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COMMON FIXED POINT THEOREMS FOR MAPPINGS

SATISFYING COMMON PROPERTY (E.A.)

IN SYMMETRIC SPACES

Dhananjay Gopal, Mohammad Imdad and Calogero Vetro

Abstract

In this paper, common fixed point theorems for mappings satisfying a
generalized contractive condition are obtained in symmetric spaces by using
the notion of common property (E.A.). In the process, a host of previously
known results are improved and generalized. We also derive results on common
fixed point in probabilistic symmetric spaces.

1 Introduction and preliminaries

The practice of coining weaker forms of commutativity to ensure the existence
of common fixed point for self mappings on metric spaces is still on. The weak
conditions of commutativity of a pair of selfmappings was initiated by Sessa [18]
with the introduction of the notion of weakly commuting pair. Later on, Jungck
[13] enlarged the class of weakly commuting mappings by introducing the notion of
compatible mappings which was further widened by Jungck [14] with the notion of
weakly compatible mappings. This concept of weak compatibility is most optimal
and widely used concept among all the weak commutativity concepts thus far.
The existing literature contains numerous weak conditions of commutativity whose
systematic survey (up to 2001) is available in Murthy [16].

In recent years, Hicks and Rhoades [9] established some common fixed point
theorems in symmetric spaces (see also [19]) using the fact that full force of metric
conditions are not required in the proofs of certain metrical fixed point theorems.
Recently, Ali and Imdad [3] proved some common fixed point theorems for mappings
satisfying common property (E.A.) by replacing the usual involved contractive con-
dition with a suitable implicit function and also highlighted it’s unifying power with
the help of numerous examples. On the other hand, Branciari [4] initiated a study of
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contractive conditions of integral type, giving an integral version of Banach contrac-
tion principle (extendable to more general contractive conditions) whereas Aliouche
[2] established a common fixed point theorem for self mappings in a symmetric
space under a contractive condition of integral type. Recently, Di Bari and Vetro
[7] established some common fixed point theorems for mappings satisfying gener-
alized contractive condition which include integral type contractive conditions. In
2008, Cho et al. [6] proved interesting fixed point theorems for nonexpansive type
mappings which rectify and generalize some results of Imdad et al. [11] and also
carry out a systematic study of crucial conditions such as (W3), (W4), (HE) and (1C)

(to be defined shortly) which can be fruitful to the researchers of this domain.

In this paper, we prove some common fixed point theorems for mappings sat-
isfying generalized contractive conditions in symmetric spaces. While proving our
results, we utilize the idea of common property (E.A.) keeping in view the fact that
it buys the required containment of range of one mapping into the other.

The following definitions and results will be needed in the sequel.

Definition 1. A symmetric d (introduced by K. Menger in 1928) on a non-empty
set X is a function d : X ×X → [0,∞) which satisfies (for all x,y in X)

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x).

Let d be a symmetric on a set X, ε > 0 and B(x, ε) = {y ∈ X : d(x, y) < ε}. A
topology τ(d) on X is given by the sets U (along with empty set) in which for each
x ∈ U , B(x, ε) ⊂ U for some ε > 0. A set S ⊂ X is a neighborhood of x ∈ X if and
only if there is a U containing x such that x ∈ U ⊂ S. A symmetric d is said to be
a semi-metric if for each x ∈ X and for each ε > 0, B(x, ε) is a neighborhood of x in
the topology τ(d). Thus a symmetric (resp. a semi-metric) space X is a topological
space whose topology τ(d) on X is induced by a symmetric (resp. a semi-metric) d.
Notice that limn,+∞ d(xn, x) = 0 if and only if xn → x in the topology τ(d).

Since a symmetric space is not essentially Hausdorff, therefore in order to prove
fixed point theorems some additional axioms are required. The following axioms,
which are available in Galvin and Shore [8], Wilson [20], Aliouche [2] and Imdad
and Soliman [12], are relevant to this presentation.

Definition 2. (W3 [20]): Given {xn}, x and y in X, d(xn, x) → 0 and d(xn, y) → 0

imply x = y.

Definition 3. (W4 [20]): Given {xn}, {yn} and x ∈ X, d(xn, x) → 0 and d(xn, yn) →
0 imply d(yn, x) → 0.

Definition 4. (HE [2]): Given {xn}, {yn} and x ∈ X, d(xn, x) → 0 and d(yn, x) → 0

imply d(xn, yn) → 0.

Definition 5. (1C [8]): A symmetric d is said 1−continuous if limn,+∞ d(xn, x) = 0

implies limn,+∞ d(xn, y) = d(x, y) for every x, y ∈ X.
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Clearly, (W4) implies (W3) but other possible implications amongst (W3), (W4),
(HE) are not generally true. Also notice that (1C) implies (W3).

As usual, a sequence {xn} in a symmetric space (X, d) is said to be d-Cauchy
sequence if it satisfies the standard metric condition. It is interesting to note that
in a symmetric space, Cauchy convergence criterion is not a necessary condition for
the convergence of a sequence but this criterion becomes a necessary condition if
symmetric d is suitably restricted (see Wilson [20]). In 1972, Burke [5] furnished
an illustrative example to show that a convergent sequence in a semi-metric space
need not admit a Cauchy subsequence. Burke was able to formulate an equivalent
condition under which every convergent sequence in a semi-metric space admits
a Cauchy subsequence. There are several concepts of completeness in semi-metric
spaces, e.g. S−completeness, d-Cauchy completeness, strong and weak completeness
whose details are available in Wilson [20], but we omit the details and give only the
following definition.

Definition 6. A symmetric space (X, d) is S−complete if for every d−Cauchy se-
quence {xn}, there exists some x ∈ X such that limn,+∞ d(xn, x) = 0.

Lastly, we list the remaining relevant definitions to our presentation which can
be found in [3, 12] and references mentioned therein.

