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COMMON FIXED POINT RESULTS FOR THREE MAPS
IN G- METRIC SPACES

Mujahid Abbas, Talat Nazir and Pasquale Vetro

Abstract

In this paper, we use the setting of generalized metric spaces to obtain
common fixed point results for three maps. These results generalize several
well known comparable results in the literature.

1 Introduction and preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has
been at the center of rigorous research activity. Mustafa and Sims [8] generalized
the concept of a metric space. Based on the notion of generalized metric spaces,
Mustafa et al. [7, 9, 10, 11] obtained some fixed point theorems for mappings
satisfying different contractive conditions. Abbas and Rhoades [1] initiated the
study of a common fixed point theory in generalized metric spaces. Abbas et al.
[2] obtained some periodic point results in generalized metric spaces. The coupled
common fixed point results in two generalized metric spaces are obtained by [3]. For
other references, the reader is referred to [5, 6, 13]. Shatanawi [14] proved some fixed
point results for self mappings in a complete G-metric space under some contractive
conditions related to a nondecreasing map φ : R+ → R+ with lim

n→∞
φn(t) = 0 for all

t ≥ 0. Saadati et al. [12] proved some fixed point results for contractive mappings
in partially ordered G-metric spaces. Recently, Abbas et at. [4] gives some common
fixed points of R− weakly commuting maps in generalized metric space.

The aim of this paper is to initiate the study of common fixed point for three
mappings in complete G-metric space. It is worth mentioning that our results do
not rely on the notion of continuity, weakly commuting or compatibility of mappings
involved therein. Our results generalize Theorems 2.1 to 2.3 and 2.5 of Mustafa et.
al [10] and Theorem 2.9 [9].

Consistent with Mustafa and Sims [8], the following definitions and results will
be needed in the sequel.
Definition 1.1. Let X be a nonempty set. A function G : X×X×X → [0, +∞[
is called a G-metric if the following conditions are satisfied:
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(a) G(x, y, z) = 0 if x = y = z,

(b) 0 < G(x, x, y) for all x, y ∈ X, with x 6= y,

(c) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X, with z 6= y,

(d) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),

(e) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X.

A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.
If G is a G-metric on X, then the pair (X, G) is called a G-metric space.

Definition 1.2. Let (X, G) be a G-metric space. We say that {xn} ⊂ X is:

(i) a G-Cauchy sequence if, for any ε > 0, there is a n0 ∈ N (the set of all positive
integers) such that for all n,m, l ≥ n0, G(xn, xm, xl) < ε;

(ii) a G-convergent sequence if, for any ε > 0, there is a x ∈ X and a n0 ∈ N,
such that for all n, m ≥ n0, G(x, xn, xm) < ε.

A G-metric space X is said to be complete if every G-Cauchy sequence in
X is convergent in X. It is known that {xn} converges to x ∈ X if and only if
G(xm, xn, x) → 0 as n,m →∞ and that {xn} is Cauchy if and only if G(xm, xn, xl) →
0 as n,m, l →∞.
Example 1.3. Let (X, d) be a metric space. The function G : X × X × X →
[0, +∞[, defined by

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)}

or
G(x, y, z) = d(x, y) + d(y, z) + d(z, x)

for all x, y, z ∈ X, is a G-metric on X.
Example 1.4. Let (X, G) be a G-metric space. The function G : X × X →
[0, +∞[, defined by

dG(x, y) = G(x, y, y) + G(y, x, x), ∀ x, y ∈ X

is a metric on X.
Definition 1.5. Let (X,G) and (X ′, G′) be G-metric spaces. A map f : (X, G) →
(X ′, G′) is said to be G-continuous at a point a ∈ X if and only if, given ε > 0, there
exists δ > 0 such that x, y ∈ X and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε.
A map f is G-continuous on X if and only if it is G-continuous at all a ∈ X.
Proposition 1.6. Let (X,G) be a G-metric space. Then the following statements
hold:

(i) G is jointly continuous in all three of its variables,

(ii) G(x, y, y) ≤ 2G(y, x, x).
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2 Common fixed point theorems

In this section we obtain common fixed point theorems for three maps defined on a
generalized metric space.

Theorem 2.1. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fx, gy, hz) ≤ αG(x, y, z) + β[G(fx, x, x) + G(y, gy, y) + G(z, z, hz)]
+γ[G(fx, y, z) + G(x, gy, z) + G(x, y, hz)] (1)

for all x, y, z ∈ X, where α, β, γ > 0 and α + 3β + 4γ < 1. Then f, g and h have a
unique common fixed point in X. Moreover, any fixed point of f is a fixed point of
g and h and conversely.

