COLLOQUIUM MATHEMATICUM

VOL. LXIII

1992

FASC. 1

COMMON EXTENSION OF A FAMILY OF GROUP-VALUED, FINITELY ADDITIVE MEASURES

BY

K. P. S. BHASKARA RAO (BANGALORE) AND R. M. SHORTT (MIDDLETOWN, CONNECTICUT)

We deal with the problem of finding common extensions of finitely additive measures ("charges") taking values in a group G. All groups will be assumed Abelian, and the usual additive notation for Abelian groups will be employed. Let X be a non-empty set and let \mathcal{A} be a field of subsets of X. A function $\mu : \mathcal{A} \to G$ is a (*G*-valued) charge if $\mu(\emptyset) = 0$ and $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$ whenever A_1 and A_2 are disjoint sets in \mathcal{A} .

Now suppose that \mathcal{A} and \mathcal{B} are fields of subsets of X and that $\mu : \mathcal{A} \to G$ and $\nu : \mathcal{B} \to G$ are G-valued charges. We say that μ and ν are *consistent* if $\mu(C) = \nu(C)$ whenever $C \in \mathcal{A} \cap \mathcal{B}$. It is natural to ask when two such consistent charges have a common extension, i.e. a charge ρ such that $\rho(A) =$ $\mu(A)$ if $A \in \mathcal{A}$ and $\rho(B) = \nu(B)$ if $B \in \mathcal{B}$. The charge ρ is to be defined on $\mathcal{A} \lor \mathcal{B}$, the field generated by $\mathcal{A} \cup \mathcal{B}$.

Say that a group G has the 2-*extension property* if every pair of consistent G-valued charges has a common extension. The following result is to be found in [1] and [3].

THEOREM 1. A group has the 2-extension property if and only if it is a cotorsion group.

A group G is said to be *cotorsion* if it is the homomorphic image of an algebraically compact group. Every divisible group (e.g. \mathbb{R}) is cotorsion. For information about these matters, see [2]. It is tempting to try an extension of this result in a naïve way. However, one might consider the following.

EXAMPLE. Put $X = \{x, y, z\}$ and let \mathcal{A} be the field with atoms $\{x\}$ and $\{y, z\}$; let \mathcal{B} be the field with atoms $\{y\}$ and $\{x, z\}$; let \mathcal{C} be the field with atoms $\{z\}$ and $\{x, y\}$. Define real-valued charges μ, ν, τ on $\mathcal{A}, \mathcal{B}, \mathcal{C}$, respectively, so that

$$\begin{split} \mu\{x\} &= 1\,, \qquad \nu\{y\} = 1\,, \qquad \tau\{z\} = 1\,, \\ \mu\{y,z\} &= 0\,, \qquad \nu\{x,z\} = 0\,, \qquad \tau\{x,y\} = 0\,. \end{split}$$

Then the charges μ, ν, τ are *pairwise* consistent, but they have no common extension $\varrho : \mathcal{A} \vee \mathcal{B} \vee \mathcal{C} \to \mathbb{R}$.

The example illustrates the need for a stronger form of consistency in the case of more than two charges. Given a field \mathcal{A} of subsets of X, let $S(\mathcal{A})$ be the set of all bounded functions $f: X \to \mathbb{Z}$ such that $f^{-1}(n) \in \mathcal{A}$ for each $n \in \mathbb{Z}$. We see that $S(\mathcal{A})$ is a group under pointwise addition of functions. Let $\mu : \mathcal{A} \to G$ be a charge. Given $A \in \mathcal{A}$, let I_A be its indicator function. Then the mapping $I_A \to \mu(A)$ extends uniquely to a homomorphism from $S(\mathcal{A})$ to G. The value of this homomorphism at $f \in S(\mathcal{A})$ will be denoted by $\int f d\mu$, the integral of f with respect to μ . Given fields $\mathcal{A}_1, \ldots, \mathcal{A}_k$ on a set X, we say that charges $\mu_1 : \mathcal{A}_1 \to G, \dots, \mu_k : \mathcal{A}_k \to G$ are consistent if whenever $f_1 \in S(\mathcal{A}_1), \ldots, f_k \in S(\mathcal{A}_k)$ are such that $f_1 + \ldots + f_k = 0$, then $\int f_1 d\mu_1 + \ldots + \int f_k d\mu_k = 0$. Clearly, consistency of the charges μ_1, \ldots, μ_k is a condition necessary for the existence of a common extension $\varrho: \mathcal{A}_1 \vee \ldots \vee \mathcal{A}_k \to G$. For k = 2, it is not hard to verify that this definition of consistency agrees with the one given earlier. Say that a group G has the k-extension property if every set of k consistent charges μ_1, \ldots, μ_k has a common extension $\rho: \mathcal{A}_1 \vee \ldots \vee \mathcal{A}_k \to G$. Obviously, the (k+1)-extension property implies the k-extension property for each k.

THEOREM 2. Let G be an Abelian group. The following conditions are equivalent:

- 1) G has the k-extension property for each k;
- 2) G has the 3-extension property;
- 3) G is divisible.