Definition 7. We recall that a pair of self mappings (f, g) defined on a symmetric
(or semi-metric) space (X, d) is said to be

(i) compatible if limn,+∞ d(fgxn, gfxn) = 0 whenever {xn} is a sequence such that
limn,+∞ fxn = limn,+∞ gxn = t for some t ∈ X,

(ii) non-compatible if there exists some sequence {xn} such that limn,+∞ fxn =

limn,+∞ gxn = t for some t ∈ X but limn,+∞ d(fgxn, gfxn) is either non-zero
or non-existent,

(iii) tangential (or satisfy the property (E.A.)) if there exists some sequence {xn}
such that limn,+∞ fxn = limn,+∞ gxn = t for some t ∈ X,

(iv) weakly commuting (or partially commuting or coincidentally commuting) if
the pair commutes on the set of coincidence points,

(v) occasionally weakly compatible (see [1, 15]) if there is at least one coincidence
point x of (f, g) in X at which (f, g) commutes.

Clearly compatible as well as non-compatible mappings satisfy the property
(E.A.).

Definition 8. Two pairs of self mappings (A, B) and (S, T ) defined on a symmetric
(or semi-metric) space (X, d) are said to satisfy the common property (E.A.) if
there exist two sequences {xn} and {yn} such that limn,+∞Axn = limn,+∞Bxn =

limn,+∞ Syn = limn,+∞ Tyn = t, for some t ∈ X.

For more on (E.A.) and common property (E.A.), we refer to [3, 12].
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2 Results in symmetric spaces

In this section we prove some common fixed point theorems for mappings satisfying
the common property (E.A.).

Let (X, d) be a symmetric (or semi-metric) space and A, B, S and T be self
mappings of X. For all x, y ∈ X, we denote

m(x, y; A, B, S, T ) := max{d(Sx, By), d(Ty, Ax), d(Ty, By), d(Sx, Ax), d(Sx, Ty)}.

Let G, ψ : [0,∞) → [0,∞) and we consider the following properties:

(i) G is nondecreasing, continuous and G(0) = 0 < G(t) for every t > 0,

(ii) ψ is nondecreasing, right continuous and ψ(t) < t for every t > 0.

In the following, we denote G := {G : [0,∞) → [0,∞) : G satisfies (i)} and Ψ := {ψ :

[0,∞) → [0,∞) : ψ satisfies (ii)}.
Theorem 1. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let S, T, Ak,
for k = 1, 2, . . . , be self mappings of X. Assume that there exist G ∈ G and ψ ∈ Ψ

such that
G(d(A1x, Aky)) ≤ ψ(G(m(x, y; A1, Ak, S, T ))), (1)

for all x, y ∈ X and k > 1.
Suppose that the pairs (A1, S) and (Ak, T ) for k > 1, share the common property

(E.A.), S(X) and T (X) are closed subset of X. Then the pairs (A1, S) and (Ak, T )

for k > 1 have a coincidence point. Moreover, S, T and all the Ak have a unique
common fixed point provided both the pairs (A1, S) and (Ak, T ) for k > 1 are weakly
compatible.

Proof. Since the pairs (A1, S) and (Ak, T ), for k > 1, share the common property
(E.A.), there exist two sequences {xn}, {yn} in X such that

lim
n,+∞ d(A1xn, t) = lim

n,+∞ d(Sxn, t) = lim
n,+∞ d(Akyn, t) = lim

n,+∞ d(Tyn, t) = 0,

for k > 1 and some t ∈ X. By (HE), we have

lim
n,+∞ d(A1xn, Sxn) = lim

n,+∞ d(Akyn, T yn) = 0.

Since S(X) is a closed subset of X, limn,+∞ Sxn = t ∈ S(X). Therefore, there exists
a point u ∈ X such that Su = t. Subsequently, we have limn,+∞ d(A1xn, Su) =

limn,+∞ d(Sxn, Su) = limn,+∞ d(Akyn, Su) = limn,+∞ d(Tyn, Su) = 0.

Now, we assert that A1u = Su. If not, then using (1), we have

G(d(A1u, Akyn))

≤ ψ(G(max{d(Su, Akyn), d(Tyn, A1u), d(Tyn, Akyn), d(Su, A1u), d(Su, Tyn)})).

Making n → +∞ and using (1C) and (HE), we get

G(d(A1u, Su)) ≤ ψ(G(max{0, d(Su, A1u), 0, d(Su, A1u), 0})) < G(d(A1u, Su)),
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a contradiction. Hence A1u = Su. Therefore, u is a coincidence point of the pair
(A1, S).

Since T (X) is a closed subset of X, limn,+∞ Tyn = t ∈ T (X). Therefore, there
exists a point w ∈ X such that Tw = t. Now, we assert that Akw = Tw. If not, then
using (1), we have

G(d(A1xn, Akw))

≤ ψ(G(max{d(Sxn, Akw), d(Tw, A1xn), d(Tw, Akw), d(Sxn, A1xn), d(Sxn, Tw)})).

Letting n → +∞ and using (1C) and (HE), we get

G(d(Tw, Akw)) ≤ ψ(G(d(Tw, Akw))) < G(d(Tw, Akw)),

a contradiction. Hence Akw = Tw, which shows that w is a coincidence point of
the pair (Ak, T ). Since the pair (A1, S) is weakly compatible and A1u = Su, hence
A1t = A1Su = SA1u = St.

Now, we assert that t is a common fixed point of the pair (A1, S). Suppose
A1t 6= t, then using (1), we have

G(d(A1t, t)) = G(d(A1t, Tw)) = G(d(A1t, Akw))

≤ ψ(G(max{d(St, Akw), d(Tw, A1t), d(Tw, Akw), d(St, A1t), d(St, Tw)}))
< G(d(A1t, t)),

a contradiction. As the pair (Ak, T ) is also weakly compatible and Akw = Tw,
therefore Akt = AkTw = TAkw = Tt. Suppose that Akt 6= t, then using (1), we
again arrive at a contradiction to our assumption. Therefore, Akt = t, which shows
that t is a common fixed point of the pair (Ak, T ) and henceforth t is a common fixed
point of both the pairs (A1, S) and (Ak, T ). Uniqueness of t is an easy consequence
of (1). This completes the proof.