Proof. We will proceed in two steps: first we prove that any fixed point of f is a
fixed point of g and h. Assume that p ∈ X is such that fp = p. Now, we prove that
p = gp = hp. If it is not the case, then for p 6= gp and p 6= hp, we get

G(p, gp, hp)
= G(fp, gp, hp)
≤ αG(p, p, p) + β[G(fp, p, p) + G(p, gp, p) + G(p, p, hp)]

+γ[G(fp, p, p) + G(p, gp, p) + G(p, p, hp)]
= (β + γ)[G(p, gp, p) + G(p, p, hp)]
≤ (β + γ)[G(p, gp, hp) + G(p, gp, hp)]
= (2β + 2γ)G(p, gp, hp),

that is a contradiction. Analogously, following the similar arguments to those
given above, we obtain a contradiction for p 6= gp and p = hp or for p 6= hp and
p = gp. Hence in all the cases, we conclude that p = gp = hp. The same conclusion
holds if p = gp or p = hp.

Now, we prove that f, g and h have a unique common fixed point. Suppose
x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,
x3n+3 = hx3n+2, n = 0, 1, 2, . . .. If xn = xn+1 for some n, with n = 3m, then
p = x3n is a fixed point of f and, by the first step, p is a common fixed point for
f, g and h. The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that
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xn 6= xn+1 for all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)
= G(fx3n, gx3n+1, hx3n+2)
≤ αG(x3n, x3n+1, x3n+2) + β[G(fx3n, x3n, x3n) + G(x3n+1, gx3n+1, x3n+1)

+G(x3n+2, x3n+2, hx3n+2)] + γ[G(fx3n, x3n+1, x3n+2)
+G(x3n, gx3n+1, x3n+2) + G(x3n, x3n+1, hx3n+2)]

= αG(x3n, x3n+1, x3n+2) + β[G(x3n+1, x3n, x3n) + G(x3n+1, x3n+2, x3n+1)
+G(x3n+2, x3n+2, x3n+3)] + γ[G(x3n+1, x3n+1, x3n+2)
+G(x3n, x3n+2, x3n+2) + G(x3n, x3n+1, x3n+3)]

≤ αG(x3n, x3n+1, x3n+2) + β[G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+2)
+G(x3n+1, x3n+2, x3n+3)] + γ[G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+2)
+{G(x3n, x3n+1, x3n+2) + G(x3n+1, x3n+2, x3n+3)}],

that is

(1− β − γ)G(x3n+1, x3n+2, x3n+3) ≤ (α + 2β + 3γ)G(x3n, x3n+1, x3n+2).

Hence,
G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2),

where λ =
α + 2β + 3γ

1− β − γ
. Obviously 0 < λ < 1. Similarly it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ λG(x3n+1, x3n+2, x3n+3)

and
G(x3n+3, x3n+4, x3n+5) ≤ λG(x3n+2, x3n+3, x3n+4).

Therefore, for all n,

G(xn+1, xn+2, xn+3) ≤ λG(xn, xn+1, xn+2)
≤ · · · ≤ λn+1G(x0, x1, x2).

Now, for any l,m, n with l > m > n,

G(xn, xm, xl) ≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2)
+ · · ·+ G(xl−1, xl−1, xl)

≤ G(xn, xn+1, xn+2) + G(xn+1, xn+2, xn+3)
+ · · ·+ G(xl−2, xl−1, xl)

≤ [λn + λn+1 + · · ·+ λl−2]G(x0, x1, x2)

≤ λn

1− λ
G(x0, x1, x2).
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The same holds if l = m > n and if l > m = n we have

G(xn, xm, xl) ≤ λn−1

1− λ
G(x0, x1, x2).

Consequently G(xn, xm, xl) → 0 as n,m, l → ∞. Hence {xn} is a G-Cauchy se-
quence. By G-completeness of X, there exists u ∈ X such that {xn} converges to
u as n →∞. We claim that fu = u. If not, then consider

G(fu, x3n+2, x3n+3)
= G(fu, gx3n+1, hx3n+2)
≤ αG(u, x3n+1, x3n+2) + β[G(fu, u, u) + G(x3n+1, gx3n+1, x3n+1)

+G(x3n+2, x3n+2, hx3n+2)] + γ[G(fu, x3n+1, x3n+2)
+G(u, gx3n+1, x3n+2) + G(u, x3n+1, hx3n+2)]

= αG(u, x3n+1, x3n+2) + β[G(fu, u, u) + G(x3n+1, x3n+2, x3n+1)
+G(x3n+2, x3n+2, x3n+3)] + γ[G(fu, x3n+1, x3n+2)
+G(u, x3n+2, x3n+2) + G(u, x3n+1, x3n+3)].

