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COMMON FIXED POINT THEOREMS FOR E-CONTRACTIVE
OR E-EXPANSIVE MAPS IN UNIFORM SPACES

M. AAMRI – D. EL MOUTAWAKIL

Abstract. The main purpose of this paper is to obtain several common fixed
point theorems for contractive or expansive self-mappings of uniform spaces.

1. Introduction

The theory of fixed point or common fixed point for contractive or expansive self-
mappings of complete metric spaces has been well developed ([2], [3], [4], [5], [8]).
Recently, O. Kada, T. Suzuki and W. Takahashi [4] have introduced the concept
of a W-distance on metric spaces and have generalized some important results in
non-convex minimizations and in fixed point theory for both W-contractive or W-
expansive maps.

On the other hand, it has always been tempting to generalize certain existence
fixed or common fixed point theorems to uniform spaces. Following ideas in [4],
J.R. Montes and J.A. Charris established, in [7], some results on fixed and co-
incidence points of maps by means of appropriate W-contractive or W-expansive
assumptions in uniform spaces. In this paper, we give many common fixed point
theorems for some new contractive or expansive maps in uniform spaces by intro-
ducing the concept of an A-distance or an E-distance.

The paper is divided into three sections. In section 2 we introduce the concept
of an A-distance and an E-distance. In section 3 (resp. 4) we prove some common
fixed point theorems for A (resp. E)-contractive maps (resp. for E-expansive maps).
We begin by recalling some basic concepts of the theory of uniform spaces needed
in the sequel. For more information we refer the reader to the book by N. Bourbaki
[1], chapter II.

We call uniform space (X,ϑ) a nonempty set X endowed of an uniformity ϑ,
the latter being a special kind of filter on X ×X, all whose elements contain the
diagonal ∆ = {(x, x)/x ∈ X}. If V ∈ ϑ and (x, y) ∈ V , (y, x) ∈ V , x and y are
said to be V -close, and a sequence (xn) in X is a Cauchy sequence for ϑ if for any
V ∈ ϑ, there exists N ≥ 1 such that xn and xm are V -close for n,m ≥ N . An
uniformity ϑ defines a unique topology τ(ϑ) on X for which the neighborhoods of
x ∈ X are the sets V (x) = {y ∈ X/(x, y) ∈ V } when V runs over ϑ.

A uniform space (X,ϑ) is said to be Hausdorff if and only if the intersection
of all the V ∈ ϑ reduces to the diagonal ∆ of X, i.e., if (x, y) ∈ V for all V ∈ ϑ
implies x = y. This guarantees the uniqueness of limits of sequences. V ∈ ϑ is said
to be symmetrical if V = V −1 = {(y, x)/(x, y) ∈ V }. Since each V ∈ ϑ contains
a symmetrical W ∈ ϑ and if (x, y) ∈ W then x and y are both W and V -close,
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then for our purpose, we assume that each V ∈ ϑ is symmetrical. When topological
concepts are mentioned in the context of a uniform space (X,ϑ), they always refer
to the topological space (X, τ(ϑ)).

2. A (resp. E)-distance

Definition 2.1. Let (X,ϑ) be a uniform space. A function p : X × X −→ R+ is
said to be an A-distance if for any V ∈ ϑ there exists δ > 0 such that if p(z, x) ≤ δ
and p(z, y) ≤ δ for some z ∈ X, then (x, y) ∈ V .

Definition 2.2. Let (X,ϑ) be a uniform space. A function p : X × X −→ R+ is
said to be an E-distance if

(p1) p is an A-distance,
(p2) p(x, y) ≤ p(x, z) + p(z, y), ∀x, y, z ∈ X.

Examples.

1. Let (X,ϑ) be a uniform space and let d be a distance on X. Clearly (X,ϑd) is
a uniform space where ϑd is the set of all subsets of X × X containing a “band”
Bε = {(x, y) ∈ X2/d(x, y) < ε} for some ε > 0. Moreover, if ϑ ⊆ ϑd, then d is an
E-distance on (X,ϑ).

