it is 

possible for this bound to be less than zero, in which case ˆ AdjY  overestimates the magnitude of β. 
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estimates to be inconsistent. For example, consider a standard firm-level capital structure estimation, 

where leverage is regressed onto multiple independent variables, such as the return on assets, bankruptcy 

risk, and the market-to-book ratio. Because firms in the same industry are subject to common demand and 

technology shocks, their leverage, return on assets, bankruptcy risk, and the other regressors typically co-

vary with their industry averages. By industry-adjusting only leverage, the AdjY approach removes the 

unobserved heterogeneity in leverage, but fails to account for the covariance between the independent 

variables and their industry averages in the transformed data. For this reason, AdjY estimation (including 

so-called “industry-adjusting”) is inconsistent.  

The bias in the AdjY estimation is present even with very large groups and even when standard 

OLS estimates are consistent. Because the AdjY estimator suffers from an omitted variable bias, 

increasing group size does not eliminate the identification problem—the estimation’s error term still 

contains the omitted group average of the independent variable. Moreover, Xi,j and iX  are typically 

correlated even when Xi,j and fi are not, so AdjY is inconsistent even when the OLS estimate is consistent. 

In this case, AdjY introduces a new omitted variable problem in its attempt to control for a nonexistent 

omitted variable problem in the original OLS specification.  

As shown in Proposition 2, the bias of the AdjY estimator becomes considerably more complex 

when there is more than one independent variable of interest. Suppose the true model is as follows: 
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 (8) 

There is still just one type of unobserved group heterogeneity, fi, but there are two independent variables 

of interest, X and Z. As before, assume that the independent variables, Xi,j and Zi,j, and the unobserved 
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group effect, fi, do not co-vary with the error, εi,j. The two independent variables, however, do co-vary 

with each other and with the unobserved group heterogeneity, fi. For ease of exposition, we again assume 

without loss of generality that the intercept and the means of both the unobserved heterogeneity and the 

independent variables are zero (i.e., μX = μZ = μf = 0).      

 

Proposition 2. In the presence of unobserved group heterogeneity and two independent variables, 

as in Equation (88), the AdjY estimator yields inconsistent estimates for both β and  . 

Specifically,  

 
            

 
  

  
 



2 2

2 2 2
ˆ XZ Z XZ ZZX XX ZZ XZAdjY

Z X XZ

 

 
            

 
  

  
 



2 2

2 2 2
ˆ

XZ X XZ XXX ZX XZ ZZAdjY

Z X XZ

,  

where 
ZZ

  is the covariance between Zi,j and iZ ,
ZX

 is the covariance between Zi,j and iX ,, and 

XZ
 is the covariance between Xi,j and iZ . 

 

These expressions show that predicting the direction and magnitude of the bias in the AdjY 

estimator is not straightforward, and the sign of ˆ AdjY  may not even match the sign of the true  . The sign 

and magnitude of the bias depends on both of the underlying coefficients,   and  , the relative variances 

of X and Z, and the covariance of X and Z with each other and the omitted variables, iX  and iZ .6  

 

1.2 Average effects estimation   

AvgE estimation approaches the problem of unobserved heterogeneity differently. Instead of 

adjusting the dependent variable, AvgE uses a proxy, the group’s sample mean, iy , to control for the 

unobserved variation, if . A common implementation of AvgE uses observations’ state-year mean to 

control for time-varying differences in local economic environments. When there is one independent 

                                                            
6 The bias in Proposition 2 follows the standard omitted variable bias formula for a multivariate regression. See 

Section 8.4.2 of Greene (2002) or page 61, footnote 14, of Angrist and Pischke (2009) for details.  
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variable, the AvgE approach estimates the following regression:     

    , , ,

AvgE AvgE AvgE

i j i j i i jy X y u . (9) 

Proposition 3 shows that, in the presence of unobserved group heterogeneity, as in Equation (11), 

AvgE estimation is inconsistent. The underlying problem is that AvgE suffers from measurement error. 

As seen from Equation (66),    i i i if y X ; thus, the sample dependent variable’s group means, iy , 

measure the unobserved variation, if , with error   i iX . Measurement error biases the coefficient on 

the mismeasured regressor, along with the coefficients on all other regressors. Moreover, because the 

measurement error co-varies with both the mismeasured variable and the errors, this is not classical 

measurement error, and the bias on ˆAvgE  is not necessarily attenuating.  

 

Proposition 3. In the presence of unobserved group heterogeneity, as in Equation (11), the AvgE 

estimator yields an inconsistent estimate for β. Specifically, 

 
   
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2 2 2 2

2
2 2 2 2 2

ˆ

2

Xf ffX X XX fXAvgE

X f XffX X XX

,  

where 2

X
 is the variance of iX , 2

 is the variance of i , 
fX

 is the covariance between if  and iX , 

and   is the covariance between i and i . 

 

The sign and magnitude of the bias for ˆ AvgE  is considerably more complicated than for ˆ AdjY . 

The bias is complicated because the measurement error,   i iX , can co-vary with both the 

mismeasured variable, if , when 0Xf   and with ,i jX  when 0
XX

  .7 As shown in Proposition 3, either 

a non-zero Xf  or a non-zero 
XX

  causes the AvgE estimate of β to be inconsistent.  

These conditions cause the AvgE estimator to be inconsistent in most applications. For example, 

in a firm-level AvgE estimation, where a researcher uses the state-year average to control for time-

varying differences in local economic environments, any covariance between the independent variables, 

                                                            
7 It is possible, however, to put bounds on the bias. For example, as we discuss in the Appendix, a researcher can use 

the methods in Erickson and Whited (2005) and assumptions about the correlation between iy and fi to determine 

whether the sign of an AvgE estimate is correct. See also Krasker and Pratt (1986), Erickson (1993), and Hu (2006). 
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such as the return on assets, and their state-average causes AvgE to be inconsistent. Such correlations are 

common because firms located in the same state are subject to similar local demand shocks and 

investment opportunities.  

 

1.3 Relative performance of OLS, AdjY, and AvgE  

To better understand the sources of the bias and to compare the relative performance of OLS, 

AdjY, and AvgE, it is helpful to re-express the key covariance term 
XX

  that contributes to each 

estimate’s bias. To this end, it is helpful to separate Xi,j into its group and idiosyncratic components. 

Assume that
, ,i j i i jX x w  , where the group means ix  are i.i.d. with mean zero and variance 

2

x , the 

idiosyncratic components wi,j are distributed with mean 0 and variance 
2

w , and ,cov( , ) 0i i jx w  . It can 

be shown that  

 
, ,

2

2

,

1
i j i j

w

x w wXX

J

J J


  



    
 

, (10) 

where 
, ,i j i jw w is the covariance between wi,j and wi,–j (proof in the Appendix).    

The expression in Equation (1010) sheds additional light on when the AdjY and AvgE estimators 

are inconsistent. As shown in Propositions 1, 2, and 3, AdjY and AvgE are inconsistent when   0
XX

. 

Equation (10) shows that   0
XX

 whenever observations either have different means across groups 

(such that 2 0x  ) or are not independent within groups (such that 



, ,
0

i j i jw w ). In most finance 

applications, observations have different means across industries, geographies, or other groupings. Even if 

all groups had the same mean, 
XX

 would still be non-zero if the observations within groups are not 

independent, which is also common in practice. For example, time-series observations are often serially 

correlated. Finally, even if observations are i.i.d. within and across groups, 
XX

 is still not equal zero 

because iX  includes ,i jX , which creates a mechanical, nonzero correlation between an observation and 

its sample group average for finite J.  

Defining the group average for each observation to exclude the observation at hand (as is 

sometimes done in practice), such that  
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 




 , ,

1

1
i j i k

k groupi
k j

y y
J

, (11) 

simplifies the expression for 
XX

 but does not resolve the underlying identification problem. Although 

excluding the observation at hand when calculating group means removes the mechanical correlation 

between Xi,j and its sample group average, the covariance between Xi,j and its group average is still non-

zero whenever observations have different means across groups or are not independent within groups; 

specifically,   


 
, ,

2

,i j i jx w wXX
 (proof in the Appendix).  

In some cases, AvgE and AdjY will provide a less-biased estimate of  than does OLS, and in 

other cases, they will be more biased and possibly even have the wrong sign. Some examples of this are 

provided in Table 1.8 Under certain parameters, OLS will actually be less biased then both AdjY and 

AvgE. But as shown in Table 1, there are also cases in which OLS is less biased than AvgE but more 

biased then AdjY and other cases in which OLS is less biased than AdjY but more biased than AvgE. 

There are also cases in which the AvgE estimate actually has the opposite (and incorrect) sign. In the case 

of just one independent variable, as in Table 1, the AdjY estimator cannot incorrectly flip the sign of β. 

But as shown in Proposition 2 (and our later applications in Section 3), this is no longer true when there is 

more than one independent variable. In this case, both the AdjY and AvgE estimators can return an 

inconsistent estimate with the incorrect sign while the OLS estimate has the correct sign.      

 The correlation between the independent variable of interest, X, and the unobserved group 

heterogeneity, f, has a large effect on the relative performance of each estimator. Figure 1 graphs OLS, 

AdjY, and AvgE estimates of Equation (11) as functions of various parameter values when β = 1. Each 

panel shows the effect of varying a specific parameter in the data structure, while holding the rest 

constant. When not being varied, the default parameter values are as follows: 0.25Xf  ;   / 0.25x w ; 

, ,, 0.5
i j i jw w


 ; / 1f X   ; / 1X   ; and 10J  . Panel A plots the impact of the correlation between 

the independent variable X and the unobserved group heterogeneity f on each estimator. AdjY is less 

                                                            
8 To focus on the key determinants of the biases, we assume in Table 1 (and later in Figure 1) that groups are 

defined as in Equation (1111); this eliminates the bias that arises from the mechanical correlation between Xi,j and its 

sample average, which is less interesting. To simplify the analysis, we also assume that the errors are i.i.d. 

