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ABSTRACT

In this paper we present a novel source separation method aiming

to overcome the difficulty of modelling non-stationary signals. The

method can be applied to mixtures of musical instruments with fre-

quency and/or amplitude modulation, e.g. typically caused by vi-

brato. It is based on a signal representation that divides the complex

spectrogram into a grid of patches of arbitrary size. These complex

patches are then processed by a two-dimensional discrete Fourier

transform, forming a tensor representation which reveals spectral

and temporal modulation textures. Our representation can be seen

as an alternative to modulation transforms computed on magnitude

spectrograms. An adapted factorization model allows to decompose

different time-varying harmonic sources based on their particular

common modulation profile: hence the name Common Fate Model.

The method is evaluated on musical instrument mixtures playing the

same fundamental frequency (unison), showing improvement over

other state-of-the-art methods.

Index Terms— Sound source separation, Common Fate Model,

Non-Negative tensor factorization.

1. INTRODUCTION

Sound source separation continues to be a very active field of re-

search [1] with a variety of applications. Many recent contributions

are based on the popular non-negative matrix factorization (NMF).

The way NMF factorizes a spectrogram matrix into frequency and

activation templates makes it possible to easily design algorithms

in an intuitive way. At the same time, it provides a rank reduc-

tion, needed to decompose mixtures into their source components.

In the past, many NMF-based source separation methods have been

developed [2–4]. Expanding the NMF to tensors allows to incorpo-

rate more complex models, useful in many applications like multi-

channel separation. Extensions to NMF such as shift-invariance or

convolutions were carried over to non-negative tensor (NTF) based

algorithms [5–9]. These approaches, relying on decomposing mix-

tures of musical instruments, work well when certain assumptions

hold to be true. One is that spectral harmonics only partially over-

lap. However, when two sources share the same fundamental fre-

quency, almost all partials do overlap, making it difficult for NMF-

based algorithms to learn unique templates. Another assumption is

that all spectral and temporal templates semantically correspond to

musical notes, forming a dictionary of musically meaningful atoms.

This does not hold for instruments with time-varying fluctuations.
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This work was partly supported by the research programmes EDi-
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01) funded by ANR, the French State agency for research.

These effects can typically be found in musical instruments like

strings and brass, when played with vibrato. In a setting where

two musical instruments with vibrato play in unison, both assump-

tions could break, which makes it a challenging scenario [10]. When

processing such mixtures with a representation based on a standard

NMF and the magnitude spectrogram, it is hard to model the sources

with only a few spectral templates. Instead of increasing the num-

ber of templates per source, Hennequin proposes [11] frequency-

dependent activation matrices by using a source/filter-based model.

Since the vibrato does not only cause frequency modulation (FM)

but also amplitude modulation (AM), so-called modulation spectra

can be used to identify the modulation pattern. This is often cal-

culated by taking the Fourier transform of a magnitude spectrum.

Thus, the modulation spectrogram has already gathered much atten-

tion in speech recognition [12,13] and classification [14,15]. Barker

and Virtanen [16] were the first to propose a modulation tensor rep-

resentation for single channel source separation. This allows to el-

egantly apply factorization on the tensor by using the well known

PARAFAC/CANDECOMP (CP) decomposition.

In this work we introduce a novel tensor signal representation

which additionally exploits similarities in the frequency direction.