Example 1. Consider X = (−1, 1) equipped with the symmetric defined by d(x, y) =

(x− y)2 for all x, y ∈ X. Define self mappings Ak, S and T on X as

A1x =





3
5 if − 1 < x < −1/2
x
4 if − 1/2 ≤ x ≤ 1/2
3
5 if 1/2 < x < 1,

Akx =





3
5 if − 1 < x < −1/2

− x
4k if − 1/2 ≤ x ≤ 1/2 (k > 1)

3
5 if 1/2 < x < 1,

Sx =





3
4 if − 1 < x < −1/2
x
2 if − 1/2 ≤ x ≤ 1/2

− 3
4 if 1/2 < x < 1,

Tx =





− 3
4 if − 1 < x < −1/2

−x
2 if − 1/2 ≤ x ≤ 1/2

3
4 if 1/2 < x < 1.

Consider sequences {xn} = { 1
n+1} and {yn} = {− 1

n+1} in X. Clearly,

lim
n,+∞A1xn = lim

n,+∞Sxn = lim
n,+∞Akyn = lim

n,+∞Tyn = 0
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which shows that (A1, S) and (Ak, T ) for k > 1 share the common property (E.A.).
Set G to be identity mapping and ψ(s) = cs with c ∈ (12

15 , 1). By a routine calcu-
lation, one can verify that the condition (1) holds. Also, A1(X) = { 3

5} ∪ [− 1
8 , 1

8 ] 6⊂
S(X) = {−3

4 , 3
4} ∪ [− 1

4 , 1
4 ] and Ak(X) = { 3

5} ∪ [− 1
8k , 1

8k ] 6⊂ T (X) = {−3
4 , 3

4} ∪ [− 1
4 , 1

4 ].
Therefore, all the conditions of Theorem 1 are satisfied and 0 is the unique common
fixed point of the pairs (A1, S) and (Ak, T ). Here it is worth noting that none of
the theorems, e.g. Di Bari and Vetro [7], Pathak et al. [17], Zhu et al. [21], can
be used in the context of this example as Theorem 1 never requires any condition
on the containment of ranges of the involved mappings. Further, all the mappings
involved in this example are discontinuous.

The following example shows that the axioms (1C) and (HE) cannot be dropped
in Theorem 1. The idea of this example appears in Cho et al. [6].

Example 2. Consider X = [0,∞) equipped with the symmetric defined by d(0, 0) = 0

and

d(x, y) =

{
|x− y| if x 6= 0 and y 6= 0
1
x if x 6= 0.

Define self mappings S, T and Ak, for k ≥ 1, on X as

Sx = Tx = x, Akx =

{
1
3x if x > 0
1
3 if x = 0.

Thus, (X, d) is a symmetric space where d does not satisfy (1C) and (HE) for {xn} =

{n}, {yn} = {n+1}. Now, define G to be the identity mapping, ψ(s) = cs and consider
the sequence {xn} = {n}. By a routine calculation, one can verify that the condition
(1) holds with c ∈ (1

2 , 1). Notice that the pairs (A1, S) and (Ak, T ) for k > 1, share
the common property (E.A.), S(X) and T (X) are closed subsets of X. But the
pairs (A1, S) and (Ak, T ) (for k > 1) have no coincidence points and henceforth no
common fixed point.

By choosing A1 = A and Ak = B in the above Theorem 1, we get the following
corollary for two pairs of mappings which is an improvement over the corresponding
result of Di Bari and Vetro [7].

Corollary 1. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let A, B, S

and T be self mappings of X. Assume that there exist G ∈ G and ψ ∈ Ψ such that

G(d(Ax, By)) ≤ ψ(G(m(x, y; A, B, S, T ))), (2)

for all x, y ∈ X. Suppose that the pairs (A, S) and (B, T ) share the common property
(E.A.), S(X) and T (X) are closed subset of X. Then the pairs (A, S) and (B, T )

have a coincidence point. Moreover, A, B, S and T have a unique common fixed
point provided both the pairs (A, S) and (B, T ) are weakly compatible.

Next, we consider the function G : [0,∞) → [0,∞), defined by G(s) =
∫ s
0 ϕ(t)dt

(where ϕ : [0,∞) → [0,∞) is a function Lebesgue integrable such that
∫ ε
0 ϕ(t)dt > 0

whenever ε > 0. The function G ∈ G and from Corollary 1 we deduce the following
corollary.
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Corollary 2. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let A, B, S

and T be self mappings of X. Assume that there exists ψ ∈ Ψ such that

∫ d(Ax,By)

0
ϕ(t)dt ≤ ψ(

∫ m(x,y;A,B,S,T )

0
ϕ(t)dt). (3)

Suppose that the pairs (A, S) and (B, T ) share the common property (E.A.), S(X) and
T (X) are closed subset of X. Then the pairs (A, S) and (B, T ) have a coincidence
point. Moreover, A, B, S and T have a unique common fixed point provided both the
pairs (A, S) and (B, T ) are weakly compatible.

Since a pair of mappings without any point of coincidence can also be realized as
a weakly compatible pair (as requirements of the definition are vacuously satisfied),
therefore we get the following result. Precisely, it may be pointed out that the ax-
ioms (1C) and (HE) are not required if we consider occasionally weakly compatible
mappings.

Theorem 2. Let (X, d) be a symmetric space and let S, T, Ak, for k = 1, 2, . . . , be
self mappings of X. Assume that there exist G ∈ G and ψ ∈ Ψ such that

G(d(A1x, Aky)) ≤ ψ(G(m(x, y; A1, Ak, S, T ))), (4)

for all x, y ∈ X. Then S, T and all the Ak have a unique common fixed point provided
both the pairs (A1, S) and (Ak, T ) for k > 1 are occasionally weakly compatible.

