
Common Expression Analysis

in Data base Applications’

Sheldon Finkelstein*

Computer Science Department
Stanford University

Stanford, California 94305

Abstract

Independent optimization of database requests

overlooks potential savings which can be achieved
when they are optimized collectively. An intuitive
model for queries called the query graph supports
common expression detection for optimization of a

stream of requests. We describe how ad hoc query
processing can be improved using intermediate
results and answers produced from earlier queries,

without significantly impacting processing costs

when no common expressions are found. We have
written a Pascal program, COMMON, which
implements a variation of the algorithm which we

describe.

1. introduction

The great advantage of the relational model of database

structures is its physic& independence. Requests specify what

information is desired, not how to obtain it. This enables

applications to be independent of the secondary access paths,

such as indexes, links, and hashed access paths. Even the

structure of the relations themselves can be hidden from the

user, through the mechanism of views, so applications can be

virtually independent of the physical structure of the database.

Request optimizers make decisions about how to navigate

through the maze of access paths, correctly and efficiently,

’ This work is part of the Knowledge Base Management Systems Project,
under contract #NW039-82.G.0250 from the Defense Advanced Research
Projects Agency of the United States Deparment of Defense. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representative of the official policies of DARPA or the US
Government.

*Current address: IBM San Jose Research Lab K55/028.5@30 CottIe Road,
San Jose, CA 95193

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission’of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1982 ACM O-89791-073-7/82/006/0235 $00.75

:35

based on a statistical description of the relations, and a cost

model of request execution. These decisions may be better

than those made by the average user, since the system can (a)

estimate all the different possibilities and compare them, and (b)

react to changes in the physical structures, without recoding,

Once we decide that the system should optimize individual

requests, an obvious question is: Why should the optimization

be limited to single requests, independent of surrounding

requests? Let us give some examples of what we mean by

multiple request optimization. When consecutive requests are

addressed to a database system

Which French ships are in the Mediterranean?

Who are the captains of the French ships in the

Mediterranean?

the system will probably independently compute the response

to the first query, then compute the response to the second

query. It will not recognize that the first response enables fast

computation of the second. When a user submits a transaction

in which both queries appear, or includes them in a program,

the system will probably do no better. Similarly, the requests

Which employees in the sales department earn
more than $20K, have sold more than 100

personal computers, and have a child who is

attending Stanford University7

Which employees in the sales department earn
more than $20K, have sold more than 100

personal computers, and have a child who is

attending New York University?

mighi profitably be processed within a transaction by first

finding the employees in the personnel department who have

sold more than 100 personal computers and earn more than

@OK, and then using the temporary to answer both questions.

This is called the albatross problem by Daniel Sagalowicz,

who regards it as a stigma borne by many database systems.

This investigation of the ways in which common expression

analysis can improve the optimization of collections of database

requests is part of the Knowledge Based Management Systems

Project [31] at Stanford and SRI International. Other KBMS

work studies optimization using semantic rules [18, 191; the

research described in this paper uses only the structure of the

requests and of the database.

A database system may have a repertoire of methods for

executing requests, including capabilities for accessing

.

relations, performing joins, applying restriction predicates,

projecting out attributes for results, ordering sets of tuples,

calculating arithmetic functions, storing temporary relations

(that is, creating new relations whose contents correspond to

the results of queries on the original relations), and creating

new access paths to relations. We do not consider associated

actions such as parsing, authorization checking, concurrency

control, and logging.

Optimization- of database requests specified in a non-

procedural query language involves resolving issues such as in

what order relations should be scanned and by what access

paths, which join methods should be chosen, how and when

restrictions, projections, and sorting should be applied, when

new access paths should be created during query processing,

and when temporary results should be stored. Although many

papers have addressed the problem of query optimization for

relational database systems [4,8, 2528, 32,33,34, 361, there

has been little research on the problem of optimizing collections

of requests. As systems with non.procedural query languages,

including relational systems, become more prevalent, analysis

of this problem will become more important in practice.

Hall [14, 151 uses PRTV (the Peterlee Relational Test Vehicle

system) to study techniques for optimizing queries by common

subexpression identification, where expressions are regarded

as a lattice. His formal techniques are based on the

representation of the query as a string of symbols, although

associativity is considered. A hill-climbing heuristic is

suggested as a means of finding the best combination of

common subexpressions. Special attention is paid to

recognizing subexpressions wifhin a single query. Hail

-emphasizes the particularly high benefit of recognizing common

subexpression when queries involve views. Youssefi and

Wong [35,36] measure the desirability, in INGRES, of building

temporaries and access structures during query processing.

The PLAIN system [23] enables the user to create tuple

identifier lists (called markings), which allows a sufficiently

industrious user to optimize explicitly. Kim [17] examines ways

of performing scans for multiple purposes simultaneously.

Buffer space for temporaries is a critical resource in his

analysis. Adiba and Lindsay [i] present a methodology for the

creation and use of database snapshots, which can be thought

of as stored instances of views. Users explicitly define and

refresh snapshots, which have particular value in-distributed

databases. Grant and Minker[lZ, 131 use a depth-first

algorithm to optimize a collection of conjunctive queries

presented in a simplified relational calculus. Disjunction is

handled by converting to disjunctive normal form, and treating

the disjuncts as separate queries. This approach is applied to

deductive database systems. Blaauw, Duyvestijn and

Hartmann [6] transform requests into set expressions, and

optimize using techniques for circuit minimization in digital

switching theory to discover common terms.

We analyze the structure of requests using a formal

representation called the query graph, which displays queries

in an intuitive manner, and also facilitates comparison and

optimization of queries. Based on this representation, we

present a methodology for inter-query optimization in the ad

hoc query setting:

l Ad hoc requests are presented to the system.
These are arbitrary requests, entered in an arbitrary
order, by users at their terminals. The system has
no predictive capabilities, so ad hoc analysis must

determine when stored results are beneficial.

We present the abstract foundations, as well as aspects of a

practical implementation designs, for a system that performs

common expression analysis in this setting. This system would

be able to execute the second French ship query (given at the

beginning of this paper) more efficiently, by using the

information returned from the first query. (More sophisticated

cases will also be examined in this paper.) We have

constructed a Pascal program, COMMON, which demonstrates

the potential practicality of these concepts. This program has

been successfully applied to all the examples presented in this

paper, as well as more complicated examples.

