
Common Expression Analysis 

in Data base Applications’ 

Sheldon Finkelstein* 

Computer Science Department 
Stanford University 

Stanford, California 94305 

Abstract 

Independent optimization of database requests 

overlooks potential savings which can be achieved 
when they are optimized collectively. An intuitive 
model for queries called the query graph supports 
common expression detection for optimization of a 

stream of requests. We describe how ad hoc query 
processing can be improved using intermediate 
results and answers produced from earlier queries, 

without significantly impacting processing costs 

when no common expressions are found. We have 
written a Pascal program, COMMON, which 
implements a variation of the algorithm which we 

describe. 

1. introduction 

The great advantage of the relational model of database 

structures is its physic& independence. Requests specify what 

information is desired, not how to obtain it. This enables 

applications to be independent of the secondary access paths, 

such as indexes, links, and hashed access paths. Even the 

structure of the relations themselves can be hidden from the 

user, through the mechanism of views, so applications can be 

virtually independent of the physical structure of the database. 

Request optimizers make decisions about how to navigate 

through the maze of access paths, correctly and efficiently, 
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based on a statistical description of the relations, and a cost 

model of request execution. These decisions may be better 

than those made by the average user, since the system can (a) 

estimate all the different possibilities and compare them, and (b) 

react to changes in the physical structures, without recoding, 

Once we decide that the system should optimize individual 

requests, an obvious question is: Why should the optimization 

be limited to single requests, independent of surrounding 

requests? Let us give some examples of what we mean by 

multiple request optimization. When consecutive requests are 

addressed to a database system 

Which French ships are in the Mediterranean? 

Who are the captains of the French ships in the 

Mediterranean? 

the system will probably independently compute the response 

to the first query, then compute the response to the second 

query. It will not recognize that the first response enables fast 

computation of the second. When a user submits a transaction 

in which both queries appear, or includes them in a program, 

the system will probably do no better. Similarly, the requests 

Which employees in the sales department earn 
more than $20K, have sold more than 100 

personal computers, and have a child who is 

attending Stanford University7 

Which employees in the sales department earn 
more than $20K, have sold more than 100 

personal computers, and have a child who is 

attending New York University? 

mighi profitably be processed within a transaction by first 

finding the employees in the personnel department who have 

sold more than 100 personal computers and earn more than 

@OK, and then using the temporary to answer both questions. 

This is called the albatross problem by Daniel Sagalowicz, 

who regards it as a stigma borne by many database systems. 

This investigation of the ways in which common expression 

analysis can improve the optimization of collections of database 

requests is part of the Knowledge Based Management Systems 

Project [31] at Stanford and SRI International. Other KBMS 

work studies optimization using semantic rules [18, 191; the 

research described in this paper uses only the structure of the 

requests and of the database. 

A database system may have a repertoire of methods for 

executing requests, including capabilities for accessing 
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relations, performing joins, applying restriction predicates, 

projecting out attributes for results, ordering sets of tuples, 

calculating arithmetic functions, storing temporary relations 

(that is, creating new relations whose contents correspond to 

the results of queries on the original relations), and creating 

new access paths to relations. We do not consider associated 

actions such as parsing, authorization checking, concurrency 

control, and logging. 

Optimization- of database requests specified in a non- 

procedural query language involves resolving issues such as in 

what order relations should be scanned and by what access 

paths, which join methods should be chosen, how and when 

restrictions, projections, and sorting should be applied, when 

new access paths should be created during query processing, 

and when temporary results should be stored. Although many 

papers have addressed the problem of query optimization for 

relational database systems [4,8, 2528, 32,33,34, 361, there 

has been little research on the problem of optimizing collections 

of requests. As systems with non.procedural query languages, 

including relational systems, become more prevalent, analysis 

of this problem will become more important in practice. 

Hall [14, 151 uses PRTV (the Peterlee Relational Test Vehicle 

system) to study techniques for optimizing queries by common 

subexpression identification, where expressions are regarded 

as a lattice. His formal techniques are based on the 

representation of the query as a string of symbols, although 

associativity is considered. A hill-climbing heuristic is 

suggested as a means of finding the best combination of 

common subexpressions. Special attention is paid to 

recognizing subexpressions wifhin a single query. Hail 

-emphasizes the particularly high benefit of recognizing common 

subexpression when queries involve views. Youssefi and 

Wong [35,36] measure the desirability, in INGRES, of building 

temporaries and access structures during query processing. 

The PLAIN system [23] enables the user to create tuple 

identifier lists (called markings), which allows a sufficiently 

industrious user to optimize explicitly. Kim [17] examines ways 

of performing scans for multiple purposes simultaneously. 

Buffer space for temporaries is a critical resource in his 

analysis. Adiba and Lindsay [i] present a methodology for the 

creation and use of database snapshots, which can be thought 

of as stored instances of views. Users explicitly define and 

refresh snapshots, which have particular value in-distributed 

databases. Grant and Minker[lZ, 131 use a depth-first 

algorithm to optimize a collection of conjunctive queries 

presented in a simplified relational calculus. Disjunction is 

handled by converting to disjunctive normal form, and treating 

the disjuncts as separate queries. This approach is applied to 

deductive database systems. Blaauw, Duyvestijn and 

Hartmann [6] transform requests into set expressions, and 

optimize using techniques for circuit minimization in digital 

switching theory to discover common terms. 

We analyze the structure of requests using a formal 

representation called the query graph, which displays queries 

in an intuitive manner, and also facilitates comparison and 

optimization of queries. Based on this representation, we 

present a methodology for inter-query optimization in the ad 

hoc query setting: 

l Ad hoc requests are presented to the system. 
These are arbitrary requests, entered in an arbitrary 
order, by users at their terminals. The system has 
no predictive capabilities, so ad hoc analysis must 

determine when stored results are beneficial. 