2. Recently, J.R. Montes and J.A. Charris introduced the concept of W-distance on
uniform spaces. Every W-distance p is an E-distance since it satisfies (p1), (p2) and
the following condition: for all x ∈ X, the function p(x, .) is lower semi-continuous.

3. Let X = [0,+∞[ and d(x, y) = |x − y| the usual metric. Consider the function
p defined as follows

p(x, y) =
{

y, y ∈ [0, 1[,
2y, y ∈ [1,+∞[.

It is easy to see that the function p is an E-distance on (X,ϑd) but it is not an
W-distance on (X,ϑd) since the function p(x, .) : X −→ R+ is not lower semi-
continuous at 1.

The following lemma contains some useful properties of A-distances. It is stated
in [4] for metric spaces and in [7] for uniform spaces. The proof is straightforward.

Lemma 2.1. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance on
X. Let (xn), (yn) be arbitrary sequences in X and (αn), (βn) be sequences in R+

converging to 0. Then, for x, y, z ∈ X, the following holds
(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then y = z. In particular,

if p(x, y) = 0 and p(x, z) = 0, then y = z.
(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then (yn) converges to

z.
(c) If p(xn, xm) ≤ αn for all m > n, then (xn) is a Cauchy sequence in (X,ϑ).

Let (X,ϑ) be a uniform space with an A-distance p. A sequence in X is p-Cauchy
if it satisfies the usual metric condition. There are several concepts of completeness
in this setting

Definition 2.3. Let (X,ϑ) be a uniform space and p be an A-distance on X.
(1) X is S-complete if for every p-Cauchy sequence (xn), there exists x in X

with lim
n→∞

p(xn, x) = 0.

(2) X is p-Cauchy complete if for every p-Cauchy sequence (xn), there exists
x in X with lim

n→∞
xn = x with respect to τ(ϑ).
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(3) f : X −→ X is p-continuous if lim
n→∞

p(xn, x) = 0 implies

lim
n→∞

p(f(xn), f(x)) = 0.

(4) f : X −→ X is τ(ϑ)-continuous if lim
n→∞

xn = x with respect to τ(ϑ) implies

lim
n→∞

f(xn) = f(x) with respect to τ(ϑ).

(5) X is said to be p-bounded if δp(X) = sup{p(x, y)/x, y ∈ X} <∞.

Remark. Let (X,ϑ) be a Hausdorff uniform space and let (xn) be a p-Cauchy
sequence. Suppose that X is S-complete, then there exists x ∈ X such that
lim

n→∞
p(xn, x) = 0. Lemma 2.1(b) then gives lim

n→∞
xn = x with respect to the

topology τ(ϑ). Therefore S-completeness implies p-Cauchy completeness.

3. Common fixed point theorems for A(resp. E)-contractive maps

In the sequel we involve a nondecreasing function ψ : R+ −→ R+ satisfying

(ψ1) For each t ∈]0,+∞[, 0 < ψ(t).
(ψ2) lim

n→∞
ψn(t) = 0, ∀t ∈]0,+∞[

It is easy to see that under the above properties, ψ satisfies also ψ(t) < t for each
t > 0.

Main results

Theorem 3.1. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance
on X. Suppose X is p-bounded and S-complete. Let f and g be commuting p-
continuous or τ(ϑ)-continuous self-mappings of X such that

(1) f(X) ⊆ g(X),
(2) p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), ∀x, y ∈ X.

Then f and g have a common fixed point.

Proof. Let x0 ∈ X. Choose x1 ∈ X such that f(x0) = g(x1). Choose x2 ∈ X such
that f(x1) = g(x2). In general, choose xn ∈ X such that f(xn−1) = g(xn). We
have

p(f(xn), f(xn+m)) ≤ ψ(p(g(xn), g(xn+m)))
= ψ(p(f(xn−1), f(xn+m−1)))
≤ ψ2(p(g(xn−1), g(xn+m−1)))
= ψ2(p(f(xn−2), f(xn+m−2)))
...
≤ ψn(p(f(x0), f(xm)))
≤ ψn(δp(X)).