Analytical solutions for the AdjY and AvgE estimates for β, expressed in terms of 
, ,,, / , , / , / ,

i j i jXf x w w w f X X       


 

and J, are provided in the Appendix. 
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biased than the OLS only when the absolute magnitude of the correlation between X and f is large. This is 

because the AdjY bias is unaffected by Xf , whereas the OLS bias increases linearly Xf . The AvgE bias, 

in contrast, is nonlinear in Xf . Under these parameters, AvgE is more biased than both OLS and AdjY for 

low values of Xf , whereas for high values of Xf , AvgE is less biased than both OLS and AdjY. 

 The relative variation across versus within groups,  /x w , and the correlation between 

observations within a group, 
, ,i j i jw w


, also affect the relative performance of the AdjY and AvgE 

estimators. As shown in Panel B of Figure 1, the sign and magnitude of the bias for both AvgE and AdjY 

increase in /x w , whereas the OLS estimate is unaffected. This is because AdjY and AvgE biases 

depend on
XX

, which increases in  x , whereas the bias in OLS does not. For the same reason, 

correlation between observations in a group, 
, ,i j i jw w


, increases the bias of AdjY and AvgE but not OLS, 

as shown in Panel C. 

 The extent of unobserved heterogeneity also has different implications for the various estimators. 

Panel D of Figure 1 shows the OLS, AdjY, and AvgE estimates as a function of /f X  , the relative 

variation of the unobserved group heterogeneity to that of the independent variable. The AdjY estimate is 

unaffected by the extent of unobserved heterogeneity, whereas the magnitude of the bias increases in 

/f X  for both OLS and AvgE, albeit in opposite directions.  

Lastly, a reduction in relative noise,  / X , or an increase in the number of observations per 

group, J, does not necessarily improve the performance of the various estimators. As shown in Panels E 

and F of Figure 1, the OLS and AdjY biases are unaffected by  / X  and J (when demeaning the 

dependent variable after excluding the observation at hand). Relative noise and the number of 

observations per group affect AvgE’s bias, but the estimate asymptotes to different biased coefficients, 

which under these parameters have opposite signs, for small and large values of  / X  (see Panel E). 

Moreover, under these parameters, an increase in number of observations per group actually increases the 

bias of AvgE (see Panel F).  

In sum, whether AdjY or AvgE provides an improvement over OLS when β ≠ 0 depends on the 

exact parameter values, but regardless, all three estimates are inconsistent under most parameters. 
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2. Fixed Effects Estimation and Additional Implications  

Comparing the AdjY and AvgE estimators to the well-known fixed effects (FE) estimator 

provides further insight into why AdjY and AvgE are inconsistent. The comparison also highlights why 

other related estimation methods that are commonly used in the literature yield inconsistent estimates.  

 

2.1 Fixed effects estimation    

Although the OLS, AdjY, and AvgE estimates are all inconsistent in the presence of the 

unobserved heterogeneity in Equation (11), the FE estimator is consistent. FE estimation inserts an 

indicator variable for each group directly into the OLS equation, thereby allowing the predicted mean of 

the dependent variable to vary across each group. This estimation, which is also referred to as least 

squares dummy variable (LSDV) estimation, is consistent because it controls directly for the unobserved 

heterogeneity, fi, in Equation (11). The FE estimate is also consistent when 0Xf   and the original OLS 

estimate is consistent.   

Equivalently, the FE estimator can be implemented by transforming the data to remove the 

unobserved heterogeneity. This transformation is implemented by demeaning all of the variables—both 

the dependent and independent variables—with respect to the group and then estimating OLS on the 

transformed data. Specifically, fixed effects (FE) estimates   

     , , ,

FE FE

i j i i j i i jy y X X u . (12) 

Comparing the FE estimator to the true data structure (see Equation (77)), we can see that the FE 

estimator is consistent, given our assumption in Equation (11) that X does not covary with  .9 

Although the estimates are consistent, the standard errors must be appropriately adjusted to 

account for the reduced degrees of freedom. Typically, the degrees of freedom is adjusted downward (i.e., 

the estimated standard errors are increased) to account for the number of fixed effects removed in the 

within transformation. However, when estimating cluster-robust standard errors (which allows for 

heteroscedasticity and within-group correlations), this adjustment is not required as long as the fixed 

effects swept away by the within-group transformation are nested within clusters (meaning all the 

                                                            
9 First differencing is another way to remove the unobserved group heterogeneity. Although both are consistent, the 

first-difference and fixed-effects estimators differ in their assumptions about the idiosyncratic errors. See 

Wooldridge (2010, p. 321) for details on the relative efficiency of the two estimators. 
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observations for any given group are in the same cluster), as is commonly the case (e.g., firm fixed effects 

are nested within firm, industry, or state clusters). Statistical software programs that estimate FE 

specifications make these adjustments automatically.10 See Wooldridge (2010, Chapters 10 and 20), 

Arellano (1987), and Stock and Watson (2008), for more details.  

 

2.2 Understanding AdjY and AvgE in the context of FE     

The within-group transformation of the FE estimator highlights the key problem of the AdjY and 

AvgE estimators: they fail to account for the relation between the group mean of the independent 

variable, iX , and the group mean of the independent variable, iy . Comparing the FE estimation in 

Equation (1212) with the true underlying structure of the demeaned dependent variable in Equation (77), 

we see that the FE estimator correctly controls for the independent variable mean, iX , and restricts its 

coefficient to equal β. The AdjY estimator, however, fails to account for iX , and the AvgE estimator 

makes the same mistake and also fails to restrict the coefficient on iy  to equal one (see Equation (99)).  

Another way to understand why AdjY and AvgE provide inconsistent estimates is to compare 

them to a regression of Y onto two independent variables X and Z. As is well known, a researcher 

interested in the effect of X on Y controlling for Z can identify this effect by regressing the residuals from 

a regression of Y on Z onto the residuals from a regression of X on Z. Partialing out the effect of Z from 

both X and Y before regressing Y on X is equivalent to regressing Y on X controlling for Z [see Greene 

(2000, pp. 231–33) for more detail]. This is the same reason why the within-group transformation 

implementation of the FE estimator is equivalent to least squares dummy variable estimation. The within-

group transformation is simply the result of partialing out the collection of indicator variables (the Z in 

this case) from both the independent and dependent variables. The AdjY estimation, however, is 

equivalent to partialing out the effect of Z from only the dependent variable, Y, which is not equivalent to 

regressing Y on X controlling for Z. The AvgE approach is equivalent to regressing Y on X and the fitted 

values from a regression of Y on Z, which is also not the same as regressing Y on X and Z. By failing to 

transform the independent variable, X, both estimators are inconsistent. 

                                                            
10 In the current version of Stata, for example, these standard errors are reported by the XTREG command. The 

AREG command, however, reports larger cluster-robust standard errors that include a full degrees of freedom 

adjustment. More information on differences between AREG and XTREG cluster-robust standard errors is available 

on our website, http://www.kellogg.northwestern.edu/faculty/matsa/htm/fe.htm.   
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2.3 Other related estimation techniques are also inconsistent  

Other variants of the AdjY and AvgE estimators are also problematic. In this section, we discuss 

four related estimation strategies that are inconsistent and suggest alternatives. 

 

2.3.1 Other dependent variable adjustments or controls. Estimating variants of AdjY or AvgE that 

substitute other group summary statistics for the group mean similarly results in inconsistent estimates. 

For example, some papers adjust the dependent variable in AdjY-type estimation by subtracting a group 

median or subtracting a value-weighted group mean. These estimates suffer an omitted variable bias 

because they fail to account for how the corresponding group median or value-weighted group mean of 

the independent variables affects the adjusted dependent variable. Likewise, using a group median or a 

value-weighted group mean in AvgE-type estimation is problematic because both measure the unobserved 

heterogeneity with error. In both cases, the fixed effects estimator is the proper way to control for 

unobserved heterogeneity. 

The omitted variable problem underlying AdjY also applies to other types of estimations. Any 

dependent variable that is constructed from multiple observations without similarly adjusting the 

independent variables is problematic, even when this is not done to control for unobserved heterogeneity. 

For example, consider the case where a linear combination of other observations is used to adjust the 

dependent variable. Failing to control for the independent variables of all observations used to construct 

the dependent variable can cause an omitted variable bias.  

Adjusting a dependent variable of interest by first regressing it onto other covariates and then 

using the residuals as the adjusted dependent variable is similarly problematic. As discussed in Section 

2.2, this approach is not equivalent to controlling for the variables included as covariates in the first step 

regression. To control for these variables properly, a researcher must either partial them out from the 

independent variables or simply control for them directly in the main specification. 

 

2.3.2 Characteristically adjusted stock returns. AdjY-type estimators also can be found in many asset 

pricing articles. One approach commonly used to remove the influence of common risk factors is to adjust 

firms’ stock returns using the average return of comparable firms. This method was first proposed by 
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Daniel et al. (1997) and has since been adopted widely in diverse settings. A researcher first sorts the data 

into various benchmark portfolios based on firm-level characteristics, such as size, book-to-market ratios, 

and momentum, and then “adjusts” the individual stock returns by demeaning them using the average 

return of other firms in the same benchmark portfolio. From an econometric perspective, there is nothing 

wrong with using the adjusted return as a measure of stocks’ performance, as proposed by Daniel et al. 