We present the abstract foundations, as well as aspects of a 

practical implementation designs, for a system that performs 

common expression analysis in this setting. This system would 

be able to execute the second French ship query (given at the 

beginning of this paper) more efficiently, by using the 

information returned from the first query. (More sophisticated 

cases will also be examined in this paper.) We have 

constructed a Pascal program, COMMON, which demonstrates 

the potential practicality of these concepts. This program has 

been successfully applied to all the examples presented in this 

paper, as well as more complicated examples. 

Elsewhere [lo], we study two other settings as well. 

. A collection of queries will be repeatedly executed 
in a transaction. Because the entire collection is 

available for perusal, and the repeated cost of the 

transaction dominates compilation cost, 

sophisticated analysis is possible. 

. A program is written in a language that permits 

embedded database requests, such as PLISQL 

(PL/I with embedded SOL statements) [3,26]. This 

is optimized, using a combination of code 

optimization techniques and a variation of the 
approach employed in the other two settings. 

The effects of insertions, updates, and deletions are also 

discussed there [lo]. In this paper, only queries are considered. 

In section 2 we define query graphs, and give examples of query 

graphs. We also explain informally, using these graphs, how a 

system might use the answer for one query to compute the 

answer for another. In section 3 we formally define when it 

means for a query to be a subexpression of another, and give an 

algorithm for testing for this. Section 4 is the conclusion. 

2. Query graphs 

In this section, we introduce a notation for queries called the 

query graph. Queries are represented as undirected graphs. 

The nodes correspond to occurrences of relations in the query; 

the edges correspond to joins between the relations in the 

nodes that they connect. There have been many similar 

approaches to structuring queries, including QBE [37], 

tableaux 161, qua1 graphs [7], and the work in many of the 

optimization papers cited in section 1, especially the papers by 

Wong and Youssefi [32,33,36]. 

Welty and Stemple [29] suggest that explicit indications of 

join operations assist the user in writing and understanding 

queries. In that paper, the authors’ human factors studies 

provide evidence that structured introduction and 

presentation of queries is useful. But we feel that they do not 

go far enough; most predicates can be associated with a 

relation in the query, or identified as join predicates. This 

approach is basic to our common expression analysis 

methodology, but it also structures queries for human use. 
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We shall assume that the following relations exist in the 

database, with attributes including those listed. 

Relation Attributes 

People name, employer, age, experience, 

salary, commission, education 
Companies corpname, location, earnings, 

president, business 

Schools schoolname. level 

2.1. Some query graph examples 

These examples represent six queries in SQL [3] and as 

query graphs. (Our implementation actually uses SODA 

queries [16,20], but SODA is not intended as a user interface.) 

We discuss the examples, which we also follow through the 

paper, using standard graph and database terminology in this 

section, and define terms rigorously in the next section. A query 

corresponds to an expression in a query language, and a 

snapshot is the interpretation of a query corresponding to a 

database instance. A temporary is a relation stored in the 

database whose tuples are those in a snapshot. In what follows, 

we assume that there is an arbitrary fixed database instance, 

and that Snapshot 1 and Temporary 1 correspond to Query 1, 

etc. 

the People relation. If there is an index, or some other fast 

access path to the tuples of People, based on experience or 

name, it is possible, and may be worthwhile, to obtain Snapshot 

2 by performing a join between Temporary 1 and the People 

relation, and restricting further. (It is likely that an index exists 

on unique identifiers.) 

Query 3 

SELECT p.name, c.corpname. 
c.location, c.president 

FROM People p. Companies c 
WHERE p.experience >= 10 

AND p.employer = c.corpname 
AND c.location <> ‘Alaska’ 
AND c.earnings > 500K3 

I employer = corpname 

R Companies 

u location <> “Alaska” 
earnings > 500K 

7l corpname, location, president 

Query 1 

SELECT name, experience 
FROM People 
WHERE experience >= 10 

Query 1 is a single node, on the relation People. All people 

with at least 10 years of experience are selected, and the name 

and experience attributes for each are projected. 

QUERY 3 

Query 3 involves two nodes, on two different relations, 

People and Companies. Not only must internal selection 

predicates hold, but the Cartesian product of People and 

Companies is restricted by the join predicate requirement that 

the person’s employer be the company. If Snapshot 1 is 

available, we can join it with the indicated subset of Companies. 

But since the employer field of People was not projected in 

Snapshot 1, this would again involve having to extract values 

from the People relation itself (so Snapshot 1 may not be 

beneficial). 

Query 4 

QUERY 1 

Query 2 

SELECT name, experience 
FROM People 
WHERE experience >= 20 

AND age <= 65 

QUERY 2 SELECT p.name, c.corpname, c.location 
FROM People p. Companies c 
WHERE p.experience >= 20 

AND p.age <= 65 
AND p.employer = c.corpname 
AND p.name = c.president 
AND c.location = ‘NY’ 
AND c.earnings > 500K 

Query 2 is also on the People relation. Snapshot 2 should 

contain only people who have at least 20 years of experience, 

and who also are 65 or younger. It is a subset of Snapshot 1, 

since anyone who satisfies the Query 2 predicates must satisfy 

the weaker conditions for Query 1. (Equivalently, we can 

observe that the selection predicate for Query 2 implies the 

selection predicate for Query 1.) Fortunately, the projected 

attributes are identical, and since experience is projected, we 

can easily test to see whether a person in Snapshot 1 has 20 

years experience. Age, however, is not available in Snapshot 1. 

