COMMON FIXED POINT THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS VIA IMPLICIT RELATIONS

Abdelkrim Aliouche and Valeriu Popa

Abstract

We prove common fixed point theorems for four mappings satisfying implicit relations in symmetric spaces using the concept of occasionally weakly compatible mappings. Our Theorems generalize results of [1], [3], [4] and [7].

1 Introduction and Preliminaries

Let A and S be self-mappings of a metric space (X, d) and $C(A, S)$ the set of coincidence points of A and S.

Definition 1.1 [5]. A and S are said to be weakly compatible if $S A u=A S u$ for all $u \in C(A, S)$.

Definition 1.2 [2]. A and S are said to be occasionally weakly compatible if $S A u=A S u$ for some $u \in C(A, S)$.

Remark 1.3 [2] If A and S are weakly compatible, then they are occasionally weakly compatible, but the following Example shows that the converse is not true in general.

Example 1.4. Let $X=[1, \infty)$ with the usual metric. Define $A, S: X \rightarrow X$ by: $A x=3 x-2$ and $S x=x^{2}$. We have $A x=S x$ iff $x=1$ or $x=2$ and $A S(1)=S A(1)=1$, but $A S(2) \neq S A(2)$. Therefore, A and S are occasionally weakly compatible, but they are not weakly compatible.

Lemma 1.5 [6]. If A and S have a unique coincidence point $w=A x=S x$, then w is the unique common fixed point of A and S.

Definition 1.6. Let X be a set. A symmetric on X is a mapping $d: X \times X \rightarrow$ $[0, \infty)$ such that
$d(x, y)=0$ iff $x=y$ and $d(x, y)=d(y, x)$ for all $x, y \in X$.

[^0]Let K_{6} the family of all continuous mappings $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ with $t_{3}+t_{4} \neq 0$ satisfying the following conditions:
$\left(K_{1}\right): K$ is decreasing in variables t_{5} and t_{6}
$\left(K_{2}\right)$: there exists $0 \leq h<1$ such that for all $u, v, w \geq 0$ with
$\left(K_{a}\right): F(u, v, v, u, u+v, 0) \leq 0$ or
$\left(K_{b}\right): F(u, v, u, v, 0, u+v) \leq 0$
we have $u \leq h v$.
Let F_{6} the family of all continuous mappings $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ with $t_{3}+t_{4} \neq 0$ satisfying the following condition:
$\left(F_{1}\right)$: there exists $0 \leq h<1$ such that for all $u, v, w \geq 0$ with
$\left(F_{a}\right): F(u, v, v, u, w, 0) \leq 0$ or
$\left(F_{b}\right): F(u, v, u, v, 0, w) \leq 0$
we have $u \leq h v$.
Let H_{6} the family of all continuous mappings $H\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ with $t_{5}+t_{6} \neq 0$ satisfying the following conditions.
$\left(H_{1}\right)$: there exists $0 \leq h<1$ such that for all $u, v, w \geq 0$ with
$\left(H_{a}\right): H(u, v, v, u, w, 0) \leq 0$ or
$\left(H_{b}\right): H(u, v, u, v, 0, w) \leq 0$
we have $u \leq h v$.
$\left(H_{2}\right): H(u, u, 0,0, u, u)>0$ for all $u>0$.
Let G_{6} the family of all continuous mappings $G\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ with $t_{2}+t_{4} \neq 0$ satisfying the following conditions:
$\left(G_{1}\right)$: there exists $0 \leq h<1$ such that for all $u, v \geq 0$ with
$\left(G_{a}\right): G(u, v, v, u, w, 0) \leq 0$ or
$\left(G_{b}\right): G(u, v, u, v, 0, w) \leq 0$
we have $u \leq h v$.
$\left(G_{2}\right): G(u, u, 0,0, u, u)>0$ for all $u>0$.
The following Theorems were proved by [1].
Theorem 1.7. Let f, g, S and T be self-mappings of a metric space (X, d) satisfying the following conditions:

$$
\begin{gather*}
S(X) \subset g(X) \text { and } T(X) \subset f(X) \tag{1.1}\\
F(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) \leq 0
\end{gather*}
$$

for all $x, y \in X$ if $d(f x, S x)+d(g y, T y) \neq 0$, where $F \in F_{6}$ satisfies $\left(F_{1}\right)$, or

$$
d(S x, T y)=0 \text { if } d(f x, S x)+d(g y, T y)=0
$$

Suppose that one of $S(X), T(X), f(X)$ and $g(X)$ is a complete subspace of X and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a unique common fixed point in X.