We can therefore make use of dependencies between modulations of

neighbouring bins. This is similar to the recently proposed High-

Resolution Nonnegative Matrix Factorization model that accounts

for dependencies in the time-frequency plane (HR-NMF [17]). In

short, HR-NMF models each complex entry of a time-frequency

transform of an audio signal as a linear combination of its neigh-

bours, enabling the modelling of damped sinusoids, along with an

independent innovation. This model was generalized to multichan-

nel mixtures in [18, 19] and was shown to provide considerably bet-

ter oracle performance for source separation than alternative models

in [20]. Indeed, even though some variational approximations were

introduced in [21] to strongly reduce their complexity, those algo-

rithms are often demanding for practical applications. In this paper,

we propose to relax some assumptions of HR-NMF in the interest

of simplifying the estimation procedure. The core idea is to divide

the complex spectrogram into modulation patches in order to group

common modulation in time and frequency direction. We call this

the Common Fate Model (CFM), borrowing from the Gestalt theory,

which describes how human perception merges objects that move

together over time. Bregman [22] described the Common Fate the-

ory for auditory scene analysis as the ability to group sound objects

based on their common motion over time, as occurs with frequency

modulations of harmonic partials. As outlined by Bregman, the hu-

man ability to detect and group sound sources by small differences in

FM and AM is outstanding. Also, it turns out that humans are espe-

cially sensitive to modulation frequencies around 5 Hz, which is the

typical vibrato frequency that many musicians produce naturally.



2. COMMON FATE MODELLING

2.1. The Common Fate Transform

Let x̃ denote a single channel audio signal. Its Short-Term Fourier

Transform (STFT) is computed by splitting it into overlapping

frames, and then taking the discrete Fourier transform (DFT) of each

one1. The resulting information is gathered into an Nω ×Nτ matrix

written X , where Nω is the number of frequency bands and Nτ the

total number of frames. In this study, we will consider the properties

of another object, built from X , which we call the Common Fate

Transform (CFT). It is constructed as illustrated in Figure 1. We

split the STFT X into overlapping rectangular Na × Nb patches,

regularly spaced over both time and frequency. Then, the 2D-DFT

of each patch is computed2. This yields an Na × Nb × Nf × Nt

tensor we write x, where Nf and Nt are the vertical and horizontal

positions for the patches, respectively.

As can be seen, the CFT is basically a further short-term 2D-

DFT taken over the standard STFT X . One of the main differences

compared to modulation spectrograms is that the CFT is computed

using the complex STFT X , and not a magnitude representation such

as |X|. As we will show, this simple difference has many interesting

consequences, notably that the CFT is invertible: the original wave-

form x̃ can be exactly recovered by cascading two classical overlap-

add procedures. Another difference is that the patches span several

frequency bins, i.e. we may have Na > 1. This contrasts with the

conventional modulation spectrogram, that is usually defined using

one frequency band only.

2.2. A Probabilistic Model for the CFT

When processing an audio signal x̃ for source separation, it is very

common to assume that all time-frequency (TF) bins of its STFT are

independent [23–26]. This is often the consequence of two different

assumptions. The first one is to consider that all frames are inde-

pendent, thus leading to the independence of all entries of the STFT

that do not belong to the same column. The second one is related to

the notion of stationarity: roughly speaking, the Fourier transform

is known to decompose stationary signals into independent compo-

nents, whether these signals be Gaussian (see, e.g. [26]) or, more

generally, harmonisable α-stable [27]. As a consequence, when the

signals are assumed to be locally stationary, it is theoretically sound

to assume that all the entries of their STFT are independent.

Still, both assumptions can only be considered as approxima-

tions. First, adjacent frames are obviously not independent, notably

because of the overlap between them. Second, the stationarity as-

sumption is only approximate in practice, especially when impul-

sive elements are found in the audio, leading to strong dependen-

cies among the different frequency bins. Let {Xft}f,t denote all the

Na×Nb patches taken on the STFT to compute the CFT, as depicted

in Figure 1. The probabilistic model we choose is the combination of

four different assumptions made on the distribution of these patches.

1. All patches are independent. Just as the classical locally station-

ary model [26] assumes independence of overlapping frames, we

assume here independence of overlapping patches. Due to the over-

lap between them, this assumption is an approximation, and one may

1Since the waveform x̃ is real, the Fourier transform of each frame is
Hermitian. In the following, we assume that the redundant information has
been discarded to yield the STFT.

2Note that since each patch is complex, its 2D-DFT is not Hermitian, thus
all its entries are kept.