If we had known about both queries in advance, we could have 

projected age, as well as name and experience, when we 

answered Query 1. (Age would not be displayed as part of the 

answer.) Let us assume that name uniquely identifies tuples of 

Query 4 has two nodes on the same relations as Query 3. 

Moreover, each node of Query 4 can be obtained by restricting 

the corresponding Query 3 node further. Also, the join 

predicate for Query 4 is stronger than that of Query 3. Hence, 

we can restrict Snapshot 3 to obtain Snapshot 4. (Age and 

employer were not projected into Snapshot 3, so joining People 

and Temporary 3 is necessary, if the temporary is to be used. 

However, we need not perform a join with Company, since the 

3 We regard earnings as given in thousands; the use of 5GQK to represent 500 
thousand is not part of SQL, but “earnings > 500” looks meager. Also, the table 

variables p and c may be omitted, but we include them to emphasize the 

associations of attributes with relations. 
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attributes corpname, location, and president are projected into 

Snapshot 3, and the earnings predicate is already known.) 

Query 5 

SELECT p.name, s.schoolname 
FROM People p. Companies c, Schools s 
WHERE p.experience >= 20 

AND p.age <= 65 
AND p.employer = c.corpname 
AND c.location = ‘NY’ 
AND c.earnings > 500K 
AND p.education = s.schoolname 
AND s.level = ‘university’ 

R People 

u experience > = 20 
age<= 65 

57 name 

I employer = corpname 
name = president 

R Companies 

u location = “NY” 
earnings > 500K 

7~ corpname, location 

QUERY 4 

Query 5 has three nodes on different relations. Either 

Snapshot 1 or Snapshot 2 could be used to help obtain 

Snapshot 5, since the People node in Query 5 further restricts 

that of Query 1 and Query 2. Snapshot 2 is probably preferable, 

since Query 2 has the same selection predicates on People that 

Query 5 has. The education and employer attributes are not 

available in either Temporary, so People tuples must still be 

accessed. 

Snapshot 3 has two of the three nodes, and each can be 

restricted further to obtain the conditions in Query 5. Moreover, 

the join predicate between those nodes in Query 5 is a further 

restriction of the join predicate of Query 3 (trivially, since they 

are the same). Hence, we can answer Query 5 by joining 

Temporary 3 with Schools (and with People, since the 

education attribute was not projected). Snapshot 4 cannot be 

used for Query 5, because its join predicate is not implied by the 

join predicate (between People and Companies) in Query 5. 

R Schools 

u level = “university” 

I7 schoolname 

education = schoolname 

R People 

u experience > = 20 
age<: 65 

r name 

employer = corpname 

R Companies 
u location : “NY” 

earnings > 500K 

Query 6 

SELECT p.name, c.corpname. c.location 
FROM People p, Companies c, Companies cl 
WHERE p.experience >= 20 

AND p.age <= 65 
AND p.employer = c.corpname 
AND ( c.location = ‘NY’ 

OR c.location = ‘CA’ ) 
AND c.earnings > 500K 
AND p.name = cl.president 
AND cl.president = ‘Smith’ 
AND cl.business = ‘manufacturing’ 

R Companies 
c president q “Smith”, 

business = “manufacturing” 

name = president 

R People 
(T experience>= 20, 

age<= 65 

VT name 

employer = corpname 

R Companies 

u location = “NY” 
OR location = “CA”, 

earnings > 500K 

7T corpname, location 

QUERY 6 

Query 6 has three nodes, where one relation has two 

occurrences. Nodes must be distinguished from relations, 

since multiple occurrences are possible. Note that there are 

several possible ways in which we can try to match Query 3 and 

Query 4 with Query 6. But node c1 (which has the test on 

company business) is not a further restriction of any node that 

has appeared in an earlier query, so that no match which 

involves cl can succeed. Snapshot 3 is potentially beneficial, 

however, if the c node of Query 6 is matched with the 

Companies node of Query 3. 

Our program, COMMON, detects all of the uses of snapshots 

that are described above. Although our approach enables 

detection of even less obvious cases, we believe that the most 

likely and fruitful case is illustrated by the French ships queries 

that appear in the introduction, where further information was 

requested aft.er the ships were identified. This is also illustrated 

by the further restriction of Temporary 1 to obtain the answer to 

Query 2. 

QUERY 5 
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2.2. Query graph definition 

We assume that a base set of relation schemas has been 

specified, as in the relational model; this is called the database 

schema. Attributes (sometimes called fields or columns) are 

defined for each relation. An attribute consists of a name and a 

domain. Attribute names must be distinct within a relation. If R 

is a relation schema, and A is the name of an attribute of R, we 

write R.A to refer to that attribute, and write A when the relation 

R is clear from context. A relation instance is a set of run/es, 

where each tuple associates each attribute with a value in its 

domain. A database instance associates each relation schema 

in D with a relation instance. As is customary, we often use the 

words relation and database for both schema and instance, 

trusting context to disambiguate. 

For simplicity, assume that the domain for all attributes is the 

integers. The integers have special properties, such as order, 

arithmetic operation and discreteness, but the modifications to 

support other domains are usually straightforward (e.g., limiting 

terms to single attributes or constants). 

A term is a linear sum co + c,A, + c2A, + . + cnAn, where the 

A’s are attributes, and the c’s are integer constants. An atomic 

selection predicate has the form 7, op 7s’ where 7, and 7s are 

terms, and op is one of the comparison operators =, f, <, 5, >, 

2. The selection predicates are the smallest class of predicates 

containing the atomic selection predicates and closed under 

the Boolean operations: NOT, AND, and OR. For example, 

experience t 10 is an atomic selection predicate, and 

experience > 20 AND age 5 65 is a selection predicate. 