Proof. Since the pairs (A1, S) and (Ak, T ) are each occasionally weakly compatible,
there exist points x, yk ∈ X such that A1x = Sx and Akyk = Tyk for k > 1. We claim
that A1x = Akyk for all k > 1. If it is not, then by (4) we have

G(d(A1x, Akyk)) ≤ψ(G(m(x, yk; A1, Ak, S, T )))

=ψ(G(d(A1x, Akyk))) < G(d(A1x, Akyk)),

a contradiction. Therefore, A1x = Akyk for all k > 1. Moreover, if there is another
point z such that A1z = Sz, then in view of earlier deduction A1z = Akyk for all
k > 1 which in turn yields that A1z = A1x = Sx = Sz. Hence w = A1x = Sx is
the unique point of coincidence of A1 and S. By Lemma 1 of [15], w is the unique
common fixed point of A1 and S. By symmetry, rk = Akyk = Tyk is the unique
common fixed point of Ak and T for k > 1. Since w = rk for all k > 1, we obtain
that w is the unique common fixed point of S, T and all the Ak.

For all x, y ∈ X and 0 < α < 2, we denote

m1(x, y; A, B, S, T ) :=

max{d(Sx, Ty), α
d(Ax, Sx) + d(By, Ty)

2
, α

d(Ax, Ty) + d(By, Sx)

2
}.

Now, we are ready to state and prove the following result.
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Corollary 3. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let
S, T, Ak, for k = 1, 2, . . . , be self mappings of X. Assume that there exists G ∈ G
and ψ ∈ Ψ such that

G(d(A1x, Aky)) ≤ ψ(G(m1(x, y; A1, Ak, S, T ))), (5)

for all x, y ∈ X, 0 < α < 2 and k > 1.
Suppose that the pairs (A1, S) and (Ak, T ) for k > 1, share the common property

(E.A.), S(X) and T (X) are closed subset of X. Then the pairs (A1, S) and (Ak, T )

for k > 1 have a coincidence point. Moreover, S, T and all the Ak have a unique
common fixed point provided both the pairs (A1, S) and (Ak, T ) for k > 1 are weakly
compatible.

Proof. Since m1(x, y; A1, Ak, S, T ) ≤ m(x, y; A1, Ak, S, T ), the proof of this corollary
follows from Theorem 1.

Now, we get the following corollary which improves the corresponding results of
Cho et al. [6] and also rectifies the relevant results of Imdad et al.[11].

Corollary 4. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let A, B, S

and T be self mappings of X. Assume that there exists F : [0,∞) → [0,∞) that is
increasing, continuous and F (0) = 0 < F (t) for every t > 0, such that

F (d(Ax, By)) < F (m1(x, y; A, B, S, T )), (6)

for all x, y ∈ X.
Suppose that the pairs (A, S) and (B, T ), share the common property (E.A.), S(X)

and T (X) are closed subset of X. Then the pairs (A, S) and (B, T ) for k > 1 have
a coincidence point. Moreover, A, B, S and T have a unique common fixed point
provided both the pairs (A, S) and (B, T ) are weakly compatible.

Proof. Since the pairs (A1, S) and (Ak, T ), for k > 1, share the common property
(E.A.), then there exist two sequences {xn}, {yn} in X such that

lim
n,+∞ d(A1xn, t) = lim

n,+∞ d(Sxn, t) = lim
n,+∞ d(Akyn, t) = lim

n,+∞ d(Tyn, t) = 0,

for k > 1 and some t ∈ X. By (HE), we have

lim
n,+∞ d(A1xn, Sxn) = lim

n,+∞ d(Akyn, T yn) = 0.

Since S(X) is a closed subset of X, limn,+∞ Sxn = t ∈ S(X). Therefore, there exists
a point u ∈ X such that Su = t. Subsequently, we have

lim
n,+∞ d(A1xn, Su) = lim

n,+∞ d(Sxn, Su) = lim
n,+∞ d(Akyn, Su) = lim

n,+∞ d(Tyn, Su) = 0.

Now, we assert that A1u = Su. If not, then using (6), we have

F (d(A1u, Akyn))

< F (max{d(Su, Tyn), α
d(A1u, Su) + d(Akyn, T yn)

2
, α

d(A1u, Tyn) + d(Akyn, Su)

2
}).
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Making n → +∞ and using (1C) and (HE), we get

F (d(A1u, Su)) ≤ F (max{0, α
d(A1u, Su)

2
, α

d(A1u, Su)

2
}) < F (d(A1u, Su)),

a contradiction. Hence A1u = Su. Therefore, u is a coincidence point of the pair
(A1, S). The rest of the proof of this theorem can be completed on the lines of the
proof of Theorem 1, hence details are omitted.

3 Results via an implicit relation

Let Φ be the family of lower semi-continuous functions (l.s.c.) φ : R6
+ → R satisfying

the following conditions:

(φ1) φ(t, 0, t, 0, 0, t) > 0, for all t > 0,

(φ2) φ(t, 0, 0, t, t, 0) > 0, for all t > 0,

(φ3) φ(t, t, 0, 0, t, t) > 0, for all t > 0.

Example 3. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − ψ(max{t2, t3, t4, t5, t6}),

where ψ(t) < t for all t ∈ R+. Then, φ satisfies the conditions (φ1), (φ2), (φ3) and so
φ ∈ Φ.

Further, the following examples of φ ∈ Φ are indeed contained in Ali and Imdad [3].

Example 4. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − k(max{t2, t3, t4, t5, t6}),

where k ∈ [0, 1).

Example 5. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − k(max{t2, t3, t3t5, t4t6}),

where k ∈ [0, 1).

Example 6. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − k(max{t22, t3t4, t5t6, t3t5, t4t6})
1
2 ,

where k ∈ [0, 1).

Example 7. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − α[β max{t2, t3, t4, t5, t6}
+ (1− β)(max{t22, t3t4, t5t6, t3t6, t4t5})

1
2 ],

where α ∈ [0, 1) and β ≥ 0.
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Example 8. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t21 − α max{t22, t23, t24} − β max{t3t5, t4t6} − γt5t6,

where α, β, γ ≥ 0 and α + γ < 1.

Example 9. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = (1 + αt2)t1 − α max{t3t4, t5t6} − β max{t2, t3, t4, t5, t6},

where α ≥ 0 and β ∈ [0, 1).