where δp(X) = sup{p(x, y)/x, y ∈ X}. Then, by (ψ2) and lemma 2.1(c), we de-
duce that the sequence (f(xn)) is a p-Cauchy sequence. Since X is S-complete,
lim

n→∞
p(f(xn), u) = 0, for some u ∈ X, and therefore lim

n→∞
p(g(xn), u) = 0. The

assumption that f and g are p-continuous implies lim
n→∞

p(f(g(xn)), f(u)) = 0 and

lim
n→∞

p(g(f(xn)), g(u)) = 0. Since fg = gf , it follows that lim
n→∞

p(f(g(xn)), f(u)) =

lim
n→∞

p(f(g(xn)), g(u)) = 0, and Lemma 2.1(a) then gives f(u) = g(u). Also

f(f(u)) = f(g(u)) = g(f(u)) = g(g(u)). Suppose that p(f(u), f(f(u))) 6= 0. From
(2), it follows

p(f(u), f(f(u))) ≤ ψ(p(g(u), g(f(u)))) = ψ(p(f(u), f(f(u)))) < p(f(u), f(f(u)))
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which is a contradiction. Thus p(f(u), f(f(u))) = 0. Suppose that p(f(u), f(u)) 6=
0. Also from (2), we have

p(f(u), f(u)) ≤ ψ(p(g(u), g(u))) = ψ(p(f(u), f(u))) < p(f(u), f(u))

a contradiction. Thus p(f(u), f(u)) = 0. Now we have p(f(u), f(u)) = 0 and
p(f(u), f(f(u))) = 0, lemma 2.1(a) then gives f(f(u)) = f(u). Hence g(f(u)) =
f(f(u)) = f(u), and therefore f(u) is a common fixed point of f and g. The proof
is similar when f and g are τ(ϑ)-continuous since S-completeness implies p-Cauchy
completeness (remark 2.1). ¤

Clearly, one would ask whether the common fixed point is unique. This will be
happen if we assume that the function p is an E-distance.

Theorem 3.2. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X. Suppose X is p-bounded and S-complete. Let f and g be commuting p-
continuous or τ(ϑ)-continuous self-mappings of X such that

(1) f(X) ⊆ g(X),
(2) p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), ∀x, y ∈ X.

Then f and g have a unique common fixed point.

Proof. Since an E-distance function p is an A-distance, f and g have a common
fixed point. Suppose that there exists u, v ∈ X such that f(u) = g(u) = u and
f(v) = g(v) = v. If p(u, v) 6= 0, then

p(u, v) = p(f(u), f(v)) ≤ ψ(p(g(u), g(v))) = ψ(p(u, v)) < p(u, v)

which is a contradiction. Thus p(u, v) = 0. Similarly, we show that p(v, u) = 0.
Consequently, by (p2), we have p(u, u) ≤ p(u, v)+p(v, u) and therefore p(u, u) = 0.
Now we have p(u, u) = 0 and p(u, v) = 0, which implies u = v. ¤

Example. Let X = [0, 1] and d(x, y) = |x−y| the usual metric. Let f and g defined
by

fx =
{
x2, x ∈ [0, 1

2 [,
0, x ∈ [ 12 , 1]. gx =

{
x, x ∈ [0, 1

2 [,
1, x ∈ [ 12 , 1].

Consider the functions p and ψ defined as follows

ψ(x) =
{

x2, x ∈ [0, 1
2 [,

1
2x, x ∈ [ 12 , 1].

And

p(x, y) =
{
y, y ∈ [0, 1

2 [,
1, y ∈ [ 12 , 1].

On the one hand, the function p is an E-distance but not a W -distance and X is
S-complete. Moreover f , g are commuting, p-continuous and

d(f(
1
3
), f(

1
4
)) =

7
144

> ψ(d(g(
1
3
), g(

1
4
))) = ψ(

1
12

) =
1

144
which implies that d(f(x), f(y)) ≤ ψ(d(g(x), g(y))) does not hold for all x, y ∈ X.
On the other hand, we have

p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), ∀x, y ∈ X
and 0 is the unique common fixed point of f and g.