A projection set on relation R is a subset of the attributes of 

Ft. The projection set corresponds to the attributes from the 

relation required in the answer; these are sometimes referred to 

as projected, selected, or targeted attributes. In practice, the 

order in which the attributes appear is obviously of importance 

in report generation and other applications. We shall ignore 

this property, since it does not affect our results here. 

Let G be an undirected graph (without self-loops) with nodes 

N and edges E. In a query graph, nodes correspond to 

occurrences of relations in the query (as with appearances in 

the FROM clause in SQL [3], or the RANGE clause in 

QUEL [27]). Node labels give the relation, the internal selection 

criteria, and the attributes requested in the response to the 

query. We identify IJ with the conjunction of its elements. Each 

of the individual conjoined predicates is called a clause. 

Definition 1: A node label is a triple <R,u,n>, where: 

1. R is a relation, referred to as the underlying 

relation of the label, or of the node with which 

the label is associated. 
2. (r is a set of selection predicates in which all 

attributes are in R. (They are referred to as 
the internal or local predicates for the node.) 

3. n is a projection set on R. 

A function NL which associates a node label with 
each node of G is called a node /abelling for G. 

Given G and a node labelling for G, if n, and n2 are (distinct) 

nodes of G which have underlying relations R, and R, 

respectively, a join predicate between n, and n2 has the form 

n,.A, = n2.A2, where A, and A, are attributes (of R, and R,, 

respectively). When the underlying relation identifies the node, 

we write the join predicate as R,.A, = R2.A2. 

Definition 2: Given a node labelling for G, if e is an 
edge of G then an edge label for e has the form 

<n, ,n,,X>, where: 

1. n, and n2 are the nodes connected by the 

edge. 
2. X is a non-empty set of join predicates 

between n, and n2 

A function EL which associates edge labels with 

each edge in E is called a edge labelling. 

All the predicates in labels for nodes and edges are conjoined 

to form the restriction criterion for the query. By associating 

clauses with nodes and edges, rather than regarding the 

predicates as restricting the Cartesian product of the nodes’ 

relations, we separate the restriction criteria in a way that is 

easy to grasp, and also assists analysis of query structure in an 

optimizer or common expression analyzer. Unfortunately, not 

all clauses can be associated with a node, as a selection 

predicate, or with an edge, as a join predicate. For example, 

p.sa/ary k30K OR cearnings > 200K does not fit into the 

framework described so far, nor does p.age = 

p.experience + 20,4 nor does p.salary + d.budget < c.earnings. 

Any selection clause (over the attributes in the underlying 

relations of the nodes of G) which does not qualify as a 

selection predicate (because attributes come from two or more 

nodes), nor as a join predicate (because it does not have the 

right form) is called a global predicate. Since global predicates 

cannot be associated with a node or an edge, they require 

special handling. Requests frequently have empty global 

predicates. 

Definition 3: A query graph is a 4-tuple 

<G,NL,EL,y>, where: 

1. G is an undirected graph (without self-loops). 

2. NL is a node labelling for G. 
3. EL is an edge labelling for G and NL. 

4. y is a set of global predicates for G. 

We shall not always distinguish between queries and 

their query graphs. 

The definitions given above exclude the operations union and 

difference, aggregate functions such as MJN and MAX, and the 

quantifiers SOME (EXISTS) and NONE (which, curiously, is 

more convenient for us than is ALL). Elsewhere [lo], we extend 

the query graph definition to permit these operations, and 

consider a more general class of join predicates. 

As we have already mentioned, a snapshot is the 

interpretation of a query corresponding to a database instance, 

and a temporary is a snapshot stored as a relation in the 

database. 

4 We Consider the possibility of regarding this as a join predicate in [lO]. 
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3. Ad hoc query setting 

When a transaction is known in advance and precompiled, 

access path selection can be performed once, before 

processing. In certain applications, requests are not known in 

advance. These ad hoc requests are unpredictable; it is not, 

however, unreasonable to assume that such requests will 

sometimes resemble each other, with questions becoming more 

detailed based on information returned in previous requests. 

For example, after getting a response, a user might want to 

see more attributes from the relations involved in the question. 

A new request might demand a join of the previous answer to 

another relation. A question might be repeated. An answer 

might have included too much information, and additional 

restrictions might be added. (This may happen when a count of 

items, such as bibliographical references, is returned, and the 

user decides whether or not to see them based on that count.) 

When there is more than one user on the system who is 

interested in a current topic, those users may be asking 

questions that are closely related. In a military application, 

several users might simultaneously be interested in foreign 

ships in a crisis area. In a business application, several users 

might want to know about today’s shipments. In a ticket sales 

application, several users might be interested in the same 

upcoming events. 

We want to find situations in which there are large savings, 

without significantly adding to the cost of normal processing. 

Moreover, we are not assuming any semantic knowledge of the 

contents or sequencing of these ad hoc requests. There may 

exist particular ways of processing requests that produce 

temporaries that will be very useful in the future. But because 

we do not know the future, we simply decide how to process 

each request independently, based on the request and existing 

temporaries. 

3.1. Required capabilities in ad hoc query setting 

The following capabilities are required in a system which uses 

common expression analysis to optimize ad hoc queries. 

1. Creafion of Temporaries 
The system must be able to create and store 

temporary relations, which may correspond to 

answers to previous requests, or to intermediate 
results materialized (that is, physically created) as 
part of the query processing for previous requests. 

A query graph description of the snapshot must 

also be saved, and descriptive information about 
the snapshot should be entered in the system 

catalog (or schema), as a (temporary) relation, so 

that requests can refer to it as they can to the base 

relations. 

Access paths to the temporary (such as indexes) 
might also be created at this time. (Youssefi [35] 
studies creation of auxiliary access paths as a 

strategy for query processing.) 