Fig. 1. Common Fate Transform. For convenience, the splitting of

the STFT into patches has been depicted without overlap, but over-

lapping patches are used in practice.

wonder what the advantage is of dropping independent frames for in-

dependent patches. The answer lies in the fact that the latter permits

us to model phase dependencies between neighbouring STFT en-

tries, and also to model much longer-term dependencies, as required

for instance by deterministic damped or frequency-modulated sinu-

soidal signals.

2. Each patch is stationary: its distribution is assumed invariant

under translations in the TF plane. This is where we do not as-

sume independence, but on the contrary expect dependencies among

neighbouring STFT entries. Our approach assumes this happens in

a way that only depends on the relative positions in the TF plane.

It can easily be shown that mixtures of damped sinusoids have this

property. Assuming stationarity not only over time but over both

time and frequency also permits us to naturally account for mixtures

of frequency-modulated sounds. In short, we assume that throughout

each patch, we observe one coherent STFT “texture”. The difference

with the HR-NMF model is that we have independent and identi-

cally distributed (i.i.d.) innovations for one given patch, whereas

HR-NMF model has more variability and permits heteroscedastic

innovations. However, taking overlapping patches somehow com-

pensates for this limitation.

3. The joint distribution of all entries of each patch is α-stable [28].

α-stable distributions are the only ones that are stable under addi-

tions, i.e. such that sums of α-stable random variables (r.v.) remain

α-stable. They notably comprise the Gaussian and Cauchy distribu-



tions as special cases when α = 2 and α = 1, respectively.

4. Each patch is harmonisable, i.e. is the inverse Fourier transform

of a complex random measure with independent increments. In other

words, all entries of the Fourier transform of each patch are assumed

to be asymptotically independent, as the size of the patch gets larger.

This rather technical condition, often tacitly made in signal process-

ing studies, permits efficient processing in the frequency domain.

Under those four assumptions, all entries of the CFT x are in-

dependent (assumptions 1 and 2), and each one is distributed with

respect to a complex isotropic α-stable distribution, noted SαSc (as-

sumptions 3 and 43):

x (a, b, f, t) ∼ SαSc (P
α (a, b, f, t)) , (1)

where Pα is a nonnegative Na × Nb × Nf × Nt tensor that we

call the modulation density. When α = 2, (1) corresponds to the

classical isotropic complex Gaussian distribution and the entries of

Pα are homogeneous to variances. In the general case, it can basi-

cally be understood as the energy found at (a, b) for patch (f, t), just

like more classical (fractional) power spectral densities describe the

spectro-temporal energy content of the STFT of a locally stationary

signal.

2.3. Signal Separation

Now, let us assume that the observed waveform is actually the sum

of J underlying sources {s̃j}j=1,...,J . Due to the linearity of the

CFT, this can be expressed in the CFT domain as:

∀ (a, b, f, t) , x (a, b, f, t) =
∑

j
sj (a, b, f, t) .

If we adopt the α-stable model presented above for each source and

use the stability property, we have:

x (a, b, f, t) ∼ SαSc

(

∑

j
P

α
j (a, b, f, t)

)

,

where Pα
j is the modulation density for source j. If these objects

are known, it can be shown that each source can be estimated in a

maximum a posteriori sense from the mixture as:

E
[

sj (a, b, f, t) | {P
α
j }j , x

]

=
Pα
j (a,b,f,t)

∑
j′ Pα

j′
(a,b,f,t)

x (a, b, f, t) (2)

which we call the fractional α-Wiener filter in [27]. The resulting

waveforms are readily obtained by inverting the CFT. As can be seen,

we now need to estimate the modulation densities {Pα
j }j based on

the observation of the mixture CFT x, similarly to the estimation of

the sources’ (fractional) Power Spectral Densities (α-PSD) in source

separation studies.

2.4. Factorization Model and Parameter Estimation

In order to estimate the sources’ modulation densities, we first im-

pose a factorization model over them, so as to reduce the number of

parameters to be estimated. In this study, we set:

P
α
j (a, b, f, t) = Aj (a, b, f)Hj (t) , (3)

where Aj and Hj are Na ×Nb ×Nf and Nt × 1 nonnegative ten-

sors, respectively. We call this a Common Fate Model. Intuitively,

3This result is the direct generalization of [28, th. 6.5.1] to multi-
dimensional stationary processes.