On taking limit n →∞, we obtain that

G(fu, u, u) ≤ (β + γ)G(fu, u, u),

a contradiction. Hence fu = u. Similarly it can be shown that gu = u and hu = u.
To prove the uniqueness, suppose that v is another common fixed point of f, g

and h, then

G(u, v, v) = G(fu, gv, hv)
≤ αG(u, v, v) + β[G(fu, u, u) + G(v, gv, v) + G(v, v, hv)]

+γ[G(fu, v, v) + G(u, gv, v) + G(u, v, hv)]
= αG(u, v, v) + β[G(u, u, u) + G(v, v, v) + G(v, v, v)]

+γ[G(u, v, v) + G(u, v, v) + G(u, v, v)]
= (α + 3γ)G(u, v, v),

which gives that G(u, v, v) = 0, and u = v. Hence u is a unique common fixed point
of f, g and h.

Corollary 2.2. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fmx, gmy, hmz) ≤ αG(x, y, z) + β[G(fmx, x, x) + G(y, gmy, y) + G(z, z, hmz)]
+γ[G(fmx, y, z) + G(x, gmy, z) + G(x, y, hmz)] (2)

for all x, y, z ∈ X, where α, β, γ > 0 and α + 3β + 4γ < 1. Then f, g and h have a
unique common fixed point in X. Moreover, any fixed point of f is a fixed point of
g and h and conversely.
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Proof. It follows from Theorem 2.1, that fm, gm and hm have a unique common
fixed point p. Now f(p) = f(fm(p)) = fm+1(p) = fm(f(p)), g(p) = g(gm(p)) =
gm+1(p) = gm(g(p)) and h(p) = h(hm(p)) = hm+1(p) = hm(h(p)) implies that fp,
gp and hp are also fixed points for fm, gm and hm. Since the common fixed point
of fm, gm and hm is unique, we deduce that p = fp = gp = hp. It is obvious that
every fixed point of f is a fixed point of g and h and conversely.

Corollary 2.3. Let f, g and h be self maps on a complete G-metric space X sat-
isfying (1). If F (f) is a singleton, then F (g) and F (h) are singleton and conversely.

Proof. It follows from Theorem 2.1, since any fixed point of f is a fixed point of g
and h and conversely.

The following Theorem generalizes the Theorems 2.1-2.3 in [10].
Theorem 2.4. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fx, gy, hz) ≤ aG(x, y, z) + bG(x, fx, fx) + cG(y, gy, gy) + dG(z, hz, hz) (3)

for all x, y, z ∈ X, where 0 < a + b + c + d < 1. Then f, g and h have a unique
common fixed point in X. Moreover, any fixed point of f is a fixed point of g and
h and conversely.

Proof. We will proceed in two steps: first we prove that any fixed point of f is a
fixed point of g and h. Assume that p ∈ X is such that fp = p. Now, we prove that
p = gp = hp. If it is not then for p 6= gp and p 6= hp, we obtain

G(p, gp, hp) = G(fp, gp, hp)
≤ aG(p, p, p) + b G(p, fp, fp) + cG(p, gp, gp) + dG(p, hp, hp)
= aG(p, p, p) + b G(p, p, p) + cG(p, gp, gp) + dG(p, hp, hp)
= cG(p, gp, gp) + dG(p, hp, hp)
≤ (c + d)G(p, gp, hp),

that is a contradiction. Analogously, for p 6= gp and p = hp or for p 6= hp and p = gp,
following the similar arguments to those given above, we obtain a contradiction.
Hence in all the cases, we conclude that p = gp = hp. The same conclusion holds if
p = gp or p = hp.

Now, we prove that f, g and h have a unique common fixed point. Suppose
x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,
x3n+3 = hx3n+2, n = 0, 1, 2, . . .. If xn = xn+1 for some n, with n = 3m, then
p = x3n is a fixed point of f and, by the first step, p is a common fixed point for
f, g and h. The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that
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xn 6= xn+1 for all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)
= G(fx3n, gx3n+1, hx3n+2)
≤ a G(x3n, x3n+1, x3n+2) + bG(x3n, fx3n, fx3n) + cG(x3n+1, gx3n+1, gx3n+1)

+dG(x3n+2, hx3n+2, hx3n+2)
= a G(x3n, x3n+1, x3n+2) + bG(x3n, x3n+1, x3n+1) + cG(x3n+1, x3n+2, x3n+2)

+dG(x3n+2, x3n+3, x3n+3)
≤ a G(x3n, x3n+1, x3n+2) + bG(x3n, x3n+1, x3n+2) + cG(x3n+1, x3n+2, x3n+3)

+dG(x3n+1, x3n+2, x3n+3)

which implies that

(1− c− d)G(x3n+1, x3n+2, x3n+3) ≤ (a + b)G(x3n, x3n+1, x3n+2).