2. Use of Temporaries 
The system should determine which temporaries 
are potentially beneficial as subexpressions for the 
current request. The query has to be reformulated 

using the snapshot (or perhaps using several 
snapshots), and the system must compare the 
expected costs of the original and the revised 
requests. If the revised form turns out to be less 

expensive to use, the system should execute that 
instead. 

3. Background Support 

The system must maintain a storage discipline for 

temporaries. Since space for temporaries is limited, 
storing a temporary may entail the destruction of 

some other temporary. By attaching a utility value 

to each temporary, based on factors such as the 

temporary’s size, usage frequency, user priority, 
and the complexity of the description of the 

snapshot, the system decides when temporaries 

must be replaced.5 Also, when the base relations 

on which the snapshot is defined are updated, the 

temporary relation must be either updated or 

destroyed, unless users are willing to see answers 
based on obsolete data. 

In the rest of this section, we describe a method, based on 

the query graph formalism, for determining the snapshots 

whose temporaries might be beneficial for processing the 

current query. These auspicious snapshots are sub- 

expressions, in a sense which we formally define below, of the 

current query. 

3.2. Upper bounds 

The common subexpression detection problem in compiler 

optimization of straight-line code for arithmetic expressions is 

well known. Since the associative and distributive laws are false 

on finite precision machines,’ operations are analyzed in a 

canonical form that reflects the commutativity of + and *, The 

problems of finding minimal programs for collections of 

arithmetic expressions, and optimizing program code with 

assignments and branches, have a long history of 

analysis [2,9]. 

In order to explain what it means for one query to be a 

subexpression of another, or for an expression to be a 

subexpression of two queries, we begin by comparing nodes. If 

T and Q are single node queries (with no global predicates), 

what relationship must T and Q have so that we can obtain the 

answer to query Q merely by restricting the answer to query T 

further2 

Definition 4: 

ii% ?f 

If nT = <RT,uT,nT> and no = 
,IJ ,n 

cl 
> are nodes, then nT is an upper bound 

0 

l.RT=Rq,and 

2. u. + IJT’ 

5 More advanced strategies, based on prediction of user’s area of interest 

and slrbsequent requests, are outside the scope of this paper. 

6 Some language standards permit the assumption of associativity. 

7 The term subquery has a standard meaning in [3]. We shall identify queries 

with their expression as query graphs, and speak of subexpressions. 
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For example, Query 1 and Query 2 are both single node 

queries, and Query 1 is an upper bound on Query 2, but not 

conversely. If nT is an upper bound for no, and T is a stored 

temporary for nT, we may be able to use T to obtain the answer 

to the query represented by nc), by further restricting T. Every 

tuple in the original relation that is needed for nQ participates in 

nT. But this is not enough, since some attributes which do not 

appear in nT may be needed to perform the further restriction to 

oQ’ For example, age is not in the projection set for Query 1. 

Moreover, ng may contain attributes not in nT. 

The name attribute in the People relation unique/y identifies 

People tuples, and may be indexed, or accessible using 

hashing. (This is likely, since uniqueness must be guaranteed.) 

Query 2A is the revised query for Query 2, using Temporary 1. 

We must join the temporary to one of its base relations to obtain 

the value of age. This join back to one of the defining relations 

of the temporary is called a back-join. Although Query 2A 

requires a back-join to People, it might be processed more 

quickly than Query 2, especially if Temporary 1 had few tuples. 

Query 4A is the revised query for Query 4, using Temporary 3. It 

requires a back-join to People, but does not require a back-join 

to Companies. The appearance of the join predicate corpname 

= employer is unnecessary, and will be discussed in section 

3.3. 

.I? People 
u experience > q 20 

age<= 65 
a name, experience 

QUERY 2A 

( corpname : employer ) 
president = name 

experience > = 20 

s name, experience 

QUERY 4A 

In general, the expected cost of accessing the required 

tuples, as measured by evaluation formulas [25,30,34] may 

decrease when the system follows a fast access path to the 

tuples of the base relation using attributes in the projection set 

of the temporary. 

If oQ + ITT, where cQ and IJ~ are sets of clauses, then aQ/uT 

denotes the clauses in oQ that are not implied by uT. Hence, 

oQ =(uT AND aQ/uT), and aQ/uT is the minimal subset of u. 

which has the property that AND’ing it with uT yields (the 

equivalent of) uQ. Further restriction of J by any subset of u. 

having this property would allow us lo get the answer to 0; we 

shall take advantage of that in section 3.4, since we do not 

perform complete theorem proving. 

Let AJJR/BS(a) represent the attributes which appear in 

predicates a. 

Definition 5: If nT = <R,,u,,n,> and no = 

<RQ,uO,nQ> are nodes, then nT is an effective upper 

bound for nQ if nT is an upper bound for nQ, and 

either 

1. nT > A JJRIBS(U~/U~), and nT > nQ, or 

2. nT includes both a unique identifier for R, 

and a fast access path to R,. 

Definition 6: If nT is an effective upper bound for 

no, then the revised query for nQ using a temporary T 

corresponding to nT is defined based on whether the 

first or the second case of Definition 5 applies. 

If the first applies, the revised query has one node, 

<T,ug/uT,nQ>. 

If the second applies, the revised query has two 
nodes, <T,JRUE,0> and <RQ,uQ/uT,nQ>, with a join 
predicate (which is the back-join referred to above) 

equating the unique identifier (which must appear in 

both nodes) to itself. 