Example 10. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − αt2 − β max{t3, t4} − γ max{t3 + t4, t5 + t6},

where α, β, γ ≥ 0 and α + β + 2γ < 1.

Example 11. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − θ(max{t2, t3, t4, t5, t6}),

where θ(t) : R+ → R is an upper semi-continuous function such that θ(0) = 0 and
θ(t) < t for all t > 0.

Example 12. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − θ(t2, t3, t4, t5, t6),

where θ(t) : R5
+ → R is an upper semi-continuous function such that, for each t > 0,

max{θ(0, t, 0, 0, t), θ(0, 0, t, t, 0), θ(t, 0, 0, t, t)} < t.

Example 13. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t21 − θ(t22, t3t4, t5t6, t3t6, t4t5),

where θ(t) : R5
+ → R is an upper semi-continuous function such that, for each t > 0,

max{θ(0, 0, 0, t, 0), θ(0, 0, 0, 0, t), θ(t, 0, t, 0, 0)} < t.

Example 14. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) =

{
t1 − αt2 − β

t23+t24
t3+t4

− γ(t5 + t6) if t3 + t4 6= 0

t1 if t3 + t4 = 0,

where α, β, γ ≥ 0 and β + γ < 1.

Example 15. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) =

{
tp1 − ktp2 −

t3tp
4+t5tp

6
t3+t4

if t3 + t4 6= 0

t1 if t3 + t4 = 0,

where p ≥ 1 and 0 ≤ k < ∞.
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Example 16. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) =

{
t1 − αt2 − β

t25+t26
t5+t6

− γ(t3 + t4) if t5 + t6 6= 0

t1 if t5 + t6 = 0,

where α, β, γ ≥ 0 and β + γ < 1.

Example 17. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) =

{
t1 − kt2 − t3t4+t5t6

t5+t6
if t5 + t6 6= 0

t1 if t5 + t6 = 0,

where 0 ≤ k < ∞.

Example 18. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) =

{
t1 − kt2 − t3t4+t5t6

t3+t4
− t3t5+t4t6

t5+t6
if t3 + t4 6= 0 and t5 + t6 6= 0

t1 if t3 + t4 = 0 or t5 + t6 = 0,

where 0 ≤ k < ∞.

Example 19. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − t3t4 + t5t6
1 + t2

.

Example 20. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − αt2 − β
t3 + t4
1 + t5t6

,

where α, β ∈ [0, 1).

Example 21. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t21 − αt22 − β
t5t6

1 + t23 + t24
,

where α, β ≥ 0 and α + β < 1.

Example 22. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t31 − t23t24 + t25t26
1 + t2

.

Example 23. Define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R as

φ(t1, t2, t3, t4, t5, t6) = t31 − αt21t2 − βt1t3t4 − γt25t6 − ηt5t26,

where α, β, γ, η ≥ 0 and α + γ + η < 1.
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Since verification of requirements (φ1), (φ2) and (φ3) for Examples 4–23 are easy,
we omit the details.

Theorem 3. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let S, T, Ak,
for k = 1, 2, . . . , be self mappings of X. Assume that there exists φ ∈ Φ such that

φ(d(A1x, Aky), d(Sx, Ty), d(Sx, A1x), d(Ty, Aky), d(Sx, Aky), d(Ty, A1x)) ≤ 0, (7)

for all x, y ∈ X. Suppose that the pairs (A1, S) and (Ak, T ) for k > 1 share the
common property (E.A.), S(X) and T (X) are closed subsets of X. Then the pairs
(A1, S) and (Ak, T ) have a coincidence point. Moreover S, T and all the Ak have a
unique common fixed point provided both the pairs (A1, S) and (Ak, T ) for k > 1 are
weakly compatible.

Proof. Since the pairs (A1, S) and (Ak, T ) share the common property (EA), there
exist two sequences {xn}, {yn} in X such that for some z ∈ X

lim
n,+∞ d(A1xn, z) = lim

n,+∞ d(Sxn, z) = lim
n,+∞ d(Akyn, z) = lim

n,+∞ d(Tyn, z) = 0.

By (HE), we have

lim
n,+∞ d(A1xn, Sxn) = lim

n,+∞ d(Akyn, T yn) = 0.

Since S(X) is a closed subset of X, limn,+∞ Sxn = z ∈ S(X). Therefore, there exists
a point p ∈ X such that Sp = z. Subsequently, we have

lim
n,+∞ d(A1xn, Sp) = lim

n,+∞ d(Sxn, Sp) = lim
n,+∞ d(Akyn, Sp) = lim

n,+∞ d(Tyn, Sp) = 0.

Now we assert that A1p = Sp. If not, then using (7), we have

φ(d(A1p, Akyn), d(Sp, Tyn), d(Sp, A1p), d(Tyn, Akyn), d(Sp, Akyn), d(Tyn, A1p)) ≤ 0.

Letting n →∞ and using the l.s.c. of φ, (1C) and (HE) we get

φ(d(A1p, Sp), 0, d(Sp, A1p), 0, 0, d(Sp, A1p)) ≤ 0,

a contradiction to (φ1). Hence A1p = Sp. Therefore, p is a coincidence point of the
pair (A1, S).

As T (X) is a closed subset of X, limn,+∞ Tyn = z ∈ T (X). Therefore, there exists
a point q ∈ X such that Tq = z.

Now, we assert that Akq = Tq. If not, then using (7), we have

φ(d(A1xn, Akq), d(Sxn, T q), d(Sxn, A1xn), d(Tq, Akq), d(Sxn, Akq), d(Tq, A1xn)) ≤ 0.