Letting g = IdX , the identity, gives a generalization of ψ-contraction in metric
spaces, which is given in [9](page 39) as problem 1.4
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Corollary 3.1. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X. Suppose X is p-bounded and S-complete. Let f be a p-continuous or τ(ϑ)-
continuous self-mapping of X such that

p(f(x), f(y)) ≤ ψ(p(x, y)), ∀x, y ∈ X
Then f has a unique fixed point.

Also for f = IdX , we get the following result

Corollary 3.2. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X. Suppose X is p-bounded and S-complete. Let g be a surjective p-continuous
or τ(ϑ)-continuous self-mapping of X such that

p(x, y) ≤ ψ(p(g(x), g(y))), ∀x, y ∈ X
Then g has a unique fixed point.

In 1986, G. Jungck [3] introduced the notion of compatible maps in metric spaces.
This concept was frequently used to prove existence theorems in common fixed point
theory. We formulate this concept in the setting of uniform spaces as follows

Definition 3.1. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance
on X. Two self-mappings f and g of X are said to be p-compatible if, for each
sequence (xn) of X such that lim

n→∞
p(f(xn), u) = lim

n→∞
p(g(xn), u) = 0 for some

u ∈ X, one has lim
n→∞

p(f(g(xn)), g(f(xn))) = 0.

Examples.

1. Let X = [0,+∞[ and p(x, y) = max{x, y}.
The function p is an A-distance. Let f and g be a self-mappings of X defined by

f(x) = 2x and g(x) = 3x

it is easy to see that

lim
n→∞

p(f(xn), u) = 0 implies lim
n→∞

xn = 0 and u = 0

and
lim

n→∞
p(g(xn), u) = 0 implies lim

n→∞
xn = 0 and u = 0

Therefore
lim

n→∞
p(f(g(xn)), g(f(xn))) = lim

n→∞
6xn = 0

Thus f and g are p-compatible.

2. Let X = [0,+∞[ and p(x, y) = y. The function p is an A-distance. Let f and g
be self-mappings of X defined by

f(x) = 2x and g(x) = 3x

Consider the sequence (xn) with xn = 1, n = 1, 2, . . .. We have

lim
n→∞

p(f(xn), 0) = 0 and lim
n→∞

p(g(xn), 0) = 0

but
lim

n→∞
p(f(g(xn)), g(f(xn))) = lim

n→∞
6xn = 6

Which implies that f and g are not p-compatible.

Remark. Obviously, in the setting of metric spaces two commuting maps are com-
patible. However, in our setting this implication does not hold as it is shown in the
above example 3.1.2.
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Theorem 3.3. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X. Suppose X is p-bounded and S-complete. Let f and g be p-compatible,
p-continuous or τ(ϑ)-continuous self-mappings of X such that

(1) f(X) ⊆ g(X),
(2) p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), ∀x, y ∈ X.

Then f and g have a unique common fixed point.

Proof. As in the proof of theorem 3.1, lim
n→∞

p(f(xn), u) = lim
n→∞

p(g(xn), u) = 0, for

some u ∈ X. Since f and g are p-continuous, one has lim
n→∞

p(f(g(xn)), f(u)) = 0

and lim
n→∞

p(g(f(xn)), g(u)) = 0. The assumption that f and g are compatible, gives

lim
n→∞

p(f(g(xn)), g(f(xn))) = 0. Moreover, we have

p(f(g(xn)), g(u)) ≤ p(f(g(xn)), g(f(xn))) + p(g(f(xn)), g(u))

On letting n −→ ∞ and using lemma 2.1(a), we obtain lim
n→∞

p(f(g(xn)), g(u)) =

0. Now we have lim
n→∞

p(f(g(xn)), f(u)) = 0 and lim
n→∞

p(f(g(xn)), f(u)) = 0, and

Lemma 2.1(b) then gives f(u) = g(u). The rest is the same as given for theorem
3.1 (resp. theorem 3.2 for uniqueness). ¤

4. Common fixed point theorems for E-expansive maps

In this section, we involve a nondecreasing function φ : R+ −→ R+ satisfying the
following conditions

(φ1) For each t > 0, t < φ(t),
(φ2) For any decreasing sequence (tn) in R+, if

lim
n→∞

tn = lim
n→∞

φ(tn) = t, for some t ∈ R+

then t = 0.