Note that the definition above does not mention the fast 

access path; that qualification is required as a (very good) 

heuristic, to eliminate inefficient revised queries from 

consideration. We rely on the optimizer to choose the fasi 

access path, when the revised query is submitted, as well as to 

furnish the costs of the original and revised query. This 

approach is also used in the physical database design tool 

DBDSGN [ll]. Definition 5 is imprecise (we prefer to say 

system-dependent), since the meaning of fast depends heavily 

on the capabilities of the system, and on the evaluation formulas 

applied by the optimizer procedure. We shall not be more 

precise, preferring to regard the optimizer as a black box which 

delivers predictions. Its judgments decide how queries are 

actually processed. Both the original and the revised query 

must be submitted for evaluation, and the version with the 

smallest expected cost should be executed. 

3.3. Subexpressions 

When one node is an effective upper bound on another, we 

can define a revised query, which may have a lower processing 

cost. We now generalize this to testing whether a temporary T 

(which has t nodes) may be useful for processing a new query Q 

(which has q nodes). Assume that there is a particular mapping 

from the nodes of T to the nodes of Q. (Many mappings may be 

possible, but underlying relations of mapped nodes must be the 

same, as in the previous section.) The node mapping must be 

one-to-one, but ,it need not be onto, since there may be 

additional nodes in Q that are not in T. Hence t 5 q. We assume 

that the nodes of 0 and T are numbered, where Qi and Ti 

correspond for i= 1,2, . . . . t. Xi is the edge label (set of join 

predicates) for the edge between Ti and Ti, and similarly for ,X7. 

(When there is no edge, we have the empty set of loln. 
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predicates, which is trivially TRUE.) We identify mapped nodes 

from T with the corresponding nodes in Q. If ag and ar are sets 

of predicates for Q and T, which may involve multiple nodes, 

and ao -B QT, then aq/aT may be defined as in the previous 

section, since a mapping between nodes which preserves 

underlying relations has been specified. 

In a query, there are join predicates and global predicates, as 

well as local predicates. We need to further restrict the 

predicates of T to obtain Q. Hence we need a variation of 

another definition of the previous section. 

Definition 7: If a’0 7 ar, then T enables further 

restricting of + to CI~ If for any node Ok mentioned 

in ao, either 

I. V: > the attributes in ATTRIBS(ae/ar) that 
come from node Qk’s relation appearance, or 

2. .rr: includes both a unique identifier for H, 

and a fast access path to R,. 

Whenever X:/Xi is non-empty, it appears as (part 

of) an edge label in Q’, between the nodes of 0’ 
corresponding to i and j.* All edges involving a node 

Ok, where k > t, must appear in the revised query. 

The global predicate for the revised query is y&r 

There are many ways to implement the concepts embodied in 

the above definition. Which way is best depends on how much 

of the system’s resources can be devoted to common 

expression analysis. We shall outline one concrete realization 

of these concepts, most of which is embodied in a program. 

COMMON, which detects common expressions and produces 

revised queries corresponding to them. 

3.4. Algorithm for ad hoc query setting 

Practical considerations (we wish to avoid the execution time 

burden of a general purpose theorem prover) prevent us from 

solving the decision problem for: 

When the first alternative does not hold and the 

second one does, the revised query for 0 using T Will 
require a back-join to Q,, since attributes of Q, 

which are not in T, are required. Note that the 
definition of effective upper bound, in the previous 
section, ensures that T enables further restricting of 

UT to UQ’ and may also cause back-joins in the 

revised query. 

Definition 8: T is a subexpression of query Q if 

there are node orderings: 

T,, T,, . . . , T, for T, 

Q,, Q,, . . . , Q, for Q, 

where t 3 q, and: 

1, Nodes: T, is an effective upper bound for Q,, 

for k= 1, 2, . . . , t. 

2. Edges: X!? + XT, and T enables further 

restricting gf Xi td’ Xy, for i = 1,2, . . . , t, and 

j=1,2 ,..., 9. 

3. Global: y 

7 
+ yr, and T enables further 

restricting 0 yr to yg 

Definition 9: If T is a subexpression for Q (using 

the node mapping given in the previous definition), 
the revised query Q’ for Q using T is defined as 
follows. 

All nodes 0, of Q that require back-joins (on the 

basis of local, join or global predicates) are in Q’. 
The relation and projection set are as they are in 
Q. The local predicates for Q’ are those in o:/e:. 

All nodes Q, of Q that do not require back-joins 

correspond to the same special new node in Q’. The 

relation for that node is T. The local predicates for 
that node are the union of (T:/IJ: for all such k. The 
projection set for that node is the union of r: for all 

such k. 

All nodes Q,, where k > t, appear in Q’ just as they 

are in T. 

(I -*UT 
Q 

completely, in the sense that we answer affirmatively only when 

the implication is valid, but we respond negatively for some valid 

statements. This is acceptable. Although some optimizations 

escape us, all the subexpressions which we do detect correctly 

support transformation of queries. 

lhus we do not test whether the conjunction of all the 

predicates in the query necessarily implies the conjunction of all 

the predicates in the temporary. Instead, we perform a weaker 

test based on the query graph structure, and might speak of 

formal implication, rather than implication. The details of this 

test appear (implicitly) in the algorithm later in this section. 

However, with the understanding that we do perform this 

weaker test, we shall continue to use terms from the previous 

sections, such as upper bound and subexpression, without 

prefacing them with the adjective “formal.” 

The steps in our algorithm, each of which is described in 

detail below, are Normalization (organize query and create 

query graph), Signature (efficiently reject most temporaries that 

cannot be used), Propagation (movement of predicates to 

detect additional subexpression possibilities, and join predicate 

checking), Matching (map temporary nodes to query nodes), 

Direct Elimination (detecting clauses that are trivially implied), 

Connected Components (partitioning implication problem into 

independent subproblems), Resolution (more general 

implication proving), Global predicates testing, Revised query 

generation, and Cost comparison (between alternatives). 

INPUT: Query graphs for a query and a set of temporaries. 