Hence,
G(x3n+1, x3n+2, x3n+3) ≤ λ G(x3n, x3n+1, x3n+2),

where λ =
a + b

1− c− d
. Obviously 0 < λ < 1. Similarly it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ λ G(x3n+1, x3n+2, x3n+3)

and
G(x3n+3, x3n+4, x3n+5) ≤ λG(x3n+2, x3n+3, x3n+4).

Therefore, for all n,

G(xn+1, xn+2, xn+3) ≤ λG(xn, xn+1, xn+2)
≤ · · · ≤ λn+1 G(x0, x1, x2).

Following similar arguments to those given in Theorem 2.1, G(xn, xm, xl) → 0 as
n,m, l →∞. Hence {xn} is a G-Cauchy sequence. By G-completeness of X, there
exists u ∈ X such that {xn} converges to u as n → ∞. We claim that fu = u. If
not, then consider

G(fu, x3n+2, x3n+3) = G(fu, gx3n+1, hx3n+2)
≤ aG(u, x3n+1, x3n+2) + bG(u, fu, fu)

+cG(x3n+1, gx3n+1, gx3n+1) + d G(x3n+2, hx3n+2, hx3n+2)
= aG(u, x3n+1, x3n+2) + bG(fu, u, x3n+1)

+cG(x3n+1, x3n+2, x3n+2) + dG(x3n+2, x3n+3, x3n+3).

On taking limit n →∞, we obtain that

G(fu, u, u) ≤ bG(fu, u, u),
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a contradiction. Hence fu = u. Similarly it can be shown that gu = u and hu = u.

To prove the uniqueness, suppose that v is another common fixed point of f, g
and h, then

G(u, v, v) = G(fu, gv, hv)
≤ aG(u, v, v) + bG(u, fu, fu) + cG(v, gv, gv) + dG(v, hv, hv)
= aG(u, v, v) + bG(u, u, u) + c G(v, v, v) + d G(v, v, v)
= aG(u, v, v),

which gives that G(u, v, v) = 0 and hence u = v. Thus u is a unique common fixed
point of f, g and h.

Example 2.5. Let X = [0, 1] and G(x, y, z) = max{|x− y| , |y − z| , |z − x|} be a
G-metric on X. Define f, g, h : X → X as

f(x) =
{

x/12 for x ∈ [0, 1
2 )

x/10 for x ∈ [ 12 , 1],

g(x) =
{

x/8 for x ∈ [0, 1
2 )

x/6 for x ∈ [ 12 , 1],

and

h(x) =
{

x/5 for x ∈ [0, 1
2 )

x/3 for x ∈ [ 12 , 1].

Note that f, g and h are discontinuous maps. Also

fg(
1
2
) = f(

1
12

) =
1

144
, gf(

1
2
) = g(

1
20

) =
1

160
,

gh(
1
2
) = g(

1
6
) =

1
48

, hg(
1
2
) = h(

1
12

) =
1
60

,

and

fh(
1
2
) = f(

1
6
) =

1
72

, hf(
1
2
) = h(

1
20

) =
1

100
,

which shows that f , g and h does not commute to each other.
Note that for x, y, z ∈ [0, 1

2 ],

G(x, y, z) = max{|x− y| , |y − z| , |z − x|},
G(x, fx, fx) = max{

∣∣∣x− x

12

∣∣∣ ,
∣∣∣ x

12
− x

12

∣∣∣ ,
∣∣∣ x

12
− x

∣∣∣} =
11x

12
,

G(y, gy, gy) = max{
∣∣∣y − y

8

∣∣∣ ,
∣∣∣y
8
− y

8

∣∣∣ ,
∣∣∣y
8
− y

∣∣∣} =
7y

8
,

G(z, hz, hz) = max{
∣∣∣z − z

5

∣∣∣ ,
∣∣∣z
5
− z

5

∣∣∣ ,
∣∣∣z
5
− z

∣∣∣} =
4z

5
.
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Now

G(fx, gy, hz) = max{
∣∣∣ x

12
− y

8

∣∣∣ ,
∣∣∣y
8
− z

5

∣∣∣ ,
∣∣∣z
5
− x

12

∣∣∣}

=
1
8

max{
∣∣∣∣
2x

3
− y

∣∣∣∣ ,

∣∣∣∣y −
8z

5

∣∣∣∣ ,

∣∣∣∣
8z

5
− 2x

3

∣∣∣∣}

≤ 1
8
[max{|x− y| , |y − z| , |z − x|}+ x + y + z]

=
1
8

max{|x− y| , |y − z| , |z − x|}+
x

8
+

y

8
+

z

8

=
1
8

max{|x− y| , |y − z| , |z − x|}+
3
44

(
11x

12
) +

1
7
(
7y

8
) +

5
32

(
4z

5
)

= aG(x, y, z) + b G(x, fx, fx) + cG(y, gy, gy) + dG(z, hz, hz).