(1997); it accurately summarizes a portfolio’s performance relative to a benchmark return. 

Problems arise, however, if the adjusted return is then correlated with other (unadjusted) stock or 

firm characteristics. For example, it is common for researchers to calculate adjusted stock returns, sort 

them into portfolios based on an independent variable that is thought to affect stock returns, and then 

compare the adjusted returns across the top and bottom portfolios as a test of whether the independent 

variable affects stock returns. This sort, however, is equivalent to AdjY estimation where the adjusted 

returns are regressed onto indicators for each independent variable portfolio while excluding the constant 

term from the regression. Similar to other AdjY estimators, this approach provides inconsistent estimates 

because the specification fails to control for how the average independent variable of other firms in the 

portfolio influences the adjusted stock return.11  

As an example, consider analyses of research and development (R&D) intensity and stock 

returns. Although R&D and returns are positively correlated, it is possible that differences in firm size 

confound this relationship. Larger firms are associated with lower stock returns (in part for reasons 

presumably unrelated to R&D intensity). If R&D intensity is also correlated with firm size, then the 

correlation between R&D and returns may be attributable to firm size rather than to R&D. Using size-

matched benchmark portfolios to adjust returns but not adjust R&D does not adequately control for size, 

because it does not account for average differences in R&D intensity across the benchmark portfolios. 

The average R&D of firms in a stock’s benchmark portfolio affects its adjusted stock return but this fact 

is overlooked when one compares adjusted returns across portfolios sorted on firms’ unadjusted R&D 

intensity.  

To control for unobserved risk factors across portfolios appropriately, one needs to adjust the 

                                                            
11 Other papers regress adjusted stock returns on continuous variables. For example, some studies regress firms’ 

adjusted returns on changes in their cash balances and interpret the sensitivity as the firms’ internal value of cash. 

Such AdjY estimations are also inconsistent as they fail to control for differences in cash changes across the 

benchmark portfolios. 
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independent variable being analyzed in addition to adjusting returns. One way to accomplish this is to 

double-sort returns on the benchmark portfolio and the independent variable and then to compare returns 

across the independent variable within each benchmark portfolio. In the R&D example, this within-

benchmark-portfolio comparison properly controls for differences in average R&D intensity across firm 

size. The average difference between the top and bottom independent variable portfolios across all of the 

benchmark portfolios summarizes the average effect of the independent variable on stock returns while 

properly controlling for the characteristics used to construct the benchmark portfolios. This quantity is 

equivalent to a fixed effects estimator; the identical estimate can be obtained by regressing returns onto 

indicators for each independent variable portfolio (excluding the bottom portfolio) and benchmark 

portfolio fixed effects. In practice, the double-sort is cumbersome to report when there are many 

benchmark portfolios (e.g., 5 size x 5 book-to-market x 5 momentum = 125 portfolios) and systematic 

patterns may be difficult to eyeball. The FE estimator accurately summarizes these patterns and is easy to 

implement. In Section 3.4, we provide an example of this alternative fixed effects approach and show that 

the more conventional characteristically adjusted stock returns estimator is inconsistent. 

 

2.3.3 Comparisons of adjusted variables. Even simple comparisons of an adjusted variable, such as in 

the time periods surrounding an event of interest, can yield incorrect inferences. In many applications, 

including studies of mergers and acquisitions and leveraged buyouts, researchers compare the means of 

an adjusted variable for firms across two time periods. The variable of interest, however, is first adjusted 

by subtracting the mean of some benchmark group, which sometimes consists of all firms from the same 

industry, all firms of similar size, and/or all firms of similar past performance. As shown in Proposition 4, 

this pre versus post comparison, however, does not reveal the true effect of the event being analyzed. This 

is because the comparison incorrectly removes part of the event’s effect on the dependent variable when it 

demeans the outcome of interest using an average that includes both affected and unaffected firms.  

   

Proposition 4. A pre- versus post-event comparison of an adjusted outcome variable does not 

reveal the effect of the event. Specifically, 

̂ AdjY = , 

where   is the average fraction of affected firms in an affected firm’s benchmark group.  
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The source of this bias is the same as the more general AdjY bias described previously. In 

regression form, the AdjY comparison suffers an omitted variable problem in that it fails to control for the 

share of firms in each benchmark group that are treated (see the Appendix for more details). 

 

2.3.4 Using independent variable group averages as instrumental variables. Independent variables’ 

group averages are also sometimes used as instrumental variables. Specifically, the researcher instruments 

for a potentially endogenous regressor Xi,j using the regressor’s group average, ,i jX  , calculated 

excluding the observation at hand. The typical justification for such instruments is that the group average 

of X is correlated with Xi,j but is not otherwise related to the dependent variable, yi,,j. For example, a 

researcher estimating the impact of ROA on leverage but concerned that financial constraints introduce a 

simultaneity bias might propose using industry ROA to instrument for firm ROA.   

Using group averages of the independent variables as instrumental variables, however, leads to 

inconsistent estimates in the presence of unobserved group heterogeneity, as in Equation (11). The 

instrument violates the exclusion restriction whenever the unobserved heterogeneity, fi, is correlated with 

the independent variable, Xi,j, because fi is then necessarily also correlated with ,i jX  . As noted earlier, 

such correlations are pervasive in practice. In this example, unobserved industry investment opportunities 

likely affect both ROA and leverage, making the proposed IV estimator inconsistent. 

Unlike the other applications discussed in this section, the problem with the IV estimation cannot 

be solved by adding fixed effects to the estimating equation. Although fixed effects control for the 

unobserved heterogeneity, fi, in the second stage estimation, the fixed effects reintroduce the endogeneity 

problem in the first stage estimation. Recall that the instrument, ,i jX  , is just the group mean excluding 

the observation at hand. After controlling for industry fixed effects, the instrument becomes  ,i j iX X  

which is perfectly correlated with the endogenous regressor, Xi,j. Put differently, the instrument exploits 

strictly industry-level variation, which is not well-identified in the presence of industry fixed effects.  

For a group average instrument to be valid, the independent variable, Xi,j, must be correlated with 

its group mean and the underlying economic source of this correlation must be unrelated to fi (the part of 
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the industry variation that affects yi). Although it is possible that there exist scenarios where these 

conditions hold, examples are rare. Researchers should not assume these conditions hold absent a strong 

economic justification.  

 

2.4 AdjY and AvgE are also inconsistent under other data structures  

Even when a researcher is interested in studying the determinants of , i j iy y  rather than of yi,j, 

AdjY provides inconsistent estimates. Regressing , i j iy y  on Xi,j suffers an omitted variable problem 

whenever Xi,j affects yi,j (i.e., whenever β ≠ 0). If Xi,j affects yi,j, then Xi,–j also affects yi,–j, and hence, iX  

affects , i j iy y . Put differently, it is impossible for Xi,j , but not iX , to affect, , i j iy y . Thus, AdjY not 

only gives inconsistent estimates of the effect of Xi,j on yi,j but also gives inconsistent estimates of the 

effect of Xi,j on , i j iy y . 

Furthermore, even if the true underlying data structure did not exhibit unobserved group 

heterogeneity and exactly matched the AvgE specification, both estimators would also still be biased. 

Suppose the underlying data exhibit the following structure:   

     , , ,i j i j i i jy X y . (13) 

This data structure contains a peer effect such that each observation within a group influences the other 

observations in the group. However, as shown in Manski (1993) and Leary and Roberts (2010), OLS 

estimation of the peer effects model (i.e., AvgE) does not reveal causal effects because of a reflection 

problem. Because the dependent variable affects the dependent variable of other group members, using 

the group mean as an independent variable in OLS introduces an endogeneity problem. OLS estimation of 

Equation (22), AdjY, and FE would yield inconsistent estimates of the peer effects model.  

 

3. Comparing Approaches in Common Finance Applications 

 In this section, we examine how important the differences between the various approaches 

actually are in practice. We estimate standard empirical finance models using each of the various 

estimators—OLS, FE, AdjY, and AvgE—and compare the resulting estimates. 
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3.1 Capital structure and unobserved heterogeneity across firms  

We start by estimating a standard capital structure OLS regression: 

    , ,( / ) 'i t i,t i tD A β X , (14) 

where (D/A)i,t is book leverage (i.e., total debt divided by total assets) for firm i in year t, and ,i tX  is a 

vector of variables thought to affect leverage. We use data for the period 1950–2010 from Compustat, and 

we include five independent variables in ,i tX : fixed assets/total assets, Ln(sales), return on assets, 

modified Altman-Z score, and market-to-book ratio. All of the variables are winsorized at their 1% tails, 

and the standard errors are adjusted for clustering at the firm level. We estimate the model using the four 

different methods analyzed here—OLS, AdjY, AvgE, and FE—to account for unobserved heterogeneity 

across firms. The estimates are reported in Table 2.  

 The various estimation techniques lead to very different estimates for β, confirming the 

importance of correlations that cause OLS, AdjY, and AvgE to yield inconsistent estimates. The OLS 

estimates, reported in Column (1) of Table 2, differ considerably from the FE estimates in Column (4); 

this suggests the presence of an unobserved firm characteristic—like the firm’s cost of capital or 

investment opportunities—that is correlated with both the dependent variable (leverage) and independent 

variables (e.g., ROA). Such unobserved heterogeneities cause the OLS and AvgE estimates (Column (3)) 

to be inconsistent. The AdjY estimates (Column (2)) also differ from the FE estimates. Based on 

Propositions 1 and 2, the large differences between AdjY and FE imply that the firms’ annual 

independent variables are correlated with the firms’ time-series average levels. The sources of these 

correlations are intuitive; for example, Ln(sales) is serially correlated (i.e., 
, ,

0
i j i jw w


 ) and its average 

assuredly differs across firms (i.e., 2 0x  ). A similar concern also applies to the other independent 

variables. These correlations between observations of independent variables and their firm-level averages 

cause both AdjY and AvgE to be inconsistent.  