Main results

Theorem 4.1. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X. Suppose X is S-complete. Let f and g be commuting p-continuous or τ(ϑ)-
continuous self-mappings of X such that

(1) g(X) ⊆ f(X),
(2) φ(p(g(x), g(y))) ≤ p(f(x), f(y)), ∀x, y ∈ X.

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X. Choose x1 ∈ X such that g(x0) = f(x1). Choose x2 ∈ X
such that g(x1) = f(x2). In general, choose xn ∈ X such that g(xn−1) = f(xn).
Consider the sequence yn = p(g(xn), g(xn+1)), n = 0, 1, . . .. We wish to show that
lim

n→∞
yn = 0. Indeed, we have

yn+1 = p(g(xn+1), g(xn+2)) < φ(p(g(xn+1), g(xn+2))
≤ p(f(xn+1), f(xn+2)) = p(g(xn), g(xn+1)))
< yn

and yn < φ(yn) ≤ yn−1 < φ(yn−1), which implies that (yn) and (φ(yn)) are de-
creasing and then lim

n→∞
yn and lim

n→∞
φ(yn) exist. Therefore, on letting n −→ +∞,

we obtain lim
n→∞

yn = lim
n→∞

φ(yn) = t, for some t ∈ R+. Condition (φ2) then gives

t = 0. Hence lim
n→∞

p(g(xn), g(xn+1)) = 0.

Now we wish to show that the sequence (g(x2n)) is a p-Cauchy sequence. Suppose
that (g(x2n)) is not a p-Cauchy sequence. Then there exists a positive number ε
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such that, for each positive integer 2k, there exist integers 2n(k) and 2m(k) such
that 2k ≤ 2n(k) < 2m(k) and p(g(x2n(k)), g(x2m(k))) ≥ ε.

For each integer 2k, let 2m(k) denotes the smallest integer satisfying the last
two inequalities. Then p(g(x2n(k)), g(x2m(k)−2)) < ε. From (p1), we get

ε ≤ p(g(x2n(k)), g(x2m(k)))
≤ p(g(x2n(k)), g(x2m(k)−2)) + p(g(x2m(k)−2), g(x2m(k)−1))

+p(g(x2m(k)−1), g(x2m(k)−2)),

which gives lim
k→∞

p(g(x2n(k)), g(x2m(k))) = ε, since lim
n→∞

p(g(xn), g(xn+1)) = 0.

On the other hand, we have

p(g(x2n(k)−1), g(x2m(k)−1)) = p(f(x2n(k)), f(x2m(k)))
≥ φ(p(g(x2n(k)), g(x2m(k))))
> p(g(x2n(k)), g(x2m(k)))

and

p(g(x2n(k)−1), g(x2m(k)−1)) ≤ p(g(x2n(k)−1), g(x2n(k)))
+p(g(x2n(k)), g(x2m(k)−2))
+p(g(x2m(k)−2), g(x2m(k)−1)).

Putting k −→∞, we obtain lim
k→∞

φ(p(g(x2n(k)), g(x2m(k)))) = ε.

Now we have

lim
k→∞

p(g(x2n(k)), g(x2m(k))) = lim
k→∞

φ(p(g(x2n(k)), g(x2m(k)))) = ε.

By (φ2), we get ε = 0, which is a contradiction. Thus the sequence (g(x2n)) is a p-
Cauchy sequence and therefore (g(xn)) is a p-Cauchy sequence. The S-completeness
ofX implies lim

n→∞
p(g(xn), u) = 0, for some u ∈ X. Also lim

n→∞
p(f(xn), u) = 0. Since

g is p-continuous, one has lim
n→∞

p(g(f(xn)), g(u)) = 0. Commutativity of f and g

and p-continuity of f imply lim
n→∞

p(g(f(xn)), f(u)) = lim
n→∞

p(f(g(xn)), f(u)) = 0.

Lemma 2.1(a) then gives f(u) = g(u).
Also f(f(u)) = f(g(u)) = g(f(u)) = g(g(u)). Suppose that p(f(u), f(f(u))) 6= 0.