Letting n →∞ and using the l.s.c. of φ, (1C) and (HE) we get

φ(d(Tq, Akq), 0, 0, d(Tq, Akq), d(Tq, Akq), 0) ≤ 0,
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a contradiction to (φ2). Hence Akq = Tq, which shows that q is a coincidence point
of the pair (Ak, T ). Since the pair (A1, S) is weakly compatible and A1p = Sp, hence
A1z = A1Sp = SA1p = Sz. Now, we assert that z is a common fixed point of the
pair (A1, S). Suppose A1z 6= z, then using (7) and (φ3), we get a contradiction to
our assumption. As the pair (Ak, T ) is weakly compatible and Akq = Tq, therefore
Akz = AkTq = TAkq = Tz. Suppose that Akz 6= z, then using again (7), we arrive
at a contradiction to our assumption. Therefore Akz = z which shows that z is a
common fixed point of the pair (Ak, T ). Hence z is a common fixed point of both
the pairs (A1, S) and (Ak, T ). Uniqueness of z is an easy consequence of (7). This
completes the proof.

Example 24. If in the setting of Theorem 1,we define φ(t1, t2, t3, t4, t5, t6) : R6
+ → R

as
φ(t1, t2, t3, t4, t5, t6) = t1 − k(max{t2, t3, t4, t5, t6}),

then all the conditions of Theorem 1 are satisfied with k ∈ ( 15
16 , 1) enabling us to

demonstrate Theorem 3 with the aid of Example 1.

As corollaries, we give the following results which improve the results of Kumar
et al. [10], Ali and Imdad [3], Pathak et al. [17] and Zhu et al. [21].

Corollary 5. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let A, B, S

and T be self mappings of X. Assume that there exists φ ∈ Φ such that

φ(d(Ax, By), d(Sx, Ty), d(Sx, Ax), d(Ty, By), d(Sx, By), d(Ty, Ax)) ≤ 0, (8)

for all x, y ∈ X. Suppose that the pairs (A, S) and (B, T ) share the common property
(E.A.), S(X) and T (X) are closed subsets of X. Then the pairs (A, S) and (B, T )

have a coincidence point. Moreover A, B, S and T have a unique common fixed point
provided both the pairs (A, S) and (B, T ) are weakly compatible.

We denote D := d(A1x, Sx) + d(Aky, Ty) and D1 := d(Sx, Aky) + d(Ty, A1x), for
all x, y ∈ X.

Corollary 6. The conclusion of Theorem 3 will remain true if the inequality (7)

of Theorem 3 is replaced by one of the following contractive conditions. For all
x, y ∈ X:

(i) d(A1x, Aky) ≤ w max{d(Sx, Ty), d(A1x, Sx), d(Aky, Ty), d(Sx, Aky), d(Ty, A1x)},
where w ∈ [0, 1);

(ii) d(A1x, Aky) ≤ w max{d(Sx, Ty), d(A1x, Sx), d(A1x, Sx)d(Sx, Aky),

d(Aky, Ty)d(Ty, A1x)}, where w ∈ [0, 1);

(iii) d(A1x, Aky) ≤ w(max{d2(Sx, Ty), d(A1x, Sx)d(Aky, Ty), d(Sx, Aky)d(Ty, A1x),

d(A1x, Sx)d(Sx, Aky), d(Aky, Ty)d(Ty, A1x)}) 1
2 , where w ∈ [0, 1);

(iv) d(A1x, Aky) ≤ α[β max{d(Sx, Ty), d(A1x, Sx), d(Aky, Ty), d(Sx, Aky), d(Ty, A1x)}
+ (1− β)(max{d2(Sx, Ty), d(A1x, Sx)d(Aky, Ty), d(Sx, Aky)d(Ty, A1x),

d(A1x, Sx)d(Ty, A1x), d(Aky, Ty)d(Sx, Aky)}) 1
2 ], where α ∈ [0, 1) and β ≥ 0;
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(v) d2(A1x, Aky) ≤ α max{d2(Sx, Ty), d2(A1x, Sx), d2(Aky, Ty)}
+ β max{d(A1x, Sx)d(Sx, Aky), d(Aky, Ty)d(Ty, A1x)}+ γd(Sx, Aky)d(Ty, A1x),

where α, β, γ ≥ 0 and α + γ < 1;

(vi) (1+αd(Sx, Ty))d(A1x, Aky) ≤ α max{d(A1x, Sx)d(Aky, Ty), d(Sx, Aky)d(Ty, A1x)}
+ β max{d(Sx, Ty), d(A1x, Sx), d(Aky, Ty), d(Sx, Aky), d(Ty, A1x)}, where α ≥ 0

and β ∈ [0, 1);

(vii) d(A1x, Aky) ≤ αd(Sx, Ty) + β max{d(A1x, Sx), d(Aky, Ty)}+ γ max{d(A1x, Sx)

+ d(Aky, Ty), d(Sx, Aky) + d(Ty, A1x)}, where α, β, γ ≥ 0 and α + β + 2γ < 1;

(viii) d(A1x, Aky) ≤ θ(max{d(Sx, Ty), d(A1x, Sx), d(Aky, Ty), d(Sx, Aky), d(Ty, A1x)})
where θ(t) : R+ → R is an upper semi-continuous function such that θ(0) = 0

and θ(t) < t for each t > 0;

(ix) d(A1x, Aky) ≤ θ(d(Sx, Ty), d(A1x, Sx), d(Aky, Ty), d(Sx, Aky), d(Ty, A1x)) where
θ(t) : R5

+ → R is an upper semi-continuous function such that, for each t > 0,
max{θ(0, t, 0, 0, t), θ(0, 0, t, t, 0), θ(t, 0, 0, t, t)} < t;

(x) d2(A1x, Aky) ≤ θ(d2(Sx, Ty), d(A1x, Sx)d(Aky, Ty), d(Sx, Aky)d(Ty, A1x),

d(A1x, Sx)d(Ty, A1x), d(Aky, Ty)d(Sx, Aky)) where θ(t) : R5
+ → R is an upper

semi-continuous function such that, for each t > 0, max{θ(0, 0, 0, t, 0),

θ(0, 0, 0, 0, t), θ(t, 0, t, 0, 0)} < t;

(xi)

d(A1x, Aky) ≤





αd(Sx, Ty) + β
d2(A1x,Sx)+d2(Aky,Ty)
d(A1x,Sx)+d(Aky,Ty)

+γ(d(Sx, Aky) + d(Ty, A1x)) if D 6= 0

0 if D = 0,

where α, β, γ ≥ 0 and β + γ < 1;