The estimates in Table 2 illustrate that AdjY and AvgE estimators can be severely biased and lead 

to incorrect inferences. For example, for the coefficient on the proportion of fixed assets, the AdjY and 

AvgE estimates are 73% and 58% smaller in magnitude than the FE estimate, respectively; for the Z-

score, the AdjY and AvgE estimates are smaller in magnitude than the FE estimate by about 40%. A 
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researcher using either AdjY or AvgE might therefore infer that the roles of collateral and bankruptcy risk 

on leverage are considerably smaller than they are. AdjY and AvgE can even yield estimates that have the 

opposite sign as OLS and FE. As reported in Table 2, the OLS estimate for return on assets is -0.015. 

Relying on the AdjY and AvgE estimates of 0.051 and 0.039, respectively, one might conclude that 

unobserved firm-level heterogeneity imposes a large downward bias on the OLS coefficient. But, the FE 

estimate of –0.028, which is almost twice the OLS estimate, suggests that the bias actually goes the other 

way.  

Trying to understand (or predict) the sign of the bias of AdjY and AvgE is typically impractical. 

As seen in Propositions 2 and 3, the AvgE bias is very complicated, even with just one independent 

variable, and AdjY is similarly complicated with just two independent variables. When there are even 

more independent variables (as in this example), the bias will depend on even more correlations. The 

complexity of the bias in AdjY and AvgE and their dependence on so many correlation parameters make 

it difficult to predict the direction of the bias or to infer bounds for the true coefficients. 

 

3.2 Executive compensation and unobserved heterogeneity across managers   

We next estimate the following model for executive compensation: 

 β X, , , , ,(  c ) 'i j t i, j t t i j tLn total ompensation       , (15) 

where Ln(total compensation)i,j,t is the natural log of the total compensation for manager i at firm j and in 

year t, X i,t  is a vector of variables thought to affect compensation, and δt is a year fixed effect. Using data 

for the period 1992–2010 from Execucomp, Compustat, and CRSP, we estimate the model using each of 

the different estimators—OLS, AdjY, AvgE, and FE—to account for unobserved heterogeneity across 

managers. We include ten commonly included independent variables in our regressions: Ln(total assets), 

market-to-book ratio, contemporaneous and lagged stock returns, contemporaneous and lagged return on 

assets, volatility of daily log stock returns, and separate indicators for being a CEO, chairman, or female. 

The estimates are reported in Table 3.  

Similar to the capital structure regressions, the various techniques lead to very different estimates 

of β. This is not surprising. Annual values of managers’ covariates are correlated with their average value, 

and unobserved factors, such as managerial ability, are likely correlated with both the dependent variable 
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(compensation) and independent variables (like profitability). These correlations and unobserved factors 

cause the AdjY and AvgE estimates to differ considerably from the FE estimates. As shown in Table 3, a 

researcher using either AdjY or AvgE might incorrectly infer that ROA has no effect on total 

compensation when the opposite may be true. AdjY and AvgE estimates are also considerably smaller 

than both the OLS and FE estimates for Ln(total assets), market-to-book ratio, stock returns, return on 

assets, and the CEO indicator. 

 

3.3 Firm value and unobserved, time-varying heterogeneity across industries  

We next estimate a model for firm value, as measured using Tobin’s Q: 

      , , , , ,'i j t i, j t t i j tQ β X , (16) 

where Qi,j,t is Tobin’s Q for firm i in 4-digit SIC industry j and year t; ,i tX  is a vector of variables thought 

to affect firm value; and δt is a year fixed effect. Using Compustat data from the period 1962–2000, we 

estimate the model using each of the different estimators—OLS, AdjY, AvgE, and FE—to account for 

unobserved heterogeneity across industry-year combinations. Using AdjY to account for such 

heterogeneity is often referred to as analyzing “industry-adjusted” data. We include four commonly 

included independent variables in our regressions: an indicator for being incorporated in Delaware, 

Ln(sales), R&D expenses/assets, and return on assets. All of the variables are winsorized at their 1% tails, 

and the standard errors are adjusted for clustering at the firm level. The estimates are reported in Table 4.  

As before, the various techniques lead to significantly different estimates of β. These differences 

indicate the importance of industry-year factors and correlations that cause OLS, AdjY, and AvgE to 

provide inconsistent estimates. For example, common industry shocks lead the return on assets for a given 

firm to be correlated with the firm’s industry average return on assets. Such a correlation biases the AdjY 

and AvgE estimates. Because these shocks also affect unobservable factors, such as investment 

opportunities, that are correlated with both the dependent variable (Tobin’s Q) and independent variables 

(like R&D expenses), OLS and AvgE are biased further.  

It is apparent that analyzing industry-adjusted data rather than using industry-year fixed effects 

can distort inference. For the coefficient on Delaware incorporation, the AdjY and AvgE estimates are 

statistically insignificant and considerably smaller than the statistically significant OLS and FE estimates. 
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Because firms in the same industry experience similar demand and cost shocks, their average return on 

assets, sales, and other characteristics vary across industries; thus the estimates will be biased. A 

researcher relying on AdjY or AvgE would conclude that incorporation in Delaware is uncorrelated with 

firm value after accounting for industry trends, when the opposite is true. The AdjY and AvgE estimates 

for Ln(sales) and R&D expenses also differ considerably from the FE estimates. 

 

3.4 Stock returns and unobserved, time-varying heterogeneity across industries and firm size   

In a final example, we examine the relationship between firms’ R&D expenses and their stock 

returns. Using CRSP and Compustat data from the period 1962–2010, we sort stock returns based on 

firms’ ratio of R&D to market value of equity in the preceding year. In Table 5, Panel A, we report the 

unadjusted, market-weighted average two-year holding period return and standard error for firms in each 

R&D quintile and for firms for which information on R&D is not available. Similar to the literature, we 

find that R&D is positively related to stock returns; firms in the upper quintile have an average two-year 

stock return that is 750 basis points (bps) larger than firms with R&D in the lowest quintile.  

But firms with high or low R&D may also differ in other ways that could affect stock returns. To 

illustrate a common approach to controlling for such factors, we construct 48×5=240 benchmark 

portfolios at the end of June in each year based on firms’ 48 Fama-French industry classification and size 

quintile. We then demean each stock return using the corresponding return on the benchmark portfolio 

and sort these characteristically adjusted returns based on R&D. The market-weighted adjusted returns, 

reported in Panel B of Table 5, also show a positive relationship between R&D and stock returns. 

Specifically, firms in the highest R&D quintile have an average adjusted return that is 530 bps higher than 

the average adjusted return of firms in the lowest R&D quintile. 

However, the comparison of such adjusted returns across quintiles is an AdjY estimation. This 

can be seen by estimating the following model:    

  i j s t i, j s t i j s tr , , , , , , , ,β'R&D , (17) 

where ri,j,s,t is the stock return for firm i in 48 Fama-French industry j, size quintile s, and year t; and 

, , ,i j s tR&D  is a vector of indicators for the firms’ R&D quintile in year t. We also include an indicator for 

firms missing information on R&D. We exclude an indicator for the lowest R&D quintile such that the 
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resulting estimates represent the average differences in stock returns between each quintile and the 

lowest. The regressions are weighted by firms’ market value of equity, and the standard errors are 

adjusted for clustering at the firm level. In this example, the concern motivating the use of AdjY 

estimation is that unobserved heterogeneity across the 240 industry-size benchmark portfolios is 

correlated with R&D and therefore distorting inference. An alternative approach is to use the benchmark 

portfolios as groups in AvgE or FE estimation. Market-weighted OLS, AdjY, AvgE, and FE estimates of 

Equation (1717) are reported in Columns (1)–(4) of Table 5, Panel C. 

The OLS and AdjY estimates reported in Panel C correspond exactly to the quintile returns 

reported in Panels A and B, respectively. The OLS estimates in Column (1) exactly equal the difference 

in average returns between each portfolio return and the lowest quintile portfolio reported in Panel A; for 

example, the difference in average returns between the highest R&D quintile portfolio and the lowest 

R&D quintile portfolio is 1,430 – 680 = 750 bps. Similarly, the AdjY estimates in Column (2) exactly 

equal the difference in characteristically adjusted returns reported in Panel B. Comparisons of 

characteristically adjusted returns across quintiles are the same as running an AdjY estimation. 

As in the other applications, the various techniques lead to different estimates. In this case, 

correlations between R&D, industry, and firm size cause OLS, AdjY, and AvgE to provide inconsistent 

estimates for β, the relation between R&D and returns. A researcher relying on characteristic adjustments 

(AdjY) would conclude that being in the highest quintile of R&D increases stock returns over firms in the 

lowest quintile by 530 bps (Column (2)). The FE estimation, however, shows that the effect of R&D 

quintiles is actually almost twice as large at 940 bps (Column (4)).  

From this example, it is apparent that analyzing characteristically adjusted data rather than 

controlling for benchmark-portfolio fixed effects can distort inference. The problem is that returns are 

characteristically adjusted but the sorting variable—R&D in this case—is not. This approach can provide 

inconsistent estimates because the specification fails to control for how the average sorting variable of 

other firms in the benchmark portfolio influences the adjusted stock return. Whether this failure matters in 

practice depends on the specific application. The degree of the problem depends on the exact 

benchmarking method, the sample, and ultimately whether the sorting variable’s average varies across 

benchmark portfolios. A researcher can diagnose the problem by measuring these correlations directly, or 
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more simply, avoid this concern entirely by estimating a FE model instead, as is done here. 