Thus (3) is satisfied for 0 < a + b + c + d = 0.49 < 1.
For x, y, z ∈ [ 12 , 1],

G(x, y, z) = max{|x− y| , |y − z| , |z − x|},
G(x, fx, fx) = max{

∣∣∣x− x

10

∣∣∣ ,
∣∣∣ x

10
− x

10

∣∣∣ ,
∣∣∣ x

10
− x

∣∣∣} =
9x

10
,

G(y, gy, gy) = max{
∣∣∣y − y

6

∣∣∣ ,
∣∣∣y
6
− y

6

∣∣∣ ,
∣∣∣y
6
− y

∣∣∣} =
5y

6
,

G(z, hz, hz) = max{
∣∣∣z − z

3

∣∣∣ ,
∣∣∣z
3
− z

3

∣∣∣ ,
∣∣∣z
3
− z

∣∣∣} =
2z

3
.

Now

G(fx, gy, hz) = max{
∣∣∣ x

10
− y

6

∣∣∣ ,
∣∣∣y
6
− z

3

∣∣∣ ,
∣∣∣z
3
− x

10

∣∣∣}

=
1
6

max{
∣∣∣∣
3x

5
− y

∣∣∣∣ , |y − 2z| ,
∣∣∣∣2z − 3x

5

∣∣∣∣}

≤ 1
6
[max{|x− y| , |y − z| , |z − x|}+ x + y + z]

=
1
6

max{|x− y| , |y − z| , |z − x|}+
x

6
+

y

6
+

z

6

≤ 1
6
[max{|x− y| , |y − z| , |z − x|}+

5
27

(
9x

10
) +

1
5
(
5y

6
) +

1
4
(
2z

3
)

= aG(x, y, z) + bG(x, fx, fx) + cG(y, gy, gy) + d G(z, hz, hz).

Thus (3) is satisfied for 0 < a + b + c + d = 0.8 < 1.
Now for x ∈ [0, 1

2 ), y, z ∈ [ 12 , 1],

G(x, y, z) = max{|x− y| , |y − z| , |z − x|},
G(x, fx, fx) = max{

∣∣∣x− x

12

∣∣∣ ,
∣∣∣ x

12
− x

12

∣∣∣ ,
∣∣∣ x

12
− x

∣∣∣} =
11x

12
,

G(y, gy, gy) = max{
∣∣∣y − y

6

∣∣∣ ,
∣∣∣y
6
− y

6

∣∣∣ ,
∣∣∣y
6
− y

∣∣∣} =
5y

6
,

G(z, hz, hz) = max{
∣∣∣z − z

3

∣∣∣ ,
∣∣∣z
3
− z

3

∣∣∣ ,
∣∣∣z
3
− z

∣∣∣} =
2z

3
.
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Now

G(fx, gy, hz) = max{
∣∣∣ x

12
− y

6

∣∣∣ ,
∣∣∣y
6
− z

3

∣∣∣ ,
∣∣∣z
3
− x

12

∣∣∣}

=
1
6

max{
∣∣∣y − x

2

∣∣∣ , |y − 2z| ,
∣∣∣2z − x

2

∣∣∣}

≤ 1
6
[max{|x− y| , |y − z| , |z − x|}+ x + y + z]

=
1
6

max{|x− y| , |y − z| , |z − x|}+
x

6
+

y

6
+

z

6

=
1
6
[max{|x− y| , |y − z| , |z − x|}+

2
11

(
11x

12
) +

1
5
(
5y

6
) +

1
4
(
2z

3
)

= aG(x, y, z) + b G(x, fx, fx) + cG(y, gy, gy) + dG(z, hz, hz).

Thus (3) is satisfied for 0 < a + b + c + d = 0.8 < 1.

Finally for x, y ∈ [0, 1
2 ), z ∈ [ 12 , 1],

G(x, y, z) = max{|x− y| , |y − z| , |z − x|},
G(x, fx, fx) = max{

∣∣∣x− x

12

∣∣∣ ,
∣∣∣ x

12
− x

12

∣∣∣ ,
∣∣∣ x

12
− x

∣∣∣} =
11x

12
,

G(y, gy, gy) = max{
∣∣∣y − y

8

∣∣∣ ,
∣∣∣y
8
− y

8

∣∣∣ ,
∣∣∣y
8
− y

∣∣∣} =
7y

8
,

G(z, hz, hz) = max{
∣∣∣z − z

3

∣∣∣ ,
∣∣∣z
3
− z

3

∣∣∣ ,
∣∣∣z
3
− z

∣∣∣} =
2z

3
.