(xii)

dp(A1x, Aky) ≤





wdp(Sx, Ty)

+
d(A1x,Sx)dp(Aky,Ty)+d(Sx,Aky)dp(Ty,A1x)

d(A1x,Sx)+d(Aky,Ty)
if D 6= 0

0 if D = 0,

where p ≥ 1 and 0 ≤ w < ∞;

(xiii)

d(A1x, Aky) ≤





αd(Sx, Ty) + β
d2(Sx,Aky)+d2(Ty,A1x)
d(Sx,Aky)+d(Ty,A1x)

+γ(d(A1x, Sx) + d(Aky, Ty)) if D1 6= 0

0 if D1 = 0,

where α, β, γ ≥ 0 and β + γ < 1;
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(xiv)

d(A1x, Aky) ≤





wd(Sx, Ty)

+
d(A1x,Sx)d(Aky,Ty)+d(Sx,Aky)d(Ty,A1x)

d(Sx,Aky)+d(Ty,A1x)
if D1 6= 0

0 if D1 = 0,

where 0 ≤ w < ∞;

(xv)

d(A1x, Aky) ≤





wd(Sx, Ty)

+
d(A1x,Sx)d(Aky,Ty)+d(Sx,Aky)d(Ty,A1x)

d(A1x,Sx)+d(Aky,Ty)

+
d(A1x,Sx)d(Sx,Aky)+d(Aky,Ty)d(Ty,A1x)

d(Sx,Aky+d(Ty,A1x)
if D 6= 0 and D1 6= 0

0 if D = 0 or D1 = 0,

where 0 ≤ w < ∞;

(xvi) d(A1x, Aky) ≤ d(A1x,Sx)d(Aky,Ty)+d(Sx,Aky)d(Ty,A1x)
1+d(Sx,Ty)

;

(xvii) d(A1x, Aky) ≤ αd(Sx, Ty) + β
d(A1x,Sx)+d(Aky,Ty)
1+d(Sx,Aky)d(Ty,A1x)

, where α, β ∈ [0, 1);

(xviii) d2(A1x, Aky) ≤ αd2(Sx, Ty) + β
d(Sx,Aky)d(Ty,A1x)

1+d2(A1x,Sx)+d2(Aky,Ty)
, where 0 ≤ α + β < 1;

(xix) d3(A1x, Aky) ≤ d2(A1x,Sx)d2(Aky,Ty)+d(2Sx,Aky)d2(Ty,A1x)
1+d(Sx,Ty)

;

(xx) d(3A1x, Aky) ≤ αd2(A1x, Aky)d(Sx, Ty) + βd(A1x, Aky)d(A1x, Sx)d(Aky, Ty)

+γd2(Sx, Aky)d(Ty, A1x)+ηd(Sx, Aky)d2(Ty, A1x), where α, β, γ, η ≥ 0 and α+

γ + η < 1.

Proof. The proof of the corollaries corresponding to contractive conditions (i)-(xx)
follows from Theorem 3 and Examples 4-23.

Corollary 7. Let (X, d) be a symmetric space satisfying (1C) and (HE). Let A, B, S

and T be self mappings of X. Assume that there exist a Lebesgue integrable function
φ : R→ [0,∞) and a function ψ : R6

+ → R such that, for all x, y ∈ X,
∫ ψ(d(Ax,By),d(Sx,Ty),d(Ax,Sy),d(By,Ty),d(Sx,By),d(Ax,Ty))

0
ϕ(s)ds ≤ 0, (9)

∫ ψ(t,0,t,0,0,t)

0
ϕ(s)ds > 0 for all t > 0, (10)

∫ ψ(t,0,0,t,t,0)

0
ϕ(s)ds > 0 for all t > 0, (11)

∫ ψ(t,t,0,0,t,t)

0
ϕ(s)ds > 0 for all t > 0. (12)

Suppose that the pairs (A, S) and (B, T ) share the common property (E.A.), S(X) and
T (X) are closed subsets of X. Then the pairs (A, S) and (B, T ) have a coincidence
point. Moreover A, B, S and T have a unique common fixed point provided both the
pairs (A, S) and (B, T ) are weakly compatible.
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Proof. The function φ : R6
+ → R defined by

φ(t1, t2, t3, t4, t5, t6) =

∫ ψ(t1,t2,t3,t4,t5,t6)

0
ϕ(s)ds

belongs to Φ for conditions (10)-(12) and so condition (9) is a special case of condi-
tion (7). Thus, the result follows immediately from Theorem 3.

To conclude this section, we state a result for occasionally weakly compatible
self mappings via implicit relations.

Theorem 4. Let (X, d) be a symmetric space and let S, T, Ak, for k = 1, 2, . . . , be
self mappings of X. Assume that there exists φ ∈ Φ such that

φ(d(A1x, Aky), d(Sx, Ty), d(Sx, A1x), d(Ty, Aky), d(Sx, Aky), d(Ty, A1x)) ≤ 0, (13)

for all x, y ∈ X. Then S, T and all the Ak have a unique common fixed point provided
both the pairs (A1, S) and (Ak, T ) for k > 1 are occasionally weakly compatible.

4 Results in probabilistic symmetric spaces

A real valued function f on the set of real numbers is called a distribution function
if it is nondecreasing, left continuous with inf

t∈R
f(t) = 0 and sup

t∈R
f(t) = 1.

We denote by ∆ the set of all distribution functions defined on the set of real
numbers and by ∆+ := {f ∈ ∆, f(0) = 0}.

We shall use the Heaviside distribution function defined by

H(t) =

{
0 if t ≤ 0

1 if t > 0.

In the sequel, we need the following definitions and results which are given in
[9].

Definition 9. A probabilistic symmetric on a non-empty set X is a mapping F

from X ×X into ∆+ satisfying the following conditions:

(i) Fx,y(t) = H(t) if and only if x = y,

(ii) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R.