Elsewhere [lo], we study two other settings as well.

. A collection of queries will be repeatedly executed
in a transaction. Because the entire collection is

available for perusal, and the repeated cost of the

transaction dominates compilation cost,

sophisticated analysis is possible.

. A program is written in a language that permits

embedded database requests, such as PLISQL

(PL/I with embedded SOL statements) [3,26]. This

is optimized, using a combination of code

optimization techniques and a variation of the
approach employed in the other two settings.

The effects of insertions, updates, and deletions are also

discussed there [lo]. In this paper, only queries are considered.

In section 2 we define query graphs, and give examples of query

graphs. We also explain informally, using these graphs, how a

system might use the answer for one query to compute the

answer for another. In section 3 we formally define when it

means for a query to be a subexpression of another, and give an

algorithm for testing for this. Section 4 is the conclusion.

2. Query graphs

In this section, we introduce a notation for queries called the

query graph. Queries are represented as undirected graphs.

The nodes correspond to occurrences of relations in the query;

the edges correspond to joins between the relations in the

nodes that they connect. There have been many similar

approaches to structuring queries, including QBE [37],

tableaux 161, qua1 graphs [7], and the work in many of the

optimization papers cited in section 1, especially the papers by

Wong and Youssefi [32,33,36].

Welty and Stemple [29] suggest that explicit indications of

join operations assist the user in writing and understanding

queries. In that paper, the authors’ human factors studies

provide evidence that structured introduction and

presentation of queries is useful. But we feel that they do not

go far enough; most predicates can be associated with a

relation in the query, or identified as join predicates. This

approach is basic to our common expression analysis

methodology, but it also structures queries for human use.

236

We shall assume that the following relations exist in the

database, with attributes including those listed.

Relation Attributes

People name, employer, age, experience,

salary, commission, education
Companies corpname, location, earnings,

president, business

Schools schoolname. level

2.1. Some query graph examples

These examples represent six queries in SQL [3] and as

query graphs. (Our implementation actually uses SODA

queries [16,20], but SODA is not intended as a user interface.)

We discuss the examples, which we also follow through the

paper, using standard graph and database terminology in this

section, and define terms rigorously in the next section. A query

corresponds to an expression in a query language, and a

snapshot is the interpretation of a query corresponding to a

database instance. A temporary is a relation stored in the

database whose tuples are those in a snapshot. In what follows,

we assume that there is an arbitrary fixed database instance,

and that Snapshot 1 and Temporary 1 correspond to Query 1,

etc.

the People relation. If there is an index, or some other fast

access path to the tuples of People, based on experience or

name, it is possible, and may be worthwhile, to obtain Snapshot

2 by performing a join between Temporary 1 and the People

relation, and restricting further. (It is likely that an index exists

on unique identifiers.)

Query 3

SELECT p.name, c.corpname.
c.location, c.president

FROM People p. Companies c
WHERE p.experience >= 10

AND p.employer = c.corpname
AND c.location <> ‘Alaska’
AND c.earnings > 500K3

I employer = corpname

R Companies

u location <> “Alaska”
earnings > 500K

7l corpname, location, president

Query 1

SELECT name, experience
FROM People
WHERE experience >= 10

Query 1 is a single node, on the relation People. All people

with at least 10 years of experience are selected, and the name

and experience attributes for each are projected.

QUERY 3

Query 3 involves two nodes, on two different relations,

People and Companies. Not only must internal selection

predicates hold, but the Cartesian product of People and

Companies is restricted by the join predicate requirement that

the person’s employer be the company. If Snapshot 1 is

available, we can join it with the indicated subset of Companies.

But since the employer field of People was not projected in

Snapshot 1, this would again involve having to extract values

from the People relation itself (so Snapshot 1 may not be

beneficial).

Query 4

QUERY 1

Query 2

SELECT name, experience
FROM People
WHERE experience >= 20

AND age <= 65

QUERY 2 SELECT p.name, c.corpname, c.location
FROM People p. Companies c
WHERE p.experience >= 20

AND p.age <= 65
AND p.employer = c.corpname
AND p.name = c.president
AND c.location = ‘NY’
AND c.earnings > 500K

Query 2 is also on the People relation. Snapshot 2 should

contain only people who have at least 20 years of experience,

and who also are 65 or younger. It is a subset of Snapshot 1,

since anyone who satisfies the Query 2 predicates must satisfy

the weaker conditions for Query 1. (Equivalently, we can

observe that the selection predicate for Query 2 implies the

selection predicate for Query 1.) Fortunately, the projected

attributes are identical, and since experience is projected, we

can easily test to see whether a person in Snapshot 1 has 20

years experience. Age, however, is not available in Snapshot 1.

If we had known about both queries in advance, we could have

projected age, as well as name and experience, when we

answered Query 1. (Age would not be displayed as part of the

answer.) Let us assume that name uniquely identifies tuples of

Query 4 has two nodes on the same relations as Query 3.

Moreover, each node of Query 4 can be obtained by restricting

the corresponding Query 3 node further. Also, the join

predicate for Query 4 is stronger than that of Query 3. Hence,

we can restrict Snapshot 3 to obtain Snapshot 4. (Age and

employer were not projected into Snapshot 3, so joining People

and Temporary 3 is necessary, if the temporary is to be used.

However, we need not perform a join with Company, since the

3 We regard earnings as given in thousands; the use of 5GQK to represent 500
thousand is not part of SQL, but “earnings > 500” looks meager. Also, the table

variables p and c may be omitted, but we include them to emphasize the

associations of attributes with relations.

237

attributes corpname, location, and president are projected into

Snapshot 3, and the earnings predicate is already known.)

Query 5

SELECT p.name, s.schoolname
FROM People p. Companies c, Schools s
WHERE p.experience >= 20

AND p.age <= 65
AND p.employer = c.corpname
AND c.location = ‘NY’
AND c.earnings > 500K
AND p.education = s.schoolname
AND s.level = ‘university’

R People

u experience > = 20
age<= 65

57 name

I employer = corpname
name = president

R Companies

u location = “NY”
earnings > 500K

7~ corpname, location

QUERY 4

Query 5 has three nodes on different relations. Either

Snapshot 1 or Snapshot 2 could be used to help obtain

Snapshot 5, since the People node in Query 5 further restricts

that of Query 1 and Query 2. Snapshot 2 is probably preferable,

since Query 2 has the same selection predicates on People that

Query 5 has. The education and employer attributes are not

available in either Temporary, so People tuples must still be

accessed.