Algorithm 1 Fitting NMF parameters of the nonnegative CFM (3).

With vα = |x|α and always using the latest parameters available for

computing P̂α (a, b, f, t) =
J
∑

j=1

Aj (a, b, f)Hj (t), iterate:

Aj (a, b, f)← Aj (a, b, f)
∑

t vα(a,b,f,t)P̂α(a,b,f,t)·(β−2)Hj(t)
∑

t P̂α(a,b,f,t)·(β−1)Hj(t)

Hj (t)← Hj (t)
∑

a,b,f vα(a,b,f,t)P̂α(a,b,f,t)·(β−2)Aj(a,b,f)
∑

a,b,f P̂α(a,b,f,t)·(β−1)Aj(a,b,f)
.

Aj is a modulation density template that is different for each fre-

quency band f , and that captures the long term modulation profile

of source j around that frequency. Then, Hj is an activation vec-

tor that indicates the strength of source j on the patches located at

temporal position t. Learning those parameters can be achieved us-

ing the conventional Nonnegative Matrix Factorization methodology

(NMF, see e.g. [25,29,30] for an overview and [31] for the fitting of

SαSc parameters), except that it is applied to the CFT instead of the

STFT, and that the particular factorization to be used is (3).

Due to space constraints, we cannot detail the derivations of the

fitting strategy. In essence, it amounts to estimating the parame-

ters {Aj , Hj} so that the modulus of the CFT, raised to the power

α, is as close as possible to
∑

j P
α
j , with some particular cost func-

tion as a data-fit criterion, called a β-divergence and which includes

Euclidean, Kullback-Leibler and Itakura-Saito as special cases [32].

As usual in such nonnegative models, each parameter is updated in

turn, while the others are kept fixed. We provide the multiplicative

updates in Algorithm 1. After a few iterations, the parameters can

be used in (2) to separate the sources.

3. EXPERIMENTS

In this section, we present separation experiments utilizing CFM and

we compare it with other methods.

3.1. Synthetic Example

To illustrate the CFT representation we processed a mixture consist-

ing of two sinusoidal sources. One source is a pure sine wave of

fundamental frequency 440 Hz whereas the other is frequency mod-

ulated by a sinusoid of 6.3 Hz. In the first step an STFT with a DFT-

length of 1024 samples and a hop-size of 256 samples was processed

at a sample rate of 22.05 kHz. Patches of size (Na, Nb) = (32, 48)
(not respecting overlaps) were then taken from the STFT output.

Figure 1 in Section 2.1 then shows the Common Fate Transform for

the mixture as described in Section 2. One can see that the CFT rep-

resentation shows distinct patterns across time, suggesting that the

factorization is able to separate the sources.

3.2. Objective Evaluation on Unison Instrument Mixtures

For an evaluation of the method, we selected five musical instru-

ments’ samples, all featuring vibrato: violin, cello, tenor sax, En-

glish horn, and flute. It is important to note that vibrato techniques

differ between instruments: whereas the English horn and the flute

only produce a very subtle modulation, the violin and tenor sax

have powerful frequency modulations with a higher modulation fre-

quency as well as a higher modulation index. The signals have each



Method Description Signal Representation Factorization Model

CFM Common Fate Model STFT→ Grid Slicing→ 2D-DFT V (a, b, f, t) = P (a, b, f)×H(t)
NMF [4] w/o add. constraints STFT V (f, t) = W (f)×H(t)
HR-NMF High Resolution NMF model [20] Output of any filterbank (STFT, MDCT, . . . ) Subband AR filtering of NMF excitation

MOD [16] using DFT filterbank STFT→ | . . . | → STFT along each bin V (f,m, t) = W (f)×A(m)×H(t)
CFMM Common Fate Magnitude Model STFT→ | . . . | → Grid Slicing→ 2D-DFT V (a, b, f, t) = P (a, b, f) ·H(t)
CFMMOD CFMM with a = 1 STFT→ | . . . | → Grid Slicing→ 2D-DFT V (a, b, f, t) = P (a, b, f) ·H(t)