The pair (X, F ) is a probabilistic symmetric space.
Let F be a probabilistic symmetric on a set X and ε > 0, we write B(x, ε) :=

{y ∈ X : Fx,y(ε) > 1− ε}. A T1 topology t(F ) on X is obtained as follows: U ∈ t(F )

if for each x ∈ U , there exists ε > 0 such that B(x, ε) ⊂ U . Now B(x, ε) may not be
a t(F ) neighborhood of x. If it is so, then t(F ) is said to be topological.
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Definition 10. A probabilistic symmetric space (X, F ) is complete if for every
Cauchy sequence {xn} convergent in X, i.e. every sequence such that, for all t > 0,
limn,m,+∞ Fxn,xm(t) = 1, there exists some x ∈ X with limn,+∞ Fxn,x(t) = 1 for all
t > 0.

Hicks and Rhoades [9] proved that each probabilistic symmetric space (X, F )

admits a compatible symmetric d such that the probabilistic symmetric F is related
to the symmetric d. To be precise:

Theorem 5. [9] Let (X, F ) be a probabilistic symmetric space. Define d : X ×X →
[0,∞) as

d(x, y) =

{
0 if y ∈ Ux(t, t) for all t > 0

sup{t : y /∈ Ux(t, t), 0 < t < 1} otherwise.

Then

(i) d(x, y) < t if and only if Fx,y(t) > 1− t,

(ii) d is a compatible symmetric for t(F ),

(iii) (X, F ) is complete if and only if (X, d) is S-complete,

(iv) If t(F ) is topological, d is a semi-metric.

The condition (HE) for compatible symmetric d is equivalent to the following
condition:

(PHE) For all t > 0, Fxn,x(t) → 1 and Fyn,x(t) → 1 imply Fxn,yn(t) → 1.

We also consider the following condition:

(P1C) For all t > 0, Fxn,x(t) → 1 implies Fxn,y(t) → Fx,y(t) for all y ∈ X.

Proposition 1. Let (X, F ) be a probabilistic symmetric space and d the compatible
symmetric for t(F ). If (X, F ) satisfies the condition (P1C), then (X, d) satisfies the
condition (1C).

Proof. If d(xn, y) 9 d(x, y), then there exist σ > 0 and a subsequence of {xn}, say
{xnk}, such that |d(xnk , y) − d(x, y)| > σ for all k. If d(xnk , y) < d(x, y) − σ = t − σ

holds for infinite values of k, by Theorem 5 (i), we have

Fxnk
,y(t) ≥ Fxnk

,y(t− σ) > 1− t + σ.

So, being Fx,y(t) ≤ 1− t, it follows

Fxnk
,y(t)− Fx,y(t) > 1− t + σ − 1 + t = σ,
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for infinite values of k, a contradiction. Now, if d(xnk , y) > τ = d(x, y)+σ for infinite
values of k, by Theorem 5 (i), we have

Fx,y(τ) ≥ Fx,y(τ − σ/2) > 1− τ + σ/2.

So, being Fxnk
,y(τ) ≤ 1− τ , it follows

Fx,y(τ)− Fxn,y(τ) ≥ 1− τ + σ/2− 1 + τ = σ/2

for infinite values of k, a contradiction. We conclude that (P1C) for F implies (1C)
for d.

Let S, T, Ak, for k = 1, 2, . . . , be self mappings of X and let

K(x, y, t) := min{FSx,Ty(t), FSx,A1x(t), FTy,Aky(t), FSx,Aky(t), FTy,A1x(t)}

for all x, y ∈ X and t > 0.
Now we state and prove the following result.

Theorem 6. Let (X, F ) be a probabilistic symmetric space satisfying (P1C) and
(PHE). Let S, T, Ak, for k = 1, 2, . . . , be self mappings of X. Assume that there
exists ψ ∈ Ψ with

FA1x,Aky(ψ(t)) > 1− ψ(t), (14)

for all x, y ∈ X and t > 0 such that K(x, y, t) > 1− t. Suppose that the pairs (A1, S)

and (Ak, T ) for k > 1 share the common property (E.A.), S(X) and T (X) are closed
subsets of X. Then the pairs (A1, S) and (Ak, T ) for k > 1 have a coincidence point.
Moreover, S, T and all the Ak have a unique common fixed point in X provided both
the pairs (A1, S) and (Ak, T ) are weakly compatible.

Proof. We show that Theorem 6 reduces to Theorem 1. Let d be the compati-
ble symmetric and also compute m(x, y; A1, Ak, S, T ). Notice that d satisfies prop-
erties (HE) and (1C). So, given ε > 0, we set t = ε + m(x, y; A1, Ak, S, T ), then
m(x, y; A1, Ak, S, T ) < t if and only if all elements d(u, v) in m(x, y; A1, Ak, S, T )

are minor than t which in turn yields (by Theorem 5 (i)) that all the elements
Fu,v in K(x, y, t) are major than 1 − t so that by condition (14) it follows that
FA1x,Aky(ψ(t)) > 1−ψ(t) for all x, y ∈ X and t > 0. Then, by Theorem 5 (i), we have

d(A1x, Aky) < ψ(t) = ψ(ε + m(x, y; A1, Ak, S, T )).

Now, making ε → 0+ (as ψ is a right continuous function), we have

d(A1x, Aky) ≤ ψ(m(x, y; A1, Ak, S, T )),

for all x, y ∈ X. This is a special case of condition (1), whenever G is the identity
mapping on [0, +∞). So the result follows immediately from Theorem 1.

Finally, we give a result for occasionally weakly compatible mappings.
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Theorem 7. Let (X, F ) be a probabilistic symmetric space satisfying (P1C) and
(PHE). Let S, T, Ak, for k = 1, 2, . . . , be self mappings of X. Assume that there
exists ψ ∈ Ψ with

FA1x,Aky(ψ(t)) > 1− ψ(t), (15)

for all x, y ∈ X and t > 0 such that K(x, y, t) > 1− t. Then S, T and all the Ak have
a unique common fixed point in X provided both the pairs (A1, S) and (Ak, T ) are
occasionally weakly compatible.

Proof. Using the arguments of the proof of Theorem 6, it is easy to show that
Theorem 7 reduces to Theorem 2.
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