Snapshot 3 has two of the three nodes, and each can be

restricted further to obtain the conditions in Query 5. Moreover,

the join predicate between those nodes in Query 5 is a further

restriction of the join predicate of Query 3 (trivially, since they

are the same). Hence, we can answer Query 5 by joining

Temporary 3 with Schools (and with People, since the

education attribute was not projected). Snapshot 4 cannot be

used for Query 5, because its join predicate is not implied by the

join predicate (between People and Companies) in Query 5.

R Schools

u level = “university”

I7 schoolname

education = schoolname

R People

u experience > = 20
age<: 65

r name

employer = corpname

R Companies
u location : “NY”

earnings > 500K

Query 6

SELECT p.name, c.corpname. c.location
FROM People p, Companies c, Companies cl
WHERE p.experience >= 20

AND p.age <= 65
AND p.employer = c.corpname
AND (c.location = ‘NY’

OR c.location = ‘CA’)
AND c.earnings > 500K
AND p.name = cl.president
AND cl.president = ‘Smith’
AND cl.business = ‘manufacturing’

R Companies
c president q “Smith”,

business = “manufacturing”

name = president

R People
(T experience>= 20,

age<= 65

VT name

employer = corpname

R Companies

u location = “NY”
OR location = “CA”,

earnings > 500K

7T corpname, location

QUERY 6

Query 6 has three nodes, where one relation has two

occurrences. Nodes must be distinguished from relations,

since multiple occurrences are possible. Note that there are

several possible ways in which we can try to match Query 3 and

Query 4 with Query 6. But node c1 (which has the test on

company business) is not a further restriction of any node that

has appeared in an earlier query, so that no match which

involves cl can succeed. Snapshot 3 is potentially beneficial,

however, if the c node of Query 6 is matched with the

Companies node of Query 3.

Our program, COMMON, detects all of the uses of snapshots

that are described above. Although our approach enables

detection of even less obvious cases, we believe that the most

likely and fruitful case is illustrated by the French ships queries

that appear in the introduction, where further information was

requested aft.er the ships were identified. This is also illustrated

by the further restriction of Temporary 1 to obtain the answer to

Query 2.

QUERY 5

238

2.2. Query graph definition

We assume that a base set of relation schemas has been

specified, as in the relational model; this is called the database

schema. Attributes (sometimes called fields or columns) are

defined for each relation. An attribute consists of a name and a

domain. Attribute names must be distinct within a relation. If R

is a relation schema, and A is the name of an attribute of R, we

write R.A to refer to that attribute, and write A when the relation

R is clear from context. A relation instance is a set of run/es,

where each tuple associates each attribute with a value in its

domain. A database instance associates each relation schema

in D with a relation instance. As is customary, we often use the

words relation and database for both schema and instance,

trusting context to disambiguate.

For simplicity, assume that the domain for all attributes is the

integers. The integers have special properties, such as order,

arithmetic operation and discreteness, but the modifications to

support other domains are usually straightforward (e.g., limiting

terms to single attributes or constants).

A term is a linear sum co + c,A, + c2A, + . + cnAn, where the

A’s are attributes, and the c’s are integer constants. An atomic

selection predicate has the form 7, op 7s’ where 7, and 7s are

terms, and op is one of the comparison operators =, f, <, 5, >,

2. The selection predicates are the smallest class of predicates

containing the atomic selection predicates and closed under

the Boolean operations: NOT, AND, and OR. For example,

experience t 10 is an atomic selection predicate, and

experience > 20 AND age 5 65 is a selection predicate.

A projection set on relation R is a subset of the attributes of

Ft. The projection set corresponds to the attributes from the

relation required in the answer; these are sometimes referred to

as projected, selected, or targeted attributes. In practice, the

order in which the attributes appear is obviously of importance

in report generation and other applications. We shall ignore

this property, since it does not affect our results here.

Let G be an undirected graph (without self-loops) with nodes

N and edges E. In a query graph, nodes correspond to

occurrences of relations in the query (as with appearances in

the FROM clause in SQL [3], or the RANGE clause in

QUEL [27]). Node labels give the relation, the internal selection

criteria, and the attributes requested in the response to the

query. We identify IJ with the conjunction of its elements. Each

of the individual conjoined predicates is called a clause.

Definition 1: A node label is a triple <R,u,n>, where:

1. R is a relation, referred to as the underlying

relation of the label, or of the node with which

the label is associated.
2. (r is a set of selection predicates in which all

attributes are in R. (They are referred to as
the internal or local predicates for the node.)

3. n is a projection set on R.

A function NL which associates a node label with
each node of G is called a node /abelling for G.

Given G and a node labelling for G, if n, and n2 are (distinct)

nodes of G which have underlying relations R, and R,

respectively, a join predicate between n, and n2 has the form

n,.A, = n2.A2, where A, and A, are attributes (of R, and R,,

respectively). When the underlying relation identifies the node,

we write the join predicate as R,.A, = R2.A2.

Definition 2: Given a node labelling for G, if e is an
edge of G then an edge label for e has the form

<n, ,n,,X>, where:

1. n, and n2 are the nodes connected by the

edge.
2. X is a non-empty set of join predicates

between n, and n2

A function EL which associates edge labels with

each edge in E is called a edge labelling.

All the predicates in labels for nodes and edges are conjoined

to form the restriction criterion for the query. By associating

clauses with nodes and edges, rather than regarding the

predicates as restricting the Cartesian product of the nodes’

relations, we separate the restriction criteria in a way that is

easy to grasp, and also assists analysis of query structure in an

optimizer or common expression analyzer. Unfortunately, not

all clauses can be associated with a node, as a selection

predicate, or with an edge, as a join predicate. For example,

p.sa/ary k30K OR cearnings > 200K does not fit into the

framework described so far, nor does p.age =

p.experience + 20,4 nor does p.salary + d.budget < c.earnings.