PROBLEM: Decide whether or not some temporary is a 

subexpression of the query. For each such temporary, find the 

cost of the revised form of the query using the temporary, so 

that the version of the query with the least expected cost is 

chosen for execution. 

8 
The predicate corppname = employer of Query 4A is not required, since it is 

a join predicate for Query 3. It may. however. provide a useful access path in 

processing Query 4A. If it does not. it should be eliminated. 
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Step 1: Normalization. NOT is eliminated using De 

Morgan’s laws. The clauses of the query are identified as local, 

join or global predicates, and they are expressed in the normal 

form for selection predicates, with terms as linear sums. Other 

simplifications to reduce work in later steps include elimination 

of > and >- (since < and 5 always suffice), and elimination of < 

(replacing a < b with a + 1 s b, using the discreteness of the 

integers). 

Step 2: Signature. Since we want to reject most 

temporaries quickly, we associate a signature with each 

temporary. The signature indicates which relations appear in 

the temporary, and which attributes must appear in any query 

that can use the temporary. For example, any attribute which 

appears in a clause of the temporary’s definition that does not 

contain OR must appear in any query that can use the 

temporary. The temporary will be considered further only if all 

the relations and attributes mentioned in its signature also 

appear in the query. A hashed representation of the 

temporary’s signature, stored with the temporary, allows us to 

quickly compare it with a similarly hashed representation of all 

the relations and attributes that appear in the query. 

Most of the time, irrelevant temporaries will be quickly 

discarded in this step. Subsequent steps will catch other 

temporaries that cannot be used. 

For example, Temporary 5 cannot be used for Query 6 

because the Schools relation does not appear in Query 6, and 

Temporary 2 cannot be used for Query 3, because the age 

attribute does not appear in Query 3. 

Step 3: Propagate query’s predicates. This step has to 

be performed only once for each query, no matter how many 

temporaries are compared with it. Since we want to show that 

the query’s predicates imply the temporary’s predicates, we try 

to build up all the information that we can about the query’s 

restriction. If a clause appears as a local predicate for a node of 

the query, and some edge from that node has all the attributes 

that appear in the clause in its label, propagate that clause to 

the other side of the edge (replacing attributes according to the 

equijoin specified in the edge label). For example, in Query 6, 

the clause cl.president = ‘Smith’ propagates to node p as 

p.name = ‘Smith’. 

Similarly edges may “propagate across edges.” For 

example, if a = b and b = c label edges, we would generate 

a = c. No other interaction takes place across edges. As a 

byproduct of this process, the join predicates of the query are 

enhanced with other information describing equality of 

attributes (and constants) -an equivalence class. We check 

that the enhanced join predicates labelling edges of the query 

imply the labels on corresponding edges (that is, the edges 

between corresponding nodes) of the temporary. If not, the 

temporary is deemed unusable. 

Step 4: Match query to temporary. For the temporary to 

be a subexpression of the query, there must be node orderings 

for the temporary and the query that demonstrate this. Perform 

Steps 5 to 10 for each different ordering that matches 

underlying relations. There may be exponentially many 

matches possible (if many nodes are on the same relation), but 

in practice the number of matches to consider is small. 

Step 5: Direct elimination. Steps 5, 6, and 7 are 

performed to compare the u’s in corresponding nodes of the 

temporary and the query. In the direct elimination step, we find 

and eliminate clauses of the temporary that are implied by a 

clause in the corresponding node of the query. The direct 

elimination table in the Appendix gives the conditions for this 

elimination among atomic predicates; this can also be 

generalized to selection predicates involving AND and OR. 

For example, if p.salary < 10K appears in the query, we can 

eliminate p.salary < 20K from the temporary. Other examples 

given in the Appendix show that clauses involving multiple 

attributes, and even non-atomic clauses, can be eliminated from 

the temporary by direct elimination. This simple table-driven 

test often reduces the number of predicates in the temporary 

significantly. Note that the elimination is just for the purposes of 

testing implication; we do not alter the expression for the 

temporary itself. 

Direct elimination tests for implication using the structure of 

the selection predicates. To test if Temporary 3 can be used for 

Query 4, using the obvious matching between nodes, we find 

that each of the predicates in Temporary 3 is directly eliminated 

by a predicate in Query 4. Hence steps 6 and 7 are 

unnecessary, since direct elimination demonstrates the 

implication. A rudimentary implementation of our approach 

could omit steps 3, 6, and 7. (The implementation of the 

program COMMON includes step 3, but does not include steps 

6 and 7.) 

Step 6: Connected components. A predicate that does 

not involve that attribute age cannot help in implying a predicate 

that does mention age, unless there is some way of 

“connecting” its predicates with age. For example experience 

2 70 does imply age .$6.5 OR experience t 10. This suggests a 

way of breaking the implication problem into smaller 

subproblems, or perhaps deciding immediately that implication 

is impossible. 

For each corresponding pair of nodes in the query and the 

temporary, define an attribute connection graph. The vertices 

of this graph correspond to the attributes that appear in the 

query or the temporary, annotated with the number of the nodes 

(in the node ordering) in which they appear. We do not 

distinguish whether they come from the temporary or the query. 

Connect these vertices if they appear together in some clause 

of either the temporary or the query. Attributes which appear in 

different connected components of the attribute connection 

graph cannot influence each other. Step 7 can be performed 

independently for each connected component. If some 

component consists entirely of attributes that do not appear in 

the query, then we can immediately reject use of the temporary. 

Step 7: Resolution. We have reduced testing requirements 

considerably in steps 5 and 6, but will still refer to the remaining 

clauses (in one component, for one node) as up and uT. 