Table 1. Overview of the evaluated algorithms

been generated by rendering C4 (261.63 Hz) notes in a state-of-the-

art software sampler4. All samples last about three seconds. We

then generated a combination of ten mixtures of two instruments

each, each one generated with a simple SourceA — SourceB —

(SourceA + SourceB) scheme. Data were encoded in 44.1 kHz /

16 bit. For evaluation, we compared separation performance of six

different methods, summarized in Table 1:

CFM For the CFM model, we took an STFT with frames of 1024

samples and a hop-size of 512 samples. The resulting complex spec-

trogram was then split into a grid of patches of size (Na, Nb) =
(4, 64), each having a half-window overlap in both dimensions. For

all experiments α and β were set to 1.

MOD We implemented a modified version of [16] where for the

sake of comparability, we used a STFT instead of a gammatone fil-

terbank. A DFT length of 1024 and a hop-size of 512 samples were

chosen. After taking the magnitude value, a second STFT of size 32

and hop-size 16 samples was computed for each frequency.

CFMMOD We selected patch sizes of (Na, Nb) = (1, 64) and

modified the representation so that the magnitude spectrogram was

used before computing the 2D-DFT. This permits to compare the ad-

vantage of our proposed factorization model (3) over MOD, when

using the same kind of energy-modulation representation in both

cases.

CFMM For comparing the influence of computing modulations

over complex STFT or magnitude spectrograms, we tried our fac-

torization model when the magnitude of the STFT is taken before

2D-DFT, with patches of the same size as for the CFM method.

NMF We took a standard NMF based method [4]. We highlight that

taking a spectrogram with frames of length 1024 would not make a

fair comparison, because the CFM model actually results in a larger

frequency resolution. Therefore a comparable NMF is based on an

STFT of DFT-length 32768.

HR-NMF See description in [20].

All factorizations ran for 100 iterations and were repeated five times.

We chose j = (2 . . . 6) components for each factorization. For j >

2 we used oracle clustering to show the upper limit of SDR which

can be achieved.

We ran the performance evaluation by using BSSeval [33]. The

results of Signal to Distortion Ratio (SDR), Signal to Interference

Ratio (SIR), and Signal to Artifacts Ration (SAR) are depicted in

Figure 2. Results indicate that the CFM model performs well in all

measures. However, in terms of SIR the results of HR-NMF are

better than CFM method. The results for CFMMOD indicate the

positive influence of the CFM factorization compared to [16]. The

results of CFMM indicate that the complex CFT lead to better re-

sults. NMF did perform surprisingly well, which may only hold for

4VIENNA SYMPHONIC LIBRARY (https://vsl.co.at)

our test set, where each source is active for a long period. This re-

sults in a cyclic stationary vibrato, revealing spectral side lobes at

such a high resolution. With more than one component per source,

the results of CFM do improve, but it can be seen that more than two

components (j = 4) will not increase the SDR values. The separa-

tion results and a full Python implementation of the CFM algorithm

can be found on the companion website for this paper5.
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Fig. 2. Boxplots of BSS-Eval results of the unison dataset.

Solid/dotted lines represent medians/means.
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Fig. 3. Boxplots of SDR values of the unison dataset over the num-

ber of components j. For j > 2 oracle clustering was applied.

4. CONCLUSION

In this work we presented a method to exploit common modulation

textures for source separation. A transformation based on a complex

tensor representation computed from patches of the STFT has been

introduced. We then showed how these patches are factorized by the

proposed Common Fate Model, which is derived from the idea of hu-

mans perceiving common modulation over time as one source. Our

results on unisonous musical instruments indicate that this method

can perform well for this scenario. The CFM model could also be

successfully used in other scenarios, such as speech separation.

5www.loria.fr/˜aliutkus/cfm/
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