Any selection clause (over the attributes in the underlying

relations of the nodes of G) which does not qualify as a

selection predicate (because attributes come from two or more

nodes), nor as a join predicate (because it does not have the

right form) is called a global predicate. Since global predicates

cannot be associated with a node or an edge, they require

special handling. Requests frequently have empty global

predicates.

Definition 3: A query graph is a 4-tuple

<G,NL,EL,y>, where:

1. G is an undirected graph (without self-loops).

2. NL is a node labelling for G.
3. EL is an edge labelling for G and NL.

4. y is a set of global predicates for G.

We shall not always distinguish between queries and

their query graphs.

The definitions given above exclude the operations union and

difference, aggregate functions such as MJN and MAX, and the

quantifiers SOME (EXISTS) and NONE (which, curiously, is

more convenient for us than is ALL). Elsewhere [lo], we extend

the query graph definition to permit these operations, and

consider a more general class of join predicates.

As we have already mentioned, a snapshot is the

interpretation of a query corresponding to a database instance,

and a temporary is a snapshot stored as a relation in the

database.

4 We Consider the possibility of regarding this as a join predicate in [lO].

239

3. Ad hoc query setting

When a transaction is known in advance and precompiled,

access path selection can be performed once, before

processing. In certain applications, requests are not known in

advance. These ad hoc requests are unpredictable; it is not,

however, unreasonable to assume that such requests will

sometimes resemble each other, with questions becoming more

detailed based on information returned in previous requests.

For example, after getting a response, a user might want to

see more attributes from the relations involved in the question.

A new request might demand a join of the previous answer to

another relation. A question might be repeated. An answer

might have included too much information, and additional

restrictions might be added. (This may happen when a count of

items, such as bibliographical references, is returned, and the

user decides whether or not to see them based on that count.)

When there is more than one user on the system who is

interested in a current topic, those users may be asking

questions that are closely related. In a military application,

several users might simultaneously be interested in foreign

ships in a crisis area. In a business application, several users

might want to know about today’s shipments. In a ticket sales

application, several users might be interested in the same

upcoming events.

We want to find situations in which there are large savings,

without significantly adding to the cost of normal processing.

Moreover, we are not assuming any semantic knowledge of the

contents or sequencing of these ad hoc requests. There may

exist particular ways of processing requests that produce

temporaries that will be very useful in the future. But because

we do not know the future, we simply decide how to process

each request independently, based on the request and existing

temporaries.

3.1. Required capabilities in ad hoc query setting

The following capabilities are required in a system which uses

common expression analysis to optimize ad hoc queries.

1. Creafion of Temporaries
The system must be able to create and store

temporary relations, which may correspond to

answers to previous requests, or to intermediate
results materialized (that is, physically created) as
part of the query processing for previous requests.

A query graph description of the snapshot must

also be saved, and descriptive information about
the snapshot should be entered in the system

catalog (or schema), as a (temporary) relation, so

that requests can refer to it as they can to the base

relations.

Access paths to the temporary (such as indexes)
might also be created at this time. (Youssefi [35]
studies creation of auxiliary access paths as a

strategy for query processing.)

2. Use of Temporaries
The system should determine which temporaries
are potentially beneficial as subexpressions for the
current request. The query has to be reformulated

using the snapshot (or perhaps using several
snapshots), and the system must compare the
expected costs of the original and the revised
requests. If the revised form turns out to be less

expensive to use, the system should execute that
instead.

3. Background Support

The system must maintain a storage discipline for

temporaries. Since space for temporaries is limited,
storing a temporary may entail the destruction of

some other temporary. By attaching a utility value

to each temporary, based on factors such as the

temporary’s size, usage frequency, user priority,
and the complexity of the description of the

snapshot, the system decides when temporaries

must be replaced.5 Also, when the base relations

on which the snapshot is defined are updated, the

temporary relation must be either updated or

destroyed, unless users are willing to see answers
based on obsolete data.

In the rest of this section, we describe a method, based on

the query graph formalism, for determining the snapshots

whose temporaries might be beneficial for processing the

current query. These auspicious snapshots are sub-

expressions, in a sense which we formally define below, of the

current query.

3.2. Upper bounds

The common subexpression detection problem in compiler

optimization of straight-line code for arithmetic expressions is

well known. Since the associative and distributive laws are false

on finite precision machines,’ operations are analyzed in a

canonical form that reflects the commutativity of + and *, The

problems of finding minimal programs for collections of

arithmetic expressions, and optimizing program code with

assignments and branches, have a long history of

analysis [2,9].

In order to explain what it means for one query to be a

subexpression of another, or for an expression to be a

subexpression of two queries, we begin by comparing nodes. If

T and Q are single node queries (with no global predicates),

what relationship must T and Q have so that we can obtain the

answer to query Q merely by restricting the answer to query T

further2

Definition 4:

ii% ?f

If nT = <RT,uT,nT> and no =
,IJ ,n

cl
> are nodes, then nT is an upper bound

0

l.RT=Rq,and

2. u. + IJT’

5 More advanced strategies, based on prediction of user’s area of interest

and slrbsequent requests, are outside the scope of this paper.

6 Some language standards permit the assumption of associativity.

7 The term subquery has a standard meaning in [3]. We shall identify queries

with their expression as query graphs, and speak of subexpressions.

240

For example, Query 1 and Query 2 are both single node

queries, and Query 1 is an upper bound on Query 2, but not

conversely. If nT is an upper bound for no, and T is a stored

temporary for nT, we may be able to use T to obtain the answer

to the query represented by nc), by further restricting T. Every

tuple in the original relation that is needed for nQ participates in

nT. But this is not enough, since some attributes which do not

appear in nT may be needed to perform the further restriction to

oQ’ For example, age is not in the projection set for Query 1.

Moreover, ng may contain attributes not in nT.

The name attribute in the People relation unique/y identifies

People tuples, and may be indexed, or accessible using

hashing. (This is likely, since uniqueness must be guaranteed.)

Query 2A is the revised query for Query 2, using Temporary 1.

We must join the temporary to one of its base relations to obtain

the value of age. This join back to one of the defining relations

of the temporary is called a back-join. Although Query 2A

requires a back-join to People, it might be processed more

quickly than Query 2, especially if Temporary 1 had few tuples.