Overall, the large differences between AdjY, AvgE, and FE in each of the four different examples 

suggest that researchers’ choice of which approach to use is important in practice. As shown above, 

correlations present in many common finance settings cause both AdjY and AvgE estimates to be 

inconsistent and can lead to severe biases and incorrect inferences.  

 

4. Limitations of Fixed Effects Estimation and How to Overcome Them 

 Based on our analysis above, it is clear that AdjY and AvgE should not be used to control for 

unobserved heterogeneity. These ad hoc methods are inconsistent and can lead to estimates that differ 

substantially from the true underlying parameters. The FE estimator provides consistent estimates in the 

presence of unobserved group heterogeneity and should be used instead. 

The FE estimator, however, has limitations. One limitation (which also applies to AdjY and 

AvgE) is that FE is unable to control for unobserved heterogeneity within groups. For example, industry-

level fixed effects do not control for unobserved geographic differences in demand or costs across local 

markets within an industry. Likewise, firm-level fixed effects do not control for unobserved firm factors 

that vary over time, such as the accumulation of organization capital. Given the potential limitations of 

FE, when should researchers estimate a model with fixed effects? There are four criteria that indicate 

estimating a FE model: 

(1) There likely exists unobserved group heterogeneity. 

(2) The heterogeneity is potentially correlated with a variable of interest. 

(3) There exists within-group variation in the variable of interest. 

(4) The variable of interest is well measured. 

Conditions (1) and (2) represent existence criteria for unobserved group heterogeneity that could 

cause an omitted variable bias. If the factor is observable, then the researcher should control for the 

potential omitted variable directly using OLS. If the heterogeneity is unobservable but uncorrelated with 

the independent variable of interest, then OLS without the group indicator variables is consistent. 

Conditions (1) and (2) provide the motivation for using a FE estimator, which unlike the AdjY and AvgE 

estimators, successfully controls for the unobserved group heterogeneity.  
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The remaining two conditions refer to potential limitations of FE and its ability to facilitate 

accurate inference. Condition (3) refers to the inability of FE estimation to directly identify the effect of 

independent variables that do not vary within groups; condition (4) refers to the attenuation bias that can 

occur in FE estimation when independent variables are not well measured. In this section, we discuss 

these two limitations and how they can be overcome. We also describe how to overcome a third limitation 

of the FE estimator: computational difficulties that arise when estimating FE models with multiple 

sources of unobserved heterogeneity. 

 

4.1 Independent variables that do not vary within groups 

If there is no within-group variation in the variable of interest, it is not possible to disentangle the 

group component from that of the independent variable in FE estimation, because the fixed effects are 

perfectly collinear with variables that do not vary within groups. For example, the effect of a manager’s 

gender on his or her total compensation cannot be estimated while also controlling for manager fixed 

effects because gender is time-invariant and perfectly collinear with the manager fixed effects. Likewise, 

the effect of internal governance on firm outcomes cannot be estimated while also controlling for firm 

fixed effects when internal governance mechanisms do not vary over time. 

In some cases, violations of condition (3) can be addressed using IV strategies within the FE 

estimation framework. As shown by Hausman and Taylor (1981), the coefficients on variables that are 

constant within groups can be recovered using a two-step procedure when other covariates vary within 

groups and are uncorrelated with the unobserved heterogeneity. In the first step, FE estimation is used to 

estimate the coefficients for variables that vary within groups. In the second step, group-average residuals 

from the first step are regressed on the covariates that do not vary within groups using as instruments 

covariates that vary within groups and are not correlated with the unobserved heterogeneity. This 

estimation can be implemented in Stata using the XTHTAYLOR command.  

 

4.2 Attenuation bias from noisy independent variables 

FE estimators are subject to potential attenuation bias. Although FE estimators successfully 

remove unobserved heterogeneity that would otherwise bias estimates, they also remove meaningful 
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variation from the variable of interest. If some of the variable’s within-group variation is noise, then the 

share of variation being analyzed that is noise can rise in FE estimation. This increase in noise occurs 

when there is measurement error of an independent variable or when the independent variable is 

measured perfectly but the within-group variation does not capture the relevant variation. For example, a 

firm-level fixed effects estimation may exhibit a lot of noise if the dependent variable responds to 

sustained but not transitory changes in the independent variable, because the meaningful, sustained 

variation is largely removed by the firm fixed effects (McKinnish 2008). This noise can bias coefficient 

estimates and lead the researcher to make incorrect inferences.  

For example, consider a researcher who is interested in estimating the effect of a regulatory 

change on banks’ lending to low-income households. The researcher obtains data from a credit reporting 

bureau and controls for unobserved shocks to credit demand by including ZIP Code-by-quarter fixed 

effects. If there is measurement error in the credit reporting data (e.g., some loan originations and payoffs 

are not recorded in a timely manner), then the importance of this error could be magnified by the FE 

strategy. Even if the FE estimation indicates that the regulatory change had little or no effect on low-

income borrowing, the opposite may be true.12    

In practice, addressing this bias is difficult. One approach is to exploit information contained in 

higher-order moments of the observed variables in a generalized method of moments (GMM) estimation 

(Erickson and Whited, 2000). Another approach is to identify an instrumental variable for within-group 

variation in the independent variable and implement IV methods (Biorn 2000). In panel data, a third 

approach is to recover the true β from the biased coefficients obtained from OLS estimation on different 

transformations of the data, such as first differences or within-group transformation; the different 

transformations affect the estimate in predictable ways that can be used to analytically solve for the bias 

and recover the true parameter (Griliches and Hausman 1986; McKinnish 2008). However, these 

approaches can be difficult to implement because they require assumptions about the exact source and 

structure of the measurement error process. 

 

                                                            
12 See Griliches and Hausman (1986) and Angrist and Pischke (2009, pp. 225–7) for a more detailed discussion of 

the measurement error problems associated with FE estimators. 
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4.3 Estimating models with multiple high-dimensional fixed effects 

Researchers often face computational hurdles when trying to estimate FE models on large 

datasets with multiple sources of unobserved heterogeneity. When there are two or more high-dimension 

group effects (i.e., each set of groups includes many distinct occurrences), many indicator variables must 

be included in the estimation. The large number of parameters to be estimated can lead to computer 

memory requirements that exceed the available computing resources. Overcoming these difficulties, in 

fact, provides a potential motivation for using AdjY or AvgE rather than FE.13 

When there is just one type of unobserved group effect, fixed effects estimation is always 

computationally feasible if the original OLS estimation is feasible. This is because the data can be 

transformed by demeaning with respect to the group component and then estimating OLS on the 

transformed data. In a specification with K independent variables of interest and G groups, the within 

transformation reduces the number of parameters to estimate from G + K to K—the same number as OLS. 

Statistical programs typically use this transformation to estimate models with fixed effects.  

However, when there are two unobserved group effects of dimension G1 and G2, there is 

generally no such transformation to reduce the number of parameters. If the data are a balanced panel, 

meaning there is a consistent set of observations for each subgroup, the data can be transformed by 

demeaning the dependent variable and each independent variable with respect to each group sequentially 

and then estimating the regression using OLS [see Greene (2000, pp. 564–65) for more detail]. This 

transformation reduces the number of parameters from G1 + G2 + K to K. But if the panel is unbalanced, 

which is far more common in practice, such a transformation typically does not exist.14  

In practice, unbalanced models with two unobserved group effects, such as firm and year group 

effects, are estimated using a partial transformation. The researcher inserts indicator variables for the 

                                                            
13 However, of the published articles we found using either AdjY or AvgE, applying an FE estimator appears 

feasible in the vast majority of articles. Of the more than sixty articles published in the Journal of Finance, Journal 

of Financial Economics, or Review of Financial Studies between 2008 and 2010 and that use either AdjY or AvgE 

estimation, there were only three articles in which computational problems might arise. In all but two of the other 

articles, there was only one fixed effect, which is easily handled using the within transformation, and in the other 

two cases, the amount of required memory to estimate the FE model would not pose a computational problem. 
14 Wansbeek and Kapteyn (1989) proposed a transformation for cases in which the data are unbalanced but 

patterned, such as with individual and time group effects, but this transformation is not typically used in practice 

because the number of time periods is usually not large enough to cause computational hurdles. See Baltagi (1995, 

pp. 159-60) for further discussion.  
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smaller group directly in the specification and performs a within-group transformation in the higher 

dimension. The indicator variables must be inserted before the transformation is applied. This 

combination of indicator variables and data transformation yields consistent estimates for the K 

parameters of interest, and eases computational difficulties by reducing the number of estimated 

parameters from G1 + G2 + K to G2 + K, where G2 < G1. A common application of this approach inserts 

year indicators in firm-year panel estimation and then subtracts firms’ averages from each variable 

(including the indicators).  

However, this partial transformation is only computational feasible if one of the two groups is of 

low enough dimension that creating a design matrix with G2 + K parameters is feasible. There are many 

examples for which this is not the case. For instance, suppose the researcher is working with a large panel 

of firms and wants to control for both unobserved, time-invariant firm characteristics and time-varying 

industry shocks. In this case, both group effects are of high-dimension, particularly when industrial 

classification is at a level similar to 3- or 4-digit SIC and there are many years of data. 