Now

G(fx, gy, hz) = max{
∣∣∣ x

12
− y

8

∣∣∣ ,
∣∣∣y
8
− z

3

∣∣∣ ,
∣∣∣z
3
− x

12

∣∣∣}

=
1
6

max{
∣∣∣∣
3y

4
− x

2

∣∣∣∣ ,

∣∣∣∣2z − 3y

4

∣∣∣∣ ,
∣∣∣2z − x

2

∣∣∣}

≤ 1
6
[max{|x− y| , |y − z| , |z − x|}+ x + y + z]

=
1
6

max{|x− y| , |y − z| , |z − x|}+
x

6
+

y

6
+

z

6

=
1
6
[max{|x− y| , |y − z| , |z − x|}+

2
11

(
11x

12
) +

4
21

(
7y

8
) +

1
4
(
2z

3
)

= aG(x, y, z) + b G(x, fx, fx) + cG(y, gy, gy) + dG(z, hz, hz).

Thus (3) is satisfied for 0 < a+ b+ c+d = 0.8 < 1 and so the condition of Theorem
2 is satisfied for all x, y, z ∈ X. 0 is the unique common fixed point of f, g and h.
Also any fixed point of f is a fixed point of g and h and conversely.
Example 2.6. Let X = [0, 1] and G(x, y, z) = max{|x− y| , |y − z| , |z − x|} be
a G-metric on X. Define f, g, h : X → X by f(x) =

x

8
, g(x) =

x

4
and h(x) =

x

2
.

Without loss of generality, we assume that x ≤ y ≤ z.
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Now

G(x, y, z) = max{|x− y| , |y − z| , |z − x|} = z − x,

G(x, fx, fx) = max{
∣∣∣x− x

8

∣∣∣ ,
∣∣∣x
8
− x

8

∣∣∣ ,
∣∣∣x
8
− x

∣∣∣} =
7x

8
,

G(y, gy, gy) = max{
∣∣∣y − y

4

∣∣∣ ,
∣∣∣y
4
− y

4

∣∣∣ ,
∣∣∣y
4
− y

∣∣∣} =
3y

4
,

G(z, hz, hz) = max{
∣∣∣z − z

2

∣∣∣ ,
∣∣∣z
2
− z

2

∣∣∣ ,
∣∣∣z
2
− z

∣∣∣} =
z

2
.

G(fx, gy, hz) = max{
∣∣∣x
8
− y

4

∣∣∣ ,
∣∣∣y
4
− z

2

∣∣∣ ,
∣∣∣z
2
− x

8

∣∣∣}

=
z

2
− x

8
=

z

4
− x

4
+

x

8
+

z

4

=
1
4
(z − x) +

x

16
+

x

16
+

z

4

=
1
4
(z − x) +

1
14

(
7x

8
) +

1
12

(
3x

4
) +

z

4

≤ 1
4
(z − x) +

1
14

(
7x

8
) +

1
12

(
3y

4
) +

1
2
(
z

2
)

= aG(x, y, z) + bG(x, fx, fx) + cG(y, gy, gy) + dG(z, hz, hz).

Therefore (3) is satisfied for all x, y, z ∈ X, where a + b + c + d =
76
84

< 1. 0 is the
unique common fixed point of f, g and h. Also any fixed point of f is a fixed point
of g and h and conversely.

From Theorem 2.4, we deduce the following corollary.
Corollary 2.7. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fmx, gmy, hmz) ≤ a G(x, y, z) + bG(x, fmx, fmx)
+cG(y, gmy, gmy) + d G(z, hmz, hmz) (4)

for all x, y, z ∈ X, where 0 < a + b + c + d < 1. Then f, g and h have a unique
common fixed point in X. Moreover, any fixed point of f is a fixed point of g and
h and conversely.
Theorem 2.8. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fx, gy, hz) ≤ a[G(y, fx, fx) + G(z, gy, gy) + G(x, hz, hz)] (5)

for all x, y, z ∈ X, where 0 ≤ a <
1
2
. Then f, g and h have a common fixed point in

X. Moreover, any fixed point of f is a fixed point of g and h and conversely.
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Proof. We will proceed in two steps: first we prove that any fixed point of f is
a fixed point of g and h. Assume that p is a fixed point of f and we prove that
p = gp = hp. If it is not the case, then for p 6= gp and p 6= hp, we get

G(p, gp, hp) = G(fp, gp, hp)
≤ a[G(p, fp, fp) + G(p, gp, gp) + G(p, hp, hp)]
= a[G(p, p, p) + G(p, gp, gp) + G(p, hp, hp)]
= a[G(p, gp, gp) + G(p, hp, hp)]
≤ 2aG(p, gp, hp),

that is a contradiction. Analogously, for p 6= gp and p = hp or for p 6= hp and p = gp,
following similar arguments as those given above, we obtain a contradiction. Hence
in all the cases, we conclude that p = gp = hp. The same conclusion holds if p = gp
or p = hp.