Query 4A is the revised query for Query 4, using Temporary 3. It

requires a back-join to People, but does not require a back-join

to Companies. The appearance of the join predicate corpname

= employer is unnecessary, and will be discussed in section

3.3.

.I? People
u experience > q 20

age<= 65
a name, experience

QUERY 2A

(corpname : employer)
president = name

experience > = 20

s name, experience

QUERY 4A

In general, the expected cost of accessing the required

tuples, as measured by evaluation formulas [25,30,34] may

decrease when the system follows a fast access path to the

tuples of the base relation using attributes in the projection set

of the temporary.

If oQ + ITT, where cQ and IJ~ are sets of clauses, then aQ/uT

denotes the clauses in oQ that are not implied by uT. Hence,

oQ =(uT AND aQ/uT), and aQ/uT is the minimal subset of u.

which has the property that AND’ing it with uT yields (the

equivalent of) uQ. Further restriction of J by any subset of u.

having this property would allow us lo get the answer to 0; we

shall take advantage of that in section 3.4, since we do not

perform complete theorem proving.

Let AJJR/BS(a) represent the attributes which appear in

predicates a.

Definition 5: If nT = <R,,u,,n,> and no =

<RQ,uO,nQ> are nodes, then nT is an effective upper

bound for nQ if nT is an upper bound for nQ, and

either

1. nT > A JJRIBS(U~/U~), and nT > nQ, or

2. nT includes both a unique identifier for R,

and a fast access path to R,.

Definition 6: If nT is an effective upper bound for

no, then the revised query for nQ using a temporary T

corresponding to nT is defined based on whether the

first or the second case of Definition 5 applies.

If the first applies, the revised query has one node,

<T,ug/uT,nQ>.

If the second applies, the revised query has two
nodes, <T,JRUE,0> and <RQ,uQ/uT,nQ>, with a join
predicate (which is the back-join referred to above)

equating the unique identifier (which must appear in

both nodes) to itself.

Note that the definition above does not mention the fast

access path; that qualification is required as a (very good)

heuristic, to eliminate inefficient revised queries from

consideration. We rely on the optimizer to choose the fasi

access path, when the revised query is submitted, as well as to

furnish the costs of the original and revised query. This

approach is also used in the physical database design tool

DBDSGN [ll]. Definition 5 is imprecise (we prefer to say

system-dependent), since the meaning of fast depends heavily

on the capabilities of the system, and on the evaluation formulas

applied by the optimizer procedure. We shall not be more

precise, preferring to regard the optimizer as a black box which

delivers predictions. Its judgments decide how queries are

actually processed. Both the original and the revised query

must be submitted for evaluation, and the version with the

smallest expected cost should be executed.

3.3. Subexpressions

When one node is an effective upper bound on another, we

can define a revised query, which may have a lower processing

cost. We now generalize this to testing whether a temporary T

(which has t nodes) may be useful for processing a new query Q

(which has q nodes). Assume that there is a particular mapping

from the nodes of T to the nodes of Q. (Many mappings may be

possible, but underlying relations of mapped nodes must be the

same, as in the previous section.) The node mapping must be

one-to-one, but ,it need not be onto, since there may be

additional nodes in Q that are not in T. Hence t 5 q. We assume

that the nodes of 0 and T are numbered, where Qi and Ti

correspond for i= 1,2, t. Xi is the edge label (set of join

predicates) for the edge between Ti and Ti, and similarly for ,X7.

(When there is no edge, we have the empty set of loln.

241

predicates, which is trivially TRUE.) We identify mapped nodes

from T with the corresponding nodes in Q. If ag and ar are sets

of predicates for Q and T, which may involve multiple nodes,

and ao -B QT, then aq/aT may be defined as in the previous

section, since a mapping between nodes which preserves

underlying relations has been specified.

In a query, there are join predicates and global predicates, as

well as local predicates. We need to further restrict the

predicates of T to obtain Q. Hence we need a variation of

another definition of the previous section.

Definition 7: If a’0 7 ar, then T enables further

restricting of + to CI~ If for any node Ok mentioned

in ao, either

I. V: > the attributes in ATTRIBS(ae/ar) that
come from node Qk’s relation appearance, or

2. .rr: includes both a unique identifier for H,

and a fast access path to R,.

Whenever X:/Xi is non-empty, it appears as (part

of) an edge label in Q’, between the nodes of 0’
corresponding to i and j.* All edges involving a node

Ok, where k > t, must appear in the revised query.

The global predicate for the revised query is y&r

There are many ways to implement the concepts embodied in

the above definition. Which way is best depends on how much

of the system’s resources can be devoted to common

expression analysis. We shall outline one concrete realization

of these concepts, most of which is embodied in a program.

COMMON, which detects common expressions and produces

revised queries corresponding to them.

3.4. Algorithm for ad hoc query setting

Practical considerations (we wish to avoid the execution time

burden of a general purpose theorem prover) prevent us from

solving the decision problem for:

When the first alternative does not hold and the

second one does, the revised query for 0 using T Will
require a back-join to Q,, since attributes of Q,

which are not in T, are required. Note that the
definition of effective upper bound, in the previous
section, ensures that T enables further restricting of

UT to UQ’ and may also cause back-joins in the

revised query.

Definition 8: T is a subexpression of query Q if

there are node orderings:

T,, T,, . . . , T, for T,

Q,, Q,, . . . , Q, for Q,

where t 3 q, and:

1, Nodes: T, is an effective upper bound for Q,,

for k= 1, 2, . . . , t.

2. Edges: X!? + XT, and T enables further

restricting gf Xi td’ Xy, for i = 1,2, . . . , t, and

j=1,2 ,..., 9.

3. Global: y

7
+ yr, and T enables further

restricting 0 yr to yg

Definition 9: If T is a subexpression for Q (using

the node mapping given in the previous definition),
the revised query Q’ for Q using T is defined as
follows.

All nodes 0, of Q that require back-joins (on the

basis of local, join or global predicates) are in Q’.
The relation and projection set are as they are in
Q. The local predicates for Q’ are those in o:/e:.

All nodes Q, of Q that do not require back-joins

correspond to the same special new node in Q’. The

relation for that node is T. The local predicates for
that node are the union of (T:/IJ: for all such k. The
projection set for that node is the union of r: for all

such k.