Testing whether uQ --) uT is equivalent to determining whether 

(u. AND NOT uT) is unsatisfiable. We may apply a variation of 

the Fourier-Motzkin elimination method for checking 

infeasibility of conjunctions of linear inequalities (over the 

integers). This algorithm is described and analyzed by 

C. G. Nelson [21] under the assumption of two attributes Per 

clause. Disjunction is handled by showing infeasibility no 
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matter which disjunct is chosen. The algorithm resembles 

resolution, in that each pair of linear forms which provide an 

upper bound and a lower bound for the value of some attribute 

are combined, eliminating that attribute and relating the lower 

and upper bounds. The resulting clauses are satisfiable if and 

only if the original clauses were satisfiable. 

Rosenkrantz and Hunt [24] show that the satisfiability 

problem is NP-hard when f (which produces a disjunction of 

linear inequalities) is permitted, even if comparisons involve no 

more than 2 attributes. In practice, however, step 7 will usually 

be fast, because the number of clauses to examine has been 

reduced in earlier steps. 

For example, 

(a 2 b AND b ? c) + a t c 

will be verified very quickly. Heuristic cut-off rules such as: 

l Never produce a resolvent with more attributes than 
the maximum number in the clauses resolved. 

. Limit the total number of resolvents produced, 
giving up on the temporary if unsatisfiability hasn’t 

been shown in a limited time. 

are desirable, since we seek fast detection of obvious 

consequences, rather than completeness. 

A variation of the simplex algorithm, as described by 

Nelson [22], is also suitable for this problem. 

Step 8: Global predicates. We expect that global 

predicates occur infrequently. To test whether yQ + yT, we see 

whether each clause of yT is implied by some clause of yq. 

Although more complicated strategies may be attempted, we 

prefer to optimize for the simpler, more frequent cases, because 

global predicates are hard to deal with. Temporaries with 

complicated global predicates should have low probabilities of 

being stored. It is reasonable to perform this step early in the 

processing, immediately after step 2 (node matching) to allow 

fast rejection when the global predicate of the temporary is not 

implied by that of the query. 

Step 9: Bevise query. We described query revision in the 

section 3.3, and showed two examples of revised queries. Node 

matches that require back-joins can be rejected as soon as the 

need for the back-join is detected, if the unique identifier and 

fast access path required for the back join are not in the 

projection set of the temporary. 

Step 10: Compare costs. If the cost of execution has been 

estimated for the original query, and all the revised queries, as 

well as for revisions using more than one temporary (where the 

temporaries cover disjoint parts of the query), then we can 

choose the version which has the smallest expected cost, and 

execute it. 

An optimization system configured for common expression 

analysis might recognize that many of the values calculated 

during optimization of the original query will also be valuable 

during optimization of revisions of the query. The query graph 

lends itself to annotation with values such as filter factors for 

selection predicates and join predicates, best access paths to 

nodes, and descriptions of plans for query processing. 

4. Conclusion 

In this paper, we have presented the query graph 

representation, and described how it can be used for 

optimization of a sequence of ad hoc queries using common 

subexpression analysis. 

The query graph representation organizes a query 

description so that many aspects of the query’s structure are 

apparent. Unlike the representations of most query languages, 

which display all predicates together, the query graph 

associates clauses with nodes (relation occurrences) and edges 

(joins), whenever possible. This has advantages for entry and 

display of queries, as well as for internal representation. 

For processing a stream of ad hoc queries, the query graph 

enables us to recognize providentially available temporaries 

which were stored during processing of previous requests. We 

provide an abstract framework and a concrete algorithm for 

exploiting these temporaries. 

We also examine [lo] more general queries, and the effects 

of updates. For batches of requests in a transaction, and 

requests embedded in a programming language, we show how 

the same concepts can be applied when we have complete 

information about the operations to be performed. 

We have implemented a Pascal program, COMMON, which 

can detect temporaries that may be useful for processing a new 

query in the ad hoc context, and which can formulate the 

revised query for such temporaries. The time for performing 

these functions for the six example queries presented in this 

paper range from 7 milliseconds (to decide that a query could 

not be used, on the basis of signature) up to 45 milliseconds (to 

decide that Query 6 could use Temporary 1). This includes 

neither optimization. nor any form of cost estimation. 

Considerably more time is required to read (and normalize) 

queries. It is also clear that common expression analysis can 

yield large savings. We believe that as the use of relational 

databases systems becomes common, tools for processing 

applications will become more accepted and important. 
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Table 1: Direct elimination table 



Let 7 opo v. be a clause in the query, and let 7 op, vT be a 

clause in the temporary, where vQ and vT are constants. We 

want to decide if the former directly eliminates the latter. Look 

at the row of Table 1 for opo.’ Look at the column of Table 1 

corresponding to the result of comparing vQ with vT. The entry 

in the Table gives the strongest condition that we can have for 

opT which permits direct elimination. [If the entry is < or =, then 

opT could be the weaker <; the dual statement for ?I is also true.] 

N means that elimination cannot be performed in this case. 

For example, if p.sa/ary < 10K appears in the query, we can 

eliminate p.sa/ary < 2OK from the temporary, since the entry for 

row < and column < is <. The clause psalary < 20K could also 

be eliminated. If p.safary = p.commission + 500 appears in the 

query, we can eliminate p.sa/ary > p.commission + 300 from the 

temporary. A clause in the temporary which is a disjunction 

may be eliminated if there is a clause in the query such that 

every disjunct in the temporary clause is implied by a disjunct in 

the query clause. For example, if p.salary s 20K 

OR p.sa/ary 2 60K is in the query, it can eliminate psalary < 70K 

OR psalary > 80K. A recursive definition of direct implication 

allowing arbitrary nestings of conjunction and disjunction is left 

to the reader. 
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