Proof. The implication $1\Rightarrow 2$ is obvious. We demonstrate $2\Rightarrow 3$ by an induction argument. Assuming that G has the 3-extension property, we show that divisibility of every element of G by n-1 implies divisibility by n. (Note that divisibility by 1 is trivial in any group.) Take $X = \{u(i, j) : i =$ $1, 2; j = 1, ..., n\}$, a set of 2n elements. On X, we define fields \mathcal{A} , \mathcal{B} and \mathcal{C} . The field \mathcal{A} has n atoms, each of the form $\{u(1, j), u(2, j)\}$ (j = 1, ..., n); the field \mathcal{B} has 2 atoms, of the form $\{u(i, 1), u(i, 2), ..., u(i, n)\}$ (i = 1, 2); the field \mathcal{C} has n atoms: n-1 of these are of the form $\{u(1, j), u(2, j-1)\}$ (j = 2, ..., n), and the remaining atom is $\{u(1, 1), u(2, n)\}$.

CLAIM 1. The only functions in $(S(\mathcal{A}) + S(\mathcal{B})) \cap S(\mathcal{C})$ are constant.

Proof of claim. Suppose that for $f \in S(\mathcal{A})$ and $g \in S(\mathcal{B})$, the function h = f + g belongs to $S(\mathcal{C})$. Fix *i* with $1 \le i \le n - 1$. Then

$$g(u(2,i)) - g(u(1,i)) = h(u(2,i)) - h(u(1,i)) = h(u(1,i+1)) - h(u(1,i))$$

= $f(u(1,i+1)) - f(u(1,i))$,

and

$$g(u(2,n)) - g(u(1,n)) = h(u(2,n)) - h(u(1,n)) = h(u(1,1)) - h(u(1,n))$$

= $f(u(1,1)) - f(u(1,n))$.

Since the quantity g(u(2,i)) - g(u(1,i)) is constant, i.e. independent of i, we see that f is a constant function. Thus $g \in S(\mathcal{B}) \cap S(\mathcal{C})$ is constant as well.

CLAIM 2. A trio of charges $\mu : \mathcal{A} \to G, \nu : \mathcal{B} \to G, \tau : \mathcal{C} \to G$ is consistent so long as $\mu(X) = \nu(X) = \tau(X)$.

Proof of claim. Suppose that f + g + h = 0 for $f \in S(\mathcal{A}), g \in S(\mathcal{B}), h \in S(\mathcal{C})$. Claim 1 and its proof imply that f, g, h are constant. Then $\int f d\mu + \int g d\nu + \int h d\tau = 0$, establishing the claim.

Given $a \in G$, use divisibility by n-1 to write a = (n-1)b for some $b \in G$. Define G-valued charges μ, ν, τ on $\mathcal{A}, \mathcal{B}, \mathcal{C}$, respectively, as follows. For $j = 1, \ldots, n-1$, put $\mu(\{u(1, j), u(2, j)\}) = b$ and set $\mu(\{u(1, n), u(2, n)\}) = 0$. Let $\nu(\{u(i, 1), \ldots, u(i, n)\})$ have the value (n-1)b for i = 1 and the value 0 for i = 2. For $j = 2, \ldots, n$, put $\tau(\{u(1, j), u(2, j - 1)\}) = b$ and set $\tau(\{u(1, 1), u(2, n)\}) = 0$. Then $\mu(X) = \nu(X) = \tau(X) = (n-1)b = a$, so that (Claim 2) μ, ν, τ are consistent. If G has the 3-extension property, then these charges have a common extension to a charge $\rho : \mathcal{A} \vee \mathcal{B} \vee \mathcal{C} \to G$. An elementary computation shows that $x = \rho(u(1, j))$ is independent of j. Summing over j yields nx = (n-1)b = a. So we see that each $a \in G$ is divisible by n, as desired.

The implication $3 \Rightarrow 1$ is easy, since any homomorphism into a divisible group can be extended. In particular, if $\mu_i : \mathcal{A} \to G$ (i = 1, ..., k) are consistent charges on fields \mathcal{A}_i over a set X, then the homomorphism

$$f_1 + \ldots + f_k \rightarrow \int f_1 d\mu_1 + \ldots + \int f_k d\mu_k$$

from $S(\mathcal{A}_1) + \ldots + S(\mathcal{A}_k)$ to G extends to a homomorphism from $S(\mathcal{A}_1 \vee \ldots \vee \mathcal{A}_k)$ to G. Defining $\varrho(A)$ to be the value of this homomorphism at I_A yields the desired extended charge.

REFERENCES

- [1] K. P. S. Bhaskara Rao and R. M. Shortt, *Group-valued charges: common ex*tensions and the infinite Chinese remainder property, Proc. Amer. Math. Soc., to appear.
- [2] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York 1970.

[3] K. M. Rangaswamy and J. D. Reid, Common extensions of finitely additive measures and a characterization of cotorsion Abelian groups, preprint.

INDIAN STATISTICAL INSTITUTE BANGALORE CENTER 8TH MILE, MYSORE ROAD R.V. COLLEGE POST BANGALORE 560059, INDIA DEPARTMENT OF MATHEMATICS WESLEYAN UNIVERSITY MIDDLETOWN, CONNECTICUT 06457-6035 U.S.A.

Reçu par la Rédaction le 8.11.1990

88