Finance researchers increasingly argue for the need to control for multiple, high-dimensional 

fixed effects. For example, in the analysis of executive compensation, there may be concern about 

unobserved heterogeneity across managers (such as skill, risk aversion, or personality) and unobserved 

heterogeneity across firms (such as firm culture or organization capital) that might also correlate with 

variables of interest (such as size, profitability, or CEO age). The inclusion of manager fixed effects, in 

addition to firm fixed effects, can be used to remove this unobserved heterogeneity and allow the 

researcher to remove potential omitted variable biases introduced by such unobserved heterogeneity at the 

manager or firm level (Graham, Li, and Qui 2012; Coles and Li 2011a). The inclusion of firm- and 

manager-level fixed effects may also be important in other contexts (Coles and Li 2011b). Likewise, 

researchers that use firm-level data are increasingly concerned about time-varying heterogeneity across 

industries, such as industry-level shocks to demand (Matsa 2010). Such heterogeneity may warrant the 

addition of industry-by-time fixed effects to a specification that already includes firm fixed effects. And, 

in identification strategies that exploit local changes in regulation over time, there is a concern that these 

changes in regulation may coincide with other time-varying local characteristics (Cetorelli and Strahan 

2006). If not all firms are affected by the regulation equally, then including location-by-time fixed effects 

can control for such characteristics. 
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Fortunately, there are computational techniques that provide consistent estimates for models with 

more than one high-dimensional group effect without storing large matrices in memory. One approach is 

to interact the multiple types of unobserved heterogeneity into a one-dimensional set of fixed effects, 

which is accounted for using a within transformation. A second approach is to use memory-saving 

procedures and/or iterative algorithms. Both of these approaches have benefits and limitations. 

 

4.3.1 Interacted fixed effects. Memory requirements can be reduced by interacting multiple fixed effects 

into a one-dimensional set of fixed effects and then applying a within-group transformation. For example, 

when there are unobserved factors at the firm and industry-year levels, the two types of fixed effects (firm 

and industry-year) can be replaced with one set of firm-industry-year fixed effects and then controlled for 

using a within-firm-year transformation. This within transformation removes both firm and industry-year 

factors, reducing the number of estimated parameters to K (the same as OLS), avoiding the computational 

problems of trying to estimate a model with separate fixed effects for firm and industry-year.  

However, the interacted fixed effects approach has potentially serious limitations. The first 

limitation is that interacted fixed effects remove more heterogeneity than necessary and may, as a result, 

severely limit the types of parameters that can be estimated. In the above example with interacted firm-

year fixed effects, only variables that vary within firm-years can be identified, whereas the original 

specification provides estimates for variables that vary within firms and within industry-years. In fact, 

given that most finance datasets contain only one observation per firm-year, using interacted fixed effects 

in this case is infeasible because there is no within variation left after including firm-year fixed effects. 

Firm-manager matched data, where managers work at multiple firms over their careers, is an example in 

which interacted fixed effects are feasible. An interacted manager-firm fixed effect can be used to remove 

unobserved heterogeneity both across managers and across firms (e.g., Coles and Li 2011a,b; Graham, Li, 

and Qui 2012). However, even when some variation remains after transforming the data, caution is 

warranted; the estimates may suffer an attenuation bias if there is any measurement error.   

A second limitation of interacted fixed effects estimation is that it does not allow the researcher to 

recover the uninteracted fixed effects. When the researcher seeks to analyze the distribution, correlation, 

and importance of the fixed effects for specific groups [such as manager/worker fixed effects, as in 
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Abowd, Kramarz, and Margolis (1999); Abowd, Creecy, and Kramarz (2002); Coles and Li (2011a); and 

Graham, Li, and Qui (2012)], other estimation techniques that allow the researcher to recover the 

estimates on the separate fixed effects are required. 

 

4.3.2 Memory-saving procedures and iterative algorithms. Other approaches maintain the unobserved 

heterogeneity’s multidimensional structure but modify the algorithm used to estimate the original FE 

model. For example, memory requirements can be reduced by recognizing that the design matrix is a 

sparse matrix—a matrix with many zeros—because of all the fixed effects. Sparse matrices can be 

compressed into smaller matrices that require less memory by only storing the nonzero values. By 

compressing the matrix of indicator variables, the required memory can be significantly reduced (Abowd, 

Creecy, and Kramarz 2002). Cornelissen (2008) provides a detailed description of how this can be 

implemented, and provides a Stata program, FELSDVREG, that applies this estimation method to models 

with two high-dimensional fixed effects.  

Memory requirements can be reduced further using an iterative algorithm to estimate the FE 

model rather than constructing and inverting matrices (e.g., see Smyth 1996; Guimarães and Portugal 

2010). The iterative algorithm avoids needing to store any indicator variables in memory, eliminating 

memory limitations that bind even after implementing memory-saving procedures. Guimarães and 

Portugal (2010) show how iterative methods can be used to estimate coefficients and standard errors in 

models with two high-dimensional fixed effects; the program REG2HDFE implements this algorithm in 

Stata. However, when computer memory is not a binding constraint, a drawback of the iterative algorithm 

is that it can take longer to compute when a large number of iterations are required.  

These alternative estimation techniques for models with more than one high-dimension group 

effect are computationally feasible and relatively quick. To illustrate this, we attempted to estimate a FE 

capital structure regression in Stata using the standard algorithm and the alternative approaches. 

Specifically, we estimated the following regression: 

 i j tβX, , , , , , ,( / )i j t i j t i j tD A f u      , (18) 

where i j tX , ,  is a vector of five time-varying independent variables (i.e., K = 5) for firm i in 4-digit SIC 

industry j and year t. The independent variables are fixed assets/total assets, Ln(sales), return on assets, 
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modified Altman-Z score, and market-to-book ratio. The regression includes two high-dimension group 

fixed effects: firm fixed effects, fi, and industry-by-year fixed effects, δj,t. We obtain a sample of firms 

from Compustat for the period 1970–2008, which contains N = 318,808 firm-year observations, G1 = 

28,365 unique firms, 450 4-digit SIC industries, and G2 = 16,769 unique industry-years. 

Estimating this model using a combination of a within transformation and indicator variables is 

not computationally feasible. Even after applying the within-transformation to remove the firm fixed 

effects, 16,769 industry-year dummies remain. If the memory required to store each element of the design 

matrix is eight bytes, the total memory required to store the design matrix of the transformed data is N × 

(G2 + K) × 8, or 39.84 gigabytes. Even if we reduce the industry controls to the 3-digit SIC level, there are 

10,527 industry-year dummies, requiring 26.86 gigabytes in memory, which still exceeds the memory 

available to most researchers.  

The memory-saving and iteration techniques discussed above avoid these limitations. (Using 

interacted fixed effects in this case is not possible because there does not exist any within firm-year 

variation.) Using the FELSDVREG algorithm to estimate the FE model reduces the required memory to 

(G2 + K)2 × 8 = 2.09 gigabytes. Although computational times will obviously vary based on computing 

resources, FELSDVREG was able to successfully generate the OLS estimates with standard errors 

adjusted for clustering at the firm level on the authors’ desktop computer in about 7 hours and 50 minutes. 

REG2HDFE was considerably faster. Using the iterative approach, REG2HDFE successfully returned 

estimates with clustered standard errors in less than five minutes.15 

 

5. Conclusion 

As empirical researchers, it is well understood that we must address unobserved heterogeneity if 

we hope to infer causal relations from the data we analyze. It is less clear, however, how researchers can 

best account for such heterogeneity. In practice, there are numerous methodologies that are used widely to 

account for unobserved shocks that affect groups of observations. One approach subtracts the mean of the 

                                                            
15 Both of these programs report cluster-robust errors that reduce the degrees of freedom by the number of fixed 

effects swept away in the within-group transformation (i.e., G1 – 1), which as noted earlier, may be inappropriate in 

some applications. To recover the smaller cluster-robust standard errors that do not make this adjustment, one 

multiplies the reported standard errors by the square root of (N – G1 – G2 – K + 1) / (N – G2 – K). See our website, 

http://www.kellogg.northwestern.edu/faculty/matsa/htm/fe.htm, for further details on how to implement this 

adjustment and the methods discussed in this section. 
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group from the dependent variable; another attempts to control for unobserved heterogeneity using the 

mean of the group’s dependent variable. A third approach—fixed-effects estimation—includes indicator 

variables for each group as additional controls, or equivalently, demeans all of the model variables within 

groups (not just the dependent variable). This paper explores how these various approaches differ and 

under which circumstances each provides consistent estimates of the parameters of interest. 

We find that only the fixed effects approach yields consistent estimates in the presence of 

unobserved group heterogeneity while the other widely used approaches yield inconsistent estimates. 

Demeaning the dependent variable with respect to groups suffers an omitted variable problem by failing 

to control for how the mean of the independent variables affects the demeaned dependent variable. Using 

the group mean of the dependent variable as a control suffers from measurement error bias, as the sample 

mean is only a noisy measure of the unobserved factor. 

The difference between the various approaches is important in practice because the alternative 

approaches can lead to severe biases and incorrect inferences. They have the potential to generate 

estimates whose magnitude and sign do not match the true parameter. Estimating textbook finance models 

using each of the approaches, we confirm that these biases can be severe in practice. Compared to the FE 

estimates, the alternative approaches result in different estimates and occasionally even return statistically 

significant estimates of the opposing sign. 

Although we show that fixed effects estimation is the best way to account for unobserved 

common factors, the estimation strategy has limitations. It can neither control for unobserved factors that 

vary within groups nor identify the effect of independent variables that are constant within groups. The 

estimates are also subject to attenuation biases when the independent variable is measured with error. 

Given these limitations, we describe when fixed effects estimation is appropriate and how measurement 

error problems can be overcome in the estimation. 