Theorem 1.8. Let f, g, S and T be self-mappings of a metric space (X, d) satisfying (1.1) and

$$
H(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) \leq 0
$$

Common fixed point theorems for occasionally weakly compatible mappings... 101
for all $x, y \in X$ if $d(f x, T y)+d(S x, g y) \neq 0$, where $H \in H_{6}$ satisfies $\left(H_{1}\right)$ and $\left(H_{2}\right)$, or

$$
d(S x, T y)=0 \text { if } d(f x, T y)+d(S x, g y)=0 .
$$

Suppose that one of $S(X), T(X), f(X)$ and $g(X)$ is a complete subspace of X and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a unique common fixed point in X.

Theorem 1.9. Let f, g, S and T be self-mappings of a metric space (X, d) satisfying (1.1) and

$$
G(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) \leq 0
$$

for all $x, y \in X$ if $d(f x, g y)+d(g y, T y) \neq 0$, where $G \in C_{6}$ satisfies $\left(G_{1}\right)$ and $\left(G_{2}\right)$, or

$$
d(S x, T y)=0 \text { if } d(f x, g y)+d(g y, T y)=0 .
$$

Suppose that one of $S(X), T(X), f(X)$ and $g(X)$ is a complete subspace of X and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a unique common fixed point in X.

The following Theorems was proved by [7].
Theorem 1.10. Let f, g, S and T be self-mappings of a metric space (X, d) satisfying (1.1) and

$$
K(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) \leq 0
$$

for all $x, y \in X$ if $d(f x, S x)+d(g y, T y) \neq 0$, where $K \in K_{6}$ satisfies $\left(K_{1}\right)$ and $\left(K_{2}\right)$, or

$$
d(S x, T y)=0 \text { if } d(f x, S x)+d(g y, T y)=0 .
$$

Suppose that one of $S(X), T(X), f(X)$ and $g(X)$ is a complete subspace of X and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a unique common fixed point in X.

It is our purpose in this paper to prove common fixed point theorems for occasionally weakly compatible mappings satisfying implicit relations in symmetric spaces. Our Theorems generalize results of [1], [3], [4] and [7].

2 Implicit relations

Let F_{6} the family of all functions $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ with $t_{3}+t_{4} \neq 0$
Example 2.1. $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \frac{t_{2} t_{3}}{t_{3}+t_{4}}-b \frac{t_{4} t_{5}}{t_{5}+t_{6}+1}, a, b>0$.
Example 2.2. $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \frac{t_{2} t_{4}}{t_{3}+t_{4}}-b \frac{t_{3} t_{6}}{t_{5}+t_{6}+1}, a, b>0$.
Example 2.3. $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \frac{t_{3} t_{5}+t_{4} t_{6}}{t_{3}+t_{4}}-b t_{2}, a, b>0$.
Example 2.4. $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\frac{a t_{3} t_{4}+b t_{5} t_{6}}{t_{3}+t_{4}}-c t_{2}, a, b, c>0$.

Let H_{6} the family of all functions $H\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ with $t_{5}+t_{6} \neq 0$ satisfying the following condition:
$\left(H_{1}\right): H(u, u, 0,0, u, u)>0$ for all $u>0$.
Example 2.5. $H\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \frac{t_{3} t_{6}+t_{4} t_{5}}{t_{5}+t_{6}}-b t_{2}, a, b>0$ and $b<1$.
Example 2.6. $H\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\frac{a t_{3} t_{5}+b t_{4} t_{6}}{t_{5}+t_{6}}-c t_{2}, a, b, c>0$ and $c<1$.

Let G_{6} the family of all functions $G\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ with $t_{2}+t_{4} \neq 0$ satisfying the following condition:
$\left(G_{1}\right): G(u, u, 0,0, u, u)>0$ for all $u>0$.
Example 2.7. $G\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a_{1} \frac{t_{2} t_{5}}{t_{2}+t_{4}}-a_{2}\left(t_{3}+t_{4}\right)-a_{3}\left(t_{5}+t_{6}\right)-$ $a_{4} t_{2}, a_{1}, a_{2}, a_{3}, a_{4}>0$ and $a_{1}+2 a_{3}+a_{4}<1$.

Example 2.8. $G\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \frac{t_{2} t_{4}}{t_{2}+t_{4}}-b \frac{t_{3} t_{5}}{t_{5}+t_{6}+1}, a, b>0$.
Example 2.9. $G\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \frac{t_{2} t_{4}}{t_{2}+t_{4}}-b \frac{t_{3} t_{6}}{t_{5}+t_{6}+1}, a, b>0$.