Now, we prove that f, g and h have a common fixed point. Suppose x0 is an
arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1, x3n+3 =
hx3n+2, n = 0, 1, 2, . . .. If xn = xn+1 for some n, with n = 3m, then p = x3n is
a fixed point of f and, by the first step, p is a common fixed point for f, g and h.
The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that xn 6= xn+1 for
all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)
= G(fx3n, gx3n+1, hx3n+2)
≤ a[G(x3n+1, fx3n, fx3n) + G(x3n+2, gx3n+1, gx3n+1) + G(x3n, hx3n+2, hx3n+2)]
= a[G(x3n+1, x3n+1, x3n+1) + G(x3n+2, x3n+2, x3n+2) + G(x3n, x3n+3, x3n+3)]
≤ a[G(x3n, x3n+1, x3n+1) + G(x3n+1, x3n+3, x3n+3)]
≤ a[G(x3n, x3n+1, x3n+2) + G(x3n+1, x3n+2, x3n+3)]

implies that

(1− a)G(x3n+1, x3n+2, x3n+3) ≤ aG(x3n, x3n+1, x3n+2).

Hence,
G(x3n+1, x3n+2, x3n+3) ≤ hG(x3n, x3n+1, x3n+2),

where h =
a

1− a
. Obviously 0 < h < 1. Similarly it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ hG(x3n+1, x3n+2, x3n+3)

and
G(x3n+3, x3n+4, x3n+5) ≤ hG(x3n+2, x3n+3, x3n+4).

Therefore, for all n,

G(xn+1, xn+2, xn+3) ≤ hG(xn, xn+1, xn+2)
≤ · · · ≤ hn+1G(x0, x1, x2).
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Following similar arguments as those given in Theorem 2.1, G(xn, xm, xl) → 0
as n, m, l → ∞. Hence {xn} is a G-Cauchy sequence. By G-completeness of X,
there exists u ∈ X such that {xn} converges to u as n →∞. We claim that fu = u.
If not, then consider

G(fu, x3n+2, x3n+3)
= G(fu, gx3n+1, hx3n+2)
≤ a[G(x3n+1, fu, fu) + G(x3n+2, gx3n+1, gx3n+1) + G(u, hx3n+2, hx3n+2)]
= a[G(x3n+1, fu, fu) + G(x3n+2, x3n+2, x3n+2) + G(u, x3n+3, x3n+3)].

On taking limit n →∞, we obtain that

G(fu, u, u) ≤ aG(fu, fu, u) ≤ 2aG(fu, u, u),

a contradiction. Hence fu = u. Similarly it can be shown that gu = u and hu = u
and so u is a common fixed point for f, g and h.

Remark 2.9. Let f, g and h be self maps on a complete G-metric space X
satisfying (5). Then f, g and h have a unique common fixed point in X provided

that 0 ≤ a <
1
3
.

Proof. Existence of common fixed points of f, g and h follows from Theorem 2.8.
To prove the uniqueness, suppose that v is another common fixed point of f, g and
h, then

G(u, v, v) = G(fu, gv, hv)
≤ a[G(v, fu, fu) + G(v, gv, gv) + G(u, hv, hv)]
= a[G(v, u, u) + G(v, v, v) + G(u, v, v)]
≤ 3aG(u, v, v),

which gives that G(u, v, v) = 0, and so u = v. Hence u is a unique common fixed
point of f, g and h.

The following Theorem generalizes the Theorem 2.5 in [10].
Corollary 2.10. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fmx, gmy, hmz) ≤ a[G(y, fmx, fmx) + G(z, gmy, gmy) + G(x, hmz, hmz)] (6)

for all x, y, z ∈ X, where 0 ≤ a <
1
3
. Then f, g and h have a common fixed point in

X. Moreover, any fixed point of f is a fixed point of g and h and conversely.

Proof. It follows from Theorem 2.8 and Remark 2.9, that fm, gm and hm have a
unique common fixed point p. Now f(p) = f(fm(p)) = fm+1(p) = fm(f(p)), g(p) =
g(gm(p)) = gm+1(p) = gm(g(p)) and h(p) = h(hm(p)) = hm+1(p) = hm(h(p))
implies that fp, gp and hp are also fixed points for fm, gm and hm. Since the
common fixed point of fm, gm and hm is unique, we deduce that p = fp = gp = hp.
It is obvious that every fixed point of f is a fixed point of g and h and conversely.
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Theorem 2.11. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fx, gy, hz) ≤ k[G(x, fx, fx) + G(y, gy, gy) + G(z, hz, hz)] (7)

for all x, y, z ∈ X, where 0 < k <
1
3
. Then f, g and h have a unique common fixed

point in X. Moreover, any fixed point of f is a fixed point of g and h and conversely.