All nodes Q,, where k > t, appear in Q’ just as they

are in T.

(I -*UT
Q

completely, in the sense that we answer affirmatively only when

the implication is valid, but we respond negatively for some valid

statements. This is acceptable. Although some optimizations

escape us, all the subexpressions which we do detect correctly

support transformation of queries.

lhus we do not test whether the conjunction of all the

predicates in the query necessarily implies the conjunction of all

the predicates in the temporary. Instead, we perform a weaker

test based on the query graph structure, and might speak of

formal implication, rather than implication. The details of this

test appear (implicitly) in the algorithm later in this section.

However, with the understanding that we do perform this

weaker test, we shall continue to use terms from the previous

sections, such as upper bound and subexpression, without

prefacing them with the adjective “formal.”

The steps in our algorithm, each of which is described in

detail below, are Normalization (organize query and create

query graph), Signature (efficiently reject most temporaries that

cannot be used), Propagation (movement of predicates to

detect additional subexpression possibilities, and join predicate

checking), Matching (map temporary nodes to query nodes),

Direct Elimination (detecting clauses that are trivially implied),

Connected Components (partitioning implication problem into

independent subproblems), Resolution (more general

implication proving), Global predicates testing, Revised query

generation, and Cost comparison (between alternatives).

INPUT: Query graphs for a query and a set of temporaries.

PROBLEM: Decide whether or not some temporary is a

subexpression of the query. For each such temporary, find the

cost of the revised form of the query using the temporary, so

that the version of the query with the least expected cost is

chosen for execution.

8
The predicate corppname = employer of Query 4A is not required, since it is

a join predicate for Query 3. It may. however. provide a useful access path in

processing Query 4A. If it does not. it should be eliminated.

242

Step 1: Normalization. NOT is eliminated using De

Morgan’s laws. The clauses of the query are identified as local,

join or global predicates, and they are expressed in the normal

form for selection predicates, with terms as linear sums. Other

simplifications to reduce work in later steps include elimination

of > and >- (since < and 5 always suffice), and elimination of <

(replacing a < b with a + 1 s b, using the discreteness of the

integers).

Step 2: Signature. Since we want to reject most

temporaries quickly, we associate a signature with each

temporary. The signature indicates which relations appear in

the temporary, and which attributes must appear in any query

that can use the temporary. For example, any attribute which

appears in a clause of the temporary’s definition that does not

contain OR must appear in any query that can use the

temporary. The temporary will be considered further only if all

the relations and attributes mentioned in its signature also

appear in the query. A hashed representation of the

temporary’s signature, stored with the temporary, allows us to

quickly compare it with a similarly hashed representation of all

the relations and attributes that appear in the query.

Most of the time, irrelevant temporaries will be quickly

discarded in this step. Subsequent steps will catch other

temporaries that cannot be used.

For example, Temporary 5 cannot be used for Query 6

because the Schools relation does not appear in Query 6, and

Temporary 2 cannot be used for Query 3, because the age

attribute does not appear in Query 3.

Step 3: Propagate query’s predicates. This step has to

be performed only once for each query, no matter how many

temporaries are compared with it. Since we want to show that

the query’s predicates imply the temporary’s predicates, we try

to build up all the information that we can about the query’s

restriction. If a clause appears as a local predicate for a node of

the query, and some edge from that node has all the attributes

that appear in the clause in its label, propagate that clause to

the other side of the edge (replacing attributes according to the

equijoin specified in the edge label). For example, in Query 6,

the clause cl.president = ‘Smith’ propagates to node p as

p.name = ‘Smith’.

Similarly edges may “propagate across edges.” For

example, if a = b and b = c label edges, we would generate

a = c. No other interaction takes place across edges. As a

byproduct of this process, the join predicates of the query are

enhanced with other information describing equality of

attributes (and constants) -an equivalence class. We check

that the enhanced join predicates labelling edges of the query

imply the labels on corresponding edges (that is, the edges

between corresponding nodes) of the temporary. If not, the

temporary is deemed unusable.

Step 4: Match query to temporary. For the temporary to

be a subexpression of the query, there must be node orderings

for the temporary and the query that demonstrate this. Perform

Steps 5 to 10 for each different ordering that matches

underlying relations. There may be exponentially many

matches possible (if many nodes are on the same relation), but

in practice the number of matches to consider is small.

Step 5: Direct elimination. Steps 5, 6, and 7 are

performed to compare the u’s in corresponding nodes of the

temporary and the query. In the direct elimination step, we find

and eliminate clauses of the temporary that are implied by a

clause in the corresponding node of the query. The direct

elimination table in the Appendix gives the conditions for this

elimination among atomic predicates; this can also be

generalized to selection predicates involving AND and OR.

For example, if p.salary < 10K appears in the query, we can

eliminate p.salary < 20K from the temporary. Other examples

given in the Appendix show that clauses involving multiple

attributes, and even non-atomic clauses, can be eliminated from

the temporary by direct elimination. This simple table-driven

test often reduces the number of predicates in the temporary

significantly. Note that the elimination is just for the purposes of

testing implication; we do not alter the expression for the

temporary itself.

Direct elimination tests for implication using the structure of

the selection predicates. To test if Temporary 3 can be used for

Query 4, using the obvious matching between nodes, we find

that each of the predicates in Temporary 3 is directly eliminated

by a predicate in Query 4. Hence steps 6 and 7 are

unnecessary, since direct elimination demonstrates the

implication. A rudimentary implementation of our approach

could omit steps 3, 6, and 7. (The implementation of the

program COMMON includes step 3, but does not include steps

6 and 7.)

Step 6: Connected components. A predicate that does

not involve that attribute age cannot help in implying a predicate

that does mention age, unless there is some way of

“connecting” its predicates with age. For example experience

2 70 does imply age .$6.5 OR experience t 10. This suggests a

way of breaking the implication problem into smaller

subproblems, or perhaps deciding immediately that implication

is impossible.

For each corresponding pair of nodes in the query and the

temporary, define an attribute connection graph. The vertices

of this graph correspond to the attributes that appear in the

query or the temporary, annotated with the number of the nodes

(in the node ordering) in which they appear. We do not

distinguish whether they come from the temporary or the query.