We also address how researchers can overcome computational difficulties when estimating fixed 

effects models that include multiple sources of unobserved heterogeneity across many groups. This type 

of estimation is increasingly common as researchers work with large datasets and attempt to account for 

more sources of unobserved heterogeneity in their analyses. We describe new methods to estimate the 

fixed effects model when standard approaches are computationally infeasible. These new methods are 

likely to be of increasing importance and of practical use to empirical researchers. 
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Appendix  

 

A1. Proof of Proposition 1 

Given μX = μf = 0 and Equation (1), when the number of groups, N, goes to infinity and the number of 

observations per group, J, remains constant, the AdjY estimate, ˆ AdjY , is given by: 

 
1 1ˆ AdjY

N N

plim plim
N N
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Because groups are i.i.d., it can then be shown that: 
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and  
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where 
XX

 is the covariance between 
,i jX  and the sample group average, iX . Therefore,  
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■ 

A2. Proof of Proposition 2 

Given μX = μZ = μf = 0 and Equation (8), when the number of groups, N, goes to infinity and the number 

of observations per group, J, remains constant, the AdjY estimates ˆ AdjY  and ˆAdjY  are given by: 
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Because groups are i.i.d., it can be shown that: 
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where  XZ is the covariance between ,i jX  and ,i jZ . It can also be shown that:  
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where 
ZZ

 is the covariance between ,i jZ  and iZ , 
ZX

  is the covariance between ,i jZ  and iX , and 
XZ

 is 

the covariance between ,i jX  and iZ .  

Therefore,  
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■ 

A3. Proof of Proposition 3 

Given μX = μf = 0 and Equation (1), when the number of groups, N, goes to infinity and the number of 

observations per group, J, remains constant, the AvgE estimates ˆ AvgE  and ˆ AvgE  are given by: 
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Because groups are i.i.d., it can then be shown that: 
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where 
XX

 is the covariance between ,i jX  and iX , fX
 is the covariance between if  and iX , 

2

X
  is the 

variance of iX , and 2

 is the variance of i . 

And, it can be shown that:   
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where   is the covariance between i and i . Therefore,  
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A4. Determining whether the sign of ˆ AvgE is correct 

Because AvgE suffers from measurement error bias, it is possible to use the methods of Erickson and 

Whited (2005) to determine whether the sign of the inconsistent estimate ˆ AvgE  is correct. Because the 

AvgE measurement error,   i iX , may be correlated with both the regression disturbance term, 
,i j , 

and the regressor 
,i jX , the most general case of Erickson and Whited (2005) applies. Let iu  be the 

measurement error of the AvgE estimator and assume the following conditions hold:  

(1)  , ,, , ,i j i i i ju f X  are i.i.d. sequences, 

(2)    , , , 0i j i i j i jE f E X   , 

(3) the covariance matrix  , ,, , ,i j i i i jVar u f X  is positive definite, 

(4) every element of the coefficient vector from the projection of ,i jy on  ,,i i jy X  is positive, 

(5) and the coefficient relating iy  and ,i jX in the projection of iy  on  ,,i i jf X is positive,16 

It can then be shown that the AvgE estimate ˆ AvgE has the correct sign when  
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, (A17) 

where 
yf  is the correlation between the residuals from the projection of iy  on 

,i jX  and the residuals 

from the projection of if  on 
,i jX ; ˆ AvgE and ˆ AvgE  are estimates of Equation (9); m is the slope parameter 

from a linear projection of iy on 
,i jX ; 

2

yXresid is the variance of the residual from a regression of iy  on 

,i jX ; and 
2

yXresid is the variance of the residuals from a regression of iy on 
,i jX . While 

yf  must be 

assumed or obtained using additional information because if  is unobservable, all of the other parameters 

in Equation (A1717) can be estimated.  ■ 

                                                            
16 As noted in Erickson and Whited, assumptions (4) and (5) are easily satisfied by making negative coefficients 

positive by multiplying their regressors by –1. 
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A5. Proof of Equation (10)  

When iX  is defined as 
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X X
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where 
, ,i j i i jX x w  , ix  are i.i.d. with mean zero and variance 2

x , 
,i jw are distributed with mean zero and 

variance 2

W , and cov( ix ,
,i jw ) is equal to zero, then: 

 2 2 2

,
( ) ( )

X i i j x w
Var x Var w       (A19) 

and 
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Thus, 
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A6. Derivation of AdjY and AvgE estimates for Table 1 and Figure 1  

When the group mean, iy , and the corresponding group means of the independent variable are defined to 

exclude the observation at hand, as in Equation (11), errors ,i j  are i.i.d., and
, ,i j i i jX x w  , where the 

group means ix  are i.i.d. with mean zero and variance 2

x , 
,i jw are distributed with mean zero and variance 

2

w , and cov( ix ,
,i jw ) = 0, then 2 2 2

X x w     (as shown in Appendix A5), and  

 

, ,

, ,

, ,

 

, ,

 

2

,

cov( , )

1
cov ,

1

1
cov ,

1

i j i j

i j i jXX

i j i k

k group i
k j

i j i k

k group i
k j

x w w

X X

X X
J

X X
J



 












 
    
 

 
     
 

 





 (A22) 

where 
, ,i j i jw w


 is the covariance between wi,j and wi,-j. Likewise,  
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and 
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By recognizing that  
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one can plug Equations (A2222), (A2323), (A2424), (A2525), and (A2626) into the ˆ AdjY and ˆ AvgE from 

Propositions 1 and 3 to obtain:  
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and 
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 (A30) 

■ 

A7. Proof of Proposition 4  

Suppose that a researcher is interested in determining the effect of a treatment, T, on a variable y, when 

the true underlying structure of the data is given by: 

  , , 0 1 2 , 3 , , ,i j t t i j t i j i j ty P T P T          , (A31) 
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where , ,i j ty is the outcome for observation j, in group i, and period t; Pt is an indicator equal to one if 

treatment has occurred by period t; and Ti,j is an indicator equal to one if observation j is treated.    

The difference-in-differences estimator, which is a direct estimation of Equation (A3131), 

compares the mean of y for the untreated and treated units in the pre- and post-treatment periods. This 

estimator provides a consistent estimate of 3 , which is the causal effect of the treatment on the outcome 

y.  

 The AdjY-style approach to estimating 3  instead compares the group-adjusted mean of y for the 

treated units in the pre- and post-treatment periods. The AdjY estimator is:  

 
, , , , ,

AdjY AdjY AdjY

i j t j t t i j ty y P u     .  (A32) 

Using Equation (A3131), we can see that the group mean is given by:  

  , 0 1 2 3 ,i t t i t i i ty P T P T          , (A33) 

and the group-adjusted mean is given by: 

      , , , 2 , 3 , , , ,i j t i t i j i i j i t i j t i ty y T T T T P          . (A34) 

Thus, the group-adjusted mean for treated firms, where , 1i jT  , is equal to: 

      , , , 2 3 , , ,1 1i j t i t i i t i j t i ty y T T P          .  (A35) 

Comparing the AdjY estimator in Equation (A3232) and the true underlying data structure in 

Equation (A3535) reveals that the AdjY estimator is not consistent. Specifically, 
3

ˆ (1 )AdjY T   , where 

T is the average share of untreated firms in a treated firm’s group. Intuitively, the AdjY estimator exhibits 

an attenuation bias because it incorrectly demeans the data using an average of treated and untreated 

observations, which removes some of the treatment effect on y. The difference-in-differences estimator 

only removes the mean of untreated observations.   
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Equivalently, one can describe the bias in the AdjY estimator as an omitted variable bias. 

Equation (A3535) can be written as:  

    , , , 2 3 3 , , ,1i j t i t i t t i i j t i ty y T P PT           . (A36) 

Comparing (A3636) to Equation (A3232), the AdjY estimator fails to control for 
t jPT , which is correlated 

with the independent variable of interest, tP . Biased estimates for the causal effect, 3 , result. ■ 
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Panel A. Correlation between X  and f Panel B. Relative variation across versus within groups

Panel C. Correlation between wi,j   and w i,‐j Panel D. Relative variation in f versus X
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Panel E. Relative variation in ε versus X Panel F. Number of observations per group

Figure 1. Comparative statics of the bias for OLS, AdjY, and AvgE
This figure presents analytical solutions for the OLS, AdjY, and AvgE estimates of the β in Equation (1), y i,j = β X i,j + f i + ε i,j , as a function of underlying

parameters (ρpp Xf , ρ X(i),X(‐i) , and σ f / ) and the number of observations in each group (J ) when β = 1. Each panel shows the effect of varying a specific

parameter in the data structure while holding the rest constant When not varying along the horizontal axis the default parameter values are: iiiiiiiiiiiiii;
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ρXf ρwj,w‐j σf/σX σε/σX J β βOLS βAdjY βAvgE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0.2 0.5 0.3 1 1 10 1 1.20 0.56 0.77

‐0.4 0.4 0.4 1 1 10 1 0.60 0.52 0.39

0.1 0.3 0.5 1 1 10 1 1.10 0.46 0.65

‐0.6 0.2 0.5 1 1 10 1 0.40 0.48 0.18

‐0.5 0.4 0.3 1 1 10 1 0.50 0.60 0.31

‐0.3 0.5 0.1 1 1 10 1 0.70 0.72 0.59

0.4 0.5 0.5 1 1 10 1 1.40 0.40 0.76

0.3 0.3 0.3 1 1 10 1 1.30 0.64 0.88

0.5 0.4 0.5 1 1 10 1 1.50 0.43 0.85

0.4 0.5 0.2 1 1 10 1 1.40 0.64 0.93

0.6 0.2 0.4 1 1 10 1 1.60 0.58 1.02

0.2 0.1 0.1 1 1 10 1 1.20 0.89 0.98

This table reports analytical solutions for the OLS, AdjY, and AvgE estimators of Equation (1),

y i,j = β X i,j + f i + ε i,j , under different assumptions about the underlying data structure. In all cases,

the true coefficient (β) equals 1, the number of observations per group (J ) equals 10, and σε/σX =

σf/σX = 1. The corr(Xi,j, fi), , and corr(wi,j, wi,‐j) are given in Columns (1)‐(3), and the OLS,

Adj Y, and Avg E estimates are given in Columns (8)‐(10).