From (2), it follows

p(f(u), f(f(u))) = p(g(u), g(g(u))) < φ(p(g(u), g(g(u)))) ≤ p(f(u), f(f(u)))

which is a contradiction. Thus p(f(u), f(f(u))) = 0. Suppose that p(f(u), f(u)) 6=
0. Also from (2), we have

p(f(u), f(u)) = p(g(u), g(u)) < φ(p(g(u), g(u))) ≤ p(f(u), f(u))

a contradiction. Thus p(f(u), f(u)) = 0. Now we have p(f(u), f(u)) = 0 and
p(f(u), f(f(u))) = 0, and lemma 2.1(a) then gives f(f(u)) = f(u). Hence g(f(u)) =
f(f(u)) = f(u), and therefore f(u) is a common fixed point of f and g. Suppose
that there exists u, v ∈ X such that f(u) = g(u) = u and f(v) = g(v) = v. If
p(u, v) 6= 0, then

p(u, v) = p(g(u), g(v)) < φ(p(g(u), g(v))) ≤ p(f(u), f(v)) = p(u, v)

which is a contradiction. Thus p(u, v) = 0. Similarly, we show that p(v, u) = 0.
Consequently, by (p2), we have p(u, u) ≤ p(u, v)+p(v, u) and therefore p(u, u) = 0.
Now we have p(u, u) = 0 and p(u, v) = 0, which implies u = v. The proof is
similar when f and g are τ(ϑ)-continuous since S-completeness implies p-Cauchy
completeness (Remark 2.1). ¤
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Example. Let X = [0,+∞[ and d(x, y) = |x − y| the usual metric. Let f and g
defined by

g(x) =
{

1
3x, x ∈ [0, 1[,
0, x ≥ 1; f(x) =

{
1
2x, x ∈ [0, 1[,
1, x ≥ 1.

Consider the functions p and ψ defined as follows

φ(x) =
{

7
6x, x ∈ [0, 1[,

x+ 1, x ≥ 1, and p(x, y) = y.

It is easy to see that p is an E-distance and X is S-complete. Moreover f , g are
commuting, p-continuous and

φ(p(g(x), g(y))) ≤ p(f(x), f(y))), ∀x, y ∈ X
and 0 is the unique common fixed point of f and g.

Letting f = IdX (resp. g = IdX), we get the following results

Corollary 4.1. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X. Suppose X is S-complete. Let g be a p-continuous or τ(ϑ)-continuous self-
mapping of X such that

φ(p(g(x), g(y))) ≤ p(x, y), ∀x, y ∈ X
Then g has a unique fixed point.

Corollary 4.2. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance on
X. Suppose X is S-complete. Let f be a surjective p-continuous or τ(ϑ)-continuous
self-mapping of X such that

φ(p(x, y)) ≤ p(f(x), f(y)), ∀x, y ∈ X.
Then f has a unique fixed point.

Also for p-compatible maps, we have the following result

Theorem 4.2. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance
on X. Suppose X is S-complete. Let f and g be p-compatible, p-continuous or
τ(ϑ)-continuous self-mappings of X such that

(1) g(X) ⊆ f(X),
(2) φ(p(g(x), g(y))) ≤ p(f(x), f(y)), ∀x, y ∈ X.

Then f and g have a unique common fixed point.

Proof. The proof is almost the same as that of theorem 4.1 by utilizing a similar
argument of theorem 3.3. ¤
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[1] N. Bourbaki. Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Chapitre
1: Structures topologiques. Chapitre 2: Structures uniformes. Quatrième édition. Actualités
Scientifiques et Industrielles, No. 1142. Hermann, Paris, 1965.

[2] J. Jachymski. Fixed point theorems for expansive mappings. Math. Japon., 42(1):131–136,
1995.

[3] O. Kada, T. Suzuki, and W. Takahashi. Nonconvex minimization theorems and fixed point
theorems in complete metric spaces. Math. Japon., 44(2):381–391, 1996.

[4] S. M. Kang. Fixed points for expansion mappings. Math. Japon., 38(4):713–717, 1993.
[5] B. E. Rhoades. A comparison of various definitions of contractive mappings. Trans. Amer.

Math. Soc., 226:257–290, 1977.
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