Connect these vertices if they appear together in some clause

of either the temporary or the query. Attributes which appear in

different connected components of the attribute connection

graph cannot influence each other. Step 7 can be performed

independently for each connected component. If some

component consists entirely of attributes that do not appear in

the query, then we can immediately reject use of the temporary.

Step 7: Resolution. We have reduced testing requirements

considerably in steps 5 and 6, but will still refer to the remaining

clauses (in one component, for one node) as up and uT.

Testing whether uQ --) uT is equivalent to determining whether

(u. AND NOT uT) is unsatisfiable. We may apply a variation of

the Fourier-Motzkin elimination method for checking

infeasibility of conjunctions of linear inequalities (over the

integers). This algorithm is described and analyzed by

C. G. Nelson [21] under the assumption of two attributes Per

clause. Disjunction is handled by showing infeasibility no

243

matter which disjunct is chosen. The algorithm resembles

resolution, in that each pair of linear forms which provide an

upper bound and a lower bound for the value of some attribute

are combined, eliminating that attribute and relating the lower

and upper bounds. The resulting clauses are satisfiable if and

only if the original clauses were satisfiable.

Rosenkrantz and Hunt [24] show that the satisfiability

problem is NP-hard when f (which produces a disjunction of

linear inequalities) is permitted, even if comparisons involve no

more than 2 attributes. In practice, however, step 7 will usually

be fast, because the number of clauses to examine has been

reduced in earlier steps.

For example,

(a 2 b AND b ? c) + a t c

will be verified very quickly. Heuristic cut-off rules such as:

l Never produce a resolvent with more attributes than
the maximum number in the clauses resolved.

. Limit the total number of resolvents produced,
giving up on the temporary if unsatisfiability hasn’t

been shown in a limited time.

are desirable, since we seek fast detection of obvious

consequences, rather than completeness.

A variation of the simplex algorithm, as described by

Nelson [22], is also suitable for this problem.

Step 8: Global predicates. We expect that global

predicates occur infrequently. To test whether yQ + yT, we see

whether each clause of yT is implied by some clause of yq.

Although more complicated strategies may be attempted, we

prefer to optimize for the simpler, more frequent cases, because

global predicates are hard to deal with. Temporaries with

complicated global predicates should have low probabilities of

being stored. It is reasonable to perform this step early in the

processing, immediately after step 2 (node matching) to allow

fast rejection when the global predicate of the temporary is not

implied by that of the query.

Step 9: Bevise query. We described query revision in the

section 3.3, and showed two examples of revised queries. Node

matches that require back-joins can be rejected as soon as the

need for the back-join is detected, if the unique identifier and

fast access path required for the back join are not in the

projection set of the temporary.

Step 10: Compare costs. If the cost of execution has been

estimated for the original query, and all the revised queries, as

well as for revisions using more than one temporary (where the

temporaries cover disjoint parts of the query), then we can

choose the version which has the smallest expected cost, and

execute it.

An optimization system configured for common expression

analysis might recognize that many of the values calculated

during optimization of the original query will also be valuable

during optimization of revisions of the query. The query graph

lends itself to annotation with values such as filter factors for

selection predicates and join predicates, best access paths to

nodes, and descriptions of plans for query processing.

4. Conclusion

In this paper, we have presented the query graph

representation, and described how it can be used for

optimization of a sequence of ad hoc queries using common

subexpression analysis.

The query graph representation organizes a query

description so that many aspects of the query’s structure are

apparent. Unlike the representations of most query languages,

which display all predicates together, the query graph

associates clauses with nodes (relation occurrences) and edges

(joins), whenever possible. This has advantages for entry and

display of queries, as well as for internal representation.

For processing a stream of ad hoc queries, the query graph

enables us to recognize providentially available temporaries

which were stored during processing of previous requests. We

provide an abstract framework and a concrete algorithm for

exploiting these temporaries.

We also examine [lo] more general queries, and the effects

of updates. For batches of requests in a transaction, and

requests embedded in a programming language, we show how

the same concepts can be applied when we have complete

information about the operations to be performed.

We have implemented a Pascal program, COMMON, which

can detect temporaries that may be useful for processing a new

query in the ad hoc context, and which can formulate the

revised query for such temporaries. The time for performing

these functions for the six example queries presented in this

paper range from 7 milliseconds (to decide that a query could

not be used, on the basis of signature) up to 45 milliseconds (to

decide that Query 6 could use Temporary 1). This includes

neither optimization. nor any form of cost estimation.

Considerably more time is required to read (and normalize)

queries. It is also clear that common expression analysis can

yield large savings. We believe that as the use of relational

databases systems becomes common, tools for processing

applications will become more accepted and important.

Acknowledgement

The author would like to thank Gio Wiederhold, Daniel

Sagalowicz, Jim Davidson, Arthur Keller, and the other

members of the KBMS project for their generous support,

encouragement and assistance in preparing this paper.

Appendix: Direct elimination

= c >

244

= < >

N N

< < N

3 5 N

> N >

t N >

Table 1: Direct elimination table

Let 7 opo v. be a clause in the query, and let 7 op, vT be a

clause in the temporary, where vQ and vT are constants. We

want to decide if the former directly eliminates the latter. Look

at the row of Table 1 for opo.’ Look at the column of Table 1

corresponding to the result of comparing vQ with vT. The entry

in the Table gives the strongest condition that we can have for

opT which permits direct elimination. [If the entry is < or =, then

opT could be the weaker <; the dual statement for ?I is also true.]

N means that elimination cannot be performed in this case.

For example, if p.sa/ary < 10K appears in the query, we can

eliminate p.sa/ary < 2OK from the temporary, since the entry for

row < and column < is <. The clause psalary < 20K could also

be eliminated. If p.safary = p.commission + 500 appears in the

query, we can eliminate p.sa/ary > p.commission + 300 from the

temporary. A clause in the temporary which is a disjunction

may be eliminated if there is a clause in the query such that

every disjunct in the temporary clause is implied by a disjunct in

the query clause. For example, if p.salary s 20K

OR p.sa/ary 2 60K is in the query, it can eliminate psalary < 70K

OR psalary > 80K. A recursive definition of direct implication

allowing arbitrary nestings of conjunction and disjunction is left

to the reader.