AdjY least biased, AvgE most biased

AvgE least biased, AdjY most biased

OLS is more biased than AvgE, AdjY

Table 1. Analytical examples of the bias for OLS, AdjY, and AvgE

Estimates of βUnderlying Data Structure

OLS is less biased than AdjY, AvgE

wx
σ σ

x w
 
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OLS AdjY AvgE FE

(1) (2) (3) (4)

Fixed Assets/ Total Assets 0.270*** 0.066*** 0.103*** 0.248***

(0.008) (0.004) (0.004) (0.014)

Ln(sales) 0.011*** 0.011*** 0.011*** 0.017***

(0.001) 0.000 0.000 (0.001)

Return on Assets ‐0.015*** 0.051*** 0.039*** ‐0.028***
(0.005) (0.004) (0.004) (0.005)

Z‐score ‐0.017*** ‐0.010*** ‐0.011*** ‐0.017***
0.000 (0.000) (0.000) (0.001)

Market‐to‐book Ratio ‐0.006*** ‐0.004*** ‐0.004*** ‐0.003***
(0.000) (0.000) (0.000) (0.000)

Observations 166,974 166,974 166,974 166,974

R
2

0.29 0.14 0.56 0.66

Table 2. Firm heterogeneity and capital structure

Dependent Variable = Total Debt / Total Assets

This table summarizes results from firm‐panel regressions of total debt / total assets on fixed 
assets / total assets , Ln(sales) , return on assets , modified Altman Z‐score , and market‐to‐
book ratio using different methodologies to account for unobserved group heterogeneity

across firms. The data are from Compustat for the period 1950–2010 and exclude financial

and regulated industries. All variables are winsorized at their 1% tails. Column (1) reports OLS

estimates; Column (2) reports AdjY estimates; Column (3) reports AvgE estimates; and Column

(4) reports FE estimates. The group averages used to estimate AdjY and AvgE are constructed

excluding the observation at hand. Standard errors, adjusted for clustering at the firm level,

are reported in parentheses.  *** significant at 1% level.
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OLS AdjY AvgE FE

(1) (2) (3) (4)

Ln(Total Assets) 0.341*** 0.021*** 0.066*** 0.240***

(0.007) (0.002) (0.005) (0.014)

Market‐to‐Book Ratio [t ‐ 1] 0.093*** 0.009*** 0.021*** 0.032***

(0.011) (0.002) (0.003) (0.008)

Stock Return [t] 0.120*** 0.039*** 0.050*** 0.091***

(0.015) (0.008) (0.009) (0.014)

Stock Return [t ‐ 1] 0.041*** 0.053*** 0.051*** 0.076***

(0.011) (0.007) (0.007) (0.010)

Return on Assets [t] 0.287*** 0.092*** 0.120*** 0.268***

(0.062) (0.032) (0.033) (0.083)

Return on Assets [t ‐ 1] 0.135** 0.004 0.023 0.193***

(0.068) (0.034) (0.036) (0.067)

Volatility of Daily Ln(Returns) 0.132*** 0.002 0.021 0.002

(0.030) (0.012) (0.013) (0.023)

CEO = Chairman Indicator 0.225*** 0.045*** 0.071*** 0.028*

(0.017) (0.012) (0.012) (0.016)

CEO Indicator 0.723*** 0.141*** 0.224*** 0.431***

(0.017) (0.012) (0.015) (0.017)

Female Indicator ‐0.115*** ‐0.023*** ‐0.036***
(0.026) (0.005) (0.006)

Observations 96,719 96,719 96,719 96,719

R
2

0.47 0.08 0.76 0.82

Table 3. Manager heterogeneity and executive compensation

Dependent Variable = Ln(Total Compensation)

This table summarizes results from manager‐panel regressions of Ln(Total Compensation) on year fixed

effects and control variables using different methodologies to account for unobserved group

heterogeneity across managers. The data are from Execucomp, Compustat, and CRSP for the period

1992–2010. Column (1) reports OLS estimates; Column (2) reports AdjY estimates; Column (3) reports

AvgE estimates; and Column (4) reports FE estimates. The group averages used to estimate AdjY and AvgE

are constructed excluding the observation at hand. The included control variables are Log(Total Assets) ; 
lagged market‐to‐book ratio ; contemporary and lagged stock returns , which is caculated using a 12

month holding period; contemporary and lagged return on assets , which is calculated using income 
before extraordinary items / total assets ; volatility of annualized daily log stock returns; an indicator for

whether the CEO is the chairman of the board; an indicator for whether the manager is the CEO; and an

indicator for being female. Standard errors, adjusted for clustering at the firm level, are reported in

parentheses. * significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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OLS AdjY AvgE FE

(1) (2) (3) (4)

Delaware Incorporation 0.100*** 0.019 0.040 0.086**

(0.036) (0.032) (0.032) (0.039)

Ln(sales) ‐0.125*** ‐0.054*** ‐0.072*** ‐0.131***
(0.009) (0.008) (0.008) (0.011)

R&D Expenses / Assets 6.724*** 3.022*** 3.968*** 5.541***

(0.260) (0.242) (0.256) (0.318)

Return on Assets ‐0.559*** ‐0.526*** ‐0.535*** ‐0.436***
(0.108) (0.095) (0.097) (0.117)

Observations 55,792 55,792 55,792 55,792

R
2

0.22 0.08 0.34 0.37

Table 4. Industry heterogeneity and Tobin's Q

Dependent Variable = Tobin's Q

This table summarizes results from firm‐panel regressions of Tobin's Q on an indicator for being

incorporated in Delaware, Ln(sales) , R&D expenses / assets , return on assets , and year fixed effects

using different methodologies to account for unobserved group heterogeneity across industry‐years
at the 4‐digit SIC industry level. The data are from Compustat for the period 1962–2000 and exclude

financial and regulated industries. Tobin's Q is measured as (Total assets + Share price * Shares

outstanding – Book equity ) / Total assets , and all variables are winsorized at their 1% tails. Column

(1) reports OLS estimates; Column (2) reports AdjY estimates; Column (3) reports AvgE estimates;

and Column (4) reports FE estimates. The group averages used to estimate Adj Y and Avg E are

constructed excluding the observation at hand. Standard errors, adjusted for clustering at the firm

level, are reported in parentheses. ** significant at 5% level; *** significant at 1% level.
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Q2

Q3

Q4

Q5

Observations

R
2

Dependent Variable = Yearly Stock Return

Panel A. Yearly stock returns sorted by R&D Quintile (i.e., OLS)
Q4

0.124***

(0.016)

Q5

0.143***

(0.016)(0.014)

Q2

Panel C. Regression analysis of R&D (Differences relative to Quintile 1)

Missing Q1

Panel B. Characteristically adjusted returns by R&D Quintile (i.e., AdjY)

‐0.012*** ‐0.033***

Table 5. Industry and size heterogeneity and stock returns

Missing

0.080***

(0.006)

Q1

0.068*** 0.050***

(0.010)

Q3

0.087***

(0.011)

‐0.023*** ‐0.002 0.008

(0.006)

Q2 Q3 Q4 Q5

0.020***

(0.003) (0.009) (0.008) (0.007) (0.013)

Missing

OLS

(1)

0.012

(0.015)

0.00

AdjY

(2)

0.021**

(0.009)

0.01

(0.013)

0.032***

(0.016)

0.02

(0.017)

0.056***

(0.021)

0.075***

‐0.018

(0.015)

0.053***

(0.011)

144,592

(0.021)

144,592

(0.012)

0.031***

(0.011)

0.042***

(0.012)

0.041***

AvgE

(3)

0.021**

(0.008)

0.008

FE

(4)

0.030***

(0.010)

0.019

This table compares two‐year holding period stock returns across firms as a function of firms' ratio of

research and development expenses to market value of equity ("R&D"). The data are from CRSP and

Compustat for the period 1962–2010. Panel A reports the average two‐year holding period stock return

and standard deviation by R&D quintile, where firms with missing R&D are reported separately. Panel B

performs a similar comparison but first subtracts the average return on a benchmark portfolio for each

stock using 48×5=240 benchmark portfolios (i.e., groups) that capture the 48 Fama‐French industries and
a firm’s size quintile. Panel C reports estimates from a regression of stock returns onto indicators for

firms' R&D quintile using different methodologies to account for unobserved group‐level heterogeneity
across the 240 benchmark portfolios. Column (1) reports OLS estimates; Column (2) reports AdjY 
estimates; Column (3) reports AvgE estimates; and Column (4) reports FE estimates. All regressions are

weighted by firms’ market value of equity, and the group averages used to estimate Adj Y and Avg E are

constructed excluding the observation at hand. Standard errors, adjusted for clustering at the firm level,

are reported in parentheses.  ** significant at 5% level; *** significant at 1% level.

(0.019)

144,592

0.47

(0.014)

0.051***

(0.018)

0.068***

(0.020)

0.094***

(0.015)

0.055***

(0.010)

144,592

0.430.00
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