Proof. We will proceed in two steps: first we prove that any fixed point of f is
a fixed point of g and h. Assume that p is a fixed point of f and we prove that
p = gp = hp. If it is not the case, then for p 6= gp and p 6= hp, we obtain

G(p, gp, hp) = G(fp, gp, hp)
≤ k[G(fp, fp, p) + G(p, gp, gp) + G(p, hp, hp)]
= k[G(p, p, p) + G(p, gp, gp) + G(p, hp, hp)]
= k[G(p, gp, gp) + G(p, hp, hp)]
≤ k[G(p, gp, hp) + G(p, gp, hp)]
= 2kG(p, gp, hp),

that is a contradiction. Analogously, for p 6= gp and p = hp or for p 6= hp and p = gp,
following similar arguments as those given above, we obtain a contradiction. Hence
in all the cases, we conclude that p = gp = hp. The same conclusion holds if p = gp
or p = hp.

Now, we prove that f, g and h have a unique common fixed point. Suppose
x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,
x3n+3 = hx3n+2, n = 0, 1, 2, . . .. If xn = xn+1 for some n, with n = 3m, then
p = x3n is a fixed point of f and, by the first step, p is a common fixed point for
f, g and h. The same holds if n = 3m + 1 or n = 3m + 2. Now, we assume that
xn 6= xn+1 for all n ∈ N. Then, we have

G(x3n+1, x3n+2, x3n+3)
= G(fx3n, gx3n+1, hx3n+2)
≤ k[G(fx3n, fx3n, x3n) + G(x3n+1, gx3n+1, gx3n+1) + G(x3n+2, hx3n+2, hx3n+2)]
= k[G(x3n+1, x3n+1, x3n) + G(x3n+1, x3n+2, x3n+2) + G(x3n+2, x3n+3, x3n+3)]
≤ k[G(x3n, x3n+1, x3n+2) + 2G(x3n+1, x3n+2, x3n+3)]

implies that

(1− 2k)G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n, x3n+1, x3n+2).

Hence,
G(x3n+1, x3n+2, x3n+3) ≤ hG(x3n, x3n+1, x3n+2),

where h =
k

1− 2k
. Obviously 0 < h < 1. Similarly it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ hG(x3n+1, x3n+2, x3n+3)



Common fixed point results for three maps in G-metric spaces 15

and
G(x3n+3, x3n+4, x3n+5) ≤ hG(x3n+2, x3n+3, x3n+4).

Therefore, for all n,

G(xn+1, xn+2, xn+3) ≤ h G(xn, xn+1, xn+2)
≤ · · · ≤ hn+1G(x0, x1, x2).

Following similar arguments as those given in Theorem 2.1, G(xn, xm, xl) → 0 as
n,m, l →∞. Hence {xn} is a G-Cauchy sequence. By G-completeness of X, there
exists u ∈ X such that {xn} converges to u as n → ∞. We claim that fu = u. If
not, then consider

G(fu, x3n+2, x3n+3)
= G(fu, gx3n+1, hx3n+2)
≤ k[G(fu, fu, u) + G(x3n+1, gx3n+1, gx3n+1) + G(x3n+2, hx3n+2, hx3n+2)]
= k[G(fu, fu, u) + G(x3n+1, x3n+2, x3n+2) + G(x3n+2, x3n+3, x3n+3)].

On taking limit n →∞, we obtain that

G(fu, u, u) ≤ 2kG(fu, u, u),

a contradiction. Hence fu = u. Similarly it can be shown that gu = u and hu = u.
The uniqueness is a consequence of condition (5).

Corollary 2.12. Let f, g and h be self maps on a complete G-metric space X
satisfying

G(fmx, gmy, hmz) ≤ k[G(fmx, fmx, x) + G(y, gmy, gmy) + G(z, hmz, hmz)] (8)

for all x, y, z ∈ X, where 0 < k <
1
3
. Then f, g and h have a unique common fixed

point in X. Moreover, any fixed point of f is a fixed point of g and h and conversely.

Proof. It follows from Theorem 2.11, that fm, gm and hm have a unique common
fixed point p. Now f(p) = f(fm(p)) = fm+1(p) = fm(f(p)), g(p) = g(gm(p)) =
gm+1(p) = gm(g(p)) and h(p) = h(hm(p)) = hm+1(p) = hm(h(p)) implies that
fp, g(p) and hp are also fixed points for fm, gm and hm. Since the common fixed
point of fm, gm and hm is unique, we deduce that p = fp = gp = hp. It is obvious
that every fixed point of f is a fixed point of g and h and conversely.
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