References

1. Adiha. ME. and Lindsay, E.G. Database snapshots. Proc. sixth

International Conference on Very Large Data Bases, Montreal, Oct., 1980, pp.

86.91.

2. Aho. A.V.. Johnson, SC., and Ullman, J.D. “Code generation for

expressions with common subexpressions.” J. ACM 24, 1 (Jan. 1977), 146-f&).

3. Astrahan, MM. and Chamberlin, D.D. “Implementation of astructured

English query language.” Comm. ACM 18,lO (Oct. 1975). 580-58.8.

4. Astrahan, MM.. Kim, W.. and Schkolnick. M. Performance of the System R

access path selection mechanism. In Information Processing 80. Lavington,

S.H., Ed.,North Holland, 1980, pp. 487.491.

5. Aho. A.V.. Sagiv, Y., and Ullman, J.D. “Efficient optimization of a class of

relational expressions.” ACM Transacfions on D&abase Systems 4,4 (tic,

1979), 435.454.

6. Blaauw, G., Duyvestijn, A., and Hartmann, R. Optimisation of relational

expressions using a logical analogon. Submitted to IBM Systems Journal

7. Bernstein, ?.A. and Goodman, N. “Power of natural semijoins.” SIAM J. of

Computing 10,4 (1981). 751.771.

8. Blasg@n, M.W. and Eswaran. K.P. On the evaluation of queries in a relational

data base system. Research Report RJ1745. IBM, April, 1976.

9. Cock& J. and Schwartz, J. Programming Languages and Their Compilers.

Tech. Rept. Second Revised Version, Courant Institute of Mathematical

Sciences, New York University, April, 1970.

10. Finkelstein. S. J. Common expression analysis for optimization of database

applications. Computer Science Department, Stanford U., 1982. To appear.

11. Finkelstein, S. J., Schkolnick. M., and Tiberio, P. A physical database

design tool for relational databases. IBM, 1982. To appear.

12. Grant, J. and Minker. J. On optimizing the evaluation of a set of

expressions. Tech. Rept. TR-916, Computer Science Department, U. of

Maryland, College Park, July, 1980.

9
Over the integers, we don’t use the rows for < AND >. since A c vQ is

equivalent to A 5 v4 - 1, and similarly for >.

13. Grant, J. and Minker, J. Optimization in deductive and Relational

Databases. In Advances in Database Theory, Volume I, Gallaire, H., Minker. J..

and Nicolas, J-M., Ed.,Plenum Press, 1981.

14. Hall, P.A.V. Common subexpression identification in general algebraic

systems. Tech. Rept. UKSCOO60, IBM UK Scientific Cenwe, Nov., 1974.

15. Hall, P.A.V. “Optimisation of a single relational expression in a relational

data base system.” IBM Journal of Research and Developmenr 20,3 (May

1976), 244.257.

16. Hendrix. G. G.. et al. “Developing a natural language interface to complex

data.” ACM Transactions on Dafabase Systems 3.2 (June 1978). 105.147.

17. Kim, W. Ouery optimization for relational database systems. Tech. Rept.

UIUCDCS-R-80-1034, Computer Science Department, U. of Illinois, Urbana.

Champaign, Oct., 1980.

18. King, J.J. Query optimization by semantic reasoning. Tech. Rept. STAN-

CS.81.857. Computer Science Department, Stanford U.. May, 1981.

19. King, J.J. QUIST: a system for semantic query optimization in relational

databases. Proc. Seventh International Conference on Very Large Data Bases,

Cannes, Sept, 1981, pp. 510.517.

20. Moore, R. C. Handling complex queries in a distributed data base.

Technical Note 170. Artificial Intelligence Center, SRI International, Oct., 1979.

21. Nelson, C. G. An “log” algorithm for the two-variable-per-constraint linear

programming satisfiability problem. Technical Note STANCS-78.689,

Computer Science Department, Stanford U., Nov., 1978.

22. Nelson, C. G. Techniques for program verification. Xerox Palo Alto

Research Center, June, 1981.

23. van de Riet. R.P., et al. “High-level programming features for improving

the efficiency of a relational data base system.” ACM Transactions on Database

Systems 6,44 (Se@ 1981). 464488.

24. Rosenkrantz. D.J. and Hunt, H.0. Ill. Processing conjunctive predicates

and queries. Proc. Sixth International Conference on Very Large Data Eases,

Montreal, Oct., lQ80, pp. 64.72.

25. Selinger. P.G.. 81 al. Access path selection in a relational database

management system. Proc. ACM-SIGMOD International Conference on the

Management of Data, Boston, May, 1979, pp. 23.34.

26. SOL/Data System Application Programming. IBM, lQ81. SH24.50180.

27. Stonebraker, Michael, et al. “The design and implementation of INGRES.”

ACM Transactions on Database Sysfems 1,3 (Sept. 1976). 189.222.

28. Todd, S.J.P. “The Peterlee relational test vehicle-a system overview.”

IBM Systems Journal 15,4 (1976), 285.308.

29. Walty, C. and Stemple. D.W. *‘Human factors comparison of a procedural

and a nOnprocedural query language.” ACM Transactions on Database

Sysrems 6.4 (Dec. 1981), 826649.

30. Wiederhdd. G.. Database Design. McGrawHill. 1977.

31. Wiederhold, G., Kaplan, J.. and Sagalowicz, D. “The Knowledge Based

Management Systems proiect.” ACM SlGMOD Record I 1.3 (April 1981). 26.54.

32. Wong, E. and Yousseli, K. “Decomposition-a strategy for query

processing.” ACM Transactions on Database Sysfems 1.3 (Sept. 1976). 223.

241.

33. Yao, S.B. “Optimization of query evaluation algorithms.” ACM

Jransaclions on Database Systems 4.2 (June 1979), 133.155.

34. Youssefi. K. Query processing for a relational database system.

Electronics Research Laboratory Memorandum UCB/ERL M8/3, U. of

California, Berkeley. Jan., 1978.

35. Youssefi, K. and Wang. E. Query processing in a relational database

management system. Proc. Fifth International Conference on Very Large Data

Bases, Rio de Janeiro, Oct., 1979, pp. m-417.

36. Zloof. M.M. “Query-by-Example: adata base language.” IBM Systems

Journal 16.4 (1977). 324-343.

245