3 Main Results

Theorem 3.1. Let f, g, S and T be self-mappings of a symmetric space (X, d) satisfying the following condition:

$$
\begin{equation*}
F(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) \leq 0 \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$ if $d(f x, S x)+d(g y, T y) \neq 0$, where $F \in F_{6}$, or

$$
\begin{equation*}
d(S x, T y)=0 \text { if } d(f x, S x)+d(g y, T y)=0 \tag{3.2}
\end{equation*}
$$

Suppose that the pairs (S, f) and (T, g) are occasionally weakly compatible. Then, f, g, S and T have a unique common fixed point in X.

Proof. Since the pairs (S, f) and (T, g) are occasionally weakly compatible, there exist $u, v \in X$ such that $f u=S u$ and $g v=T v$. As $d(f u, S u)+d(g v, T v)=0$, it follows from (3.2) that $S u=T v$ and so $f u=S u=g v=T v$. Moreover, if there is another point u^{\prime} such that $f u^{\prime}=S u^{\prime}$, using (3.2) it follows that $f u^{\prime}=S u^{\prime}=$ $g v=T v$. Therefore, $z=f u=S u$ is the unique point of coincidence of f and S. By Lemma $1.5, z$ is the unique common fixed point of f and S. Similarly, z^{\prime} is the unique common fixed point of g and T. On the other hand, $d(f z, S z)+d\left(g z^{\prime}, T z^{\prime}\right)=$ 0 implies that $d\left(S z, T z^{\prime}\right)=0$, hence $z=f z=S z=g z^{\prime}=T z^{\prime}=z^{\prime}$. Therefore, z is the unique common fixed point of f, g, S and T.

Corollary 3.2. (Theorem 1.7).
Proof. By Theorem 1.7, there exists u, v in X such that $z=T v=g v=S u=$ fu. Since weakly compatible mappings are occasionally weakly compatible, then the conclusion follows from Theorem 3.l.

Corollary 3.3. (Theorem 1.10).

Theorem 3.4. Let f, g, S and T be self-mappings of a symmetric space (X, d) satisfying: the following condition:

$$
\begin{equation*}
H(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) \leq 0 \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$ if $d(f x, T y)+d(S x, g y) \neq 0$, where $H \in H_{6}$ satisfies $\left(H_{1}\right)$, or

$$
\begin{equation*}
d(S x, T y)=0 \text { if } d(f x, T y)+d(S x, g y)=0 \tag{3.4}
\end{equation*}
$$

Suppose that the pairs (S, f) and (T, g) are occasionally weakly compatible. Then, f, g, S and T have a unique common fixed point in X.

Proof. Since the pairs (S, f) and (T, g) are occasionally weakly compatible, there exist $u, v \in X$ such that $f u=S u$ and $g v=T v$. Assume that $S u \neq T v$. As $d(f u, T v)+d(S u, g v) \neq 0$, using (3.3) we have

$$
H(d(S u, T v), d(S u, T v), 0,0, d(S u, T v), d(S u, T v)) \leq 0
$$

which is a contradiction of $\left(H_{1}\right)$ and so $f u=S u=g v=T v$. The rest of the proof follows as in Theorem 3.1.

Corollary 3.5 (Theorem 1.8).
Theorem 3.6. Let f, g, S and T be self-mappings of a symmetric space (X, d) satisfying the following condition:

$$
\begin{equation*}
G(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) \leq 0 \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$ if $d(f x, g y)+d(g y, T y) \neq 0$, where $G \in G_{6}$ satisfies $\left(G_{1}\right)$, or

$$
\begin{equation*}
d(S x, T y)=0 \text { if } d(f x, g y)+d(g y, T y)=0 \tag{3.6}
\end{equation*}
$$

Suppose that the pairs (S, f) and (T, g) are occasionally weakly compatible. Then, f, g, S and T have a unique common fixed point in X.

Proof. It follows as in Theorem 3.4.
Corollary 3.7 (Theorem 1.9).
Corollary 3.8 (Theorem of [4]).
If $T=S$ and $g=f$ in Theorems 3.1, 3.3 and 3.6, we obtain the following Corollaries which generalize Corollaries of Theorems 1.7, 1.8 and 1.9.

Corollary 3.9. Let f and S be self-mappings of a symmetric space (X, d) satisfying the following condition:

$$
F(d(S x, S y), d(f x, f y), d(f x, S x), d(f y, S y), d(f x, S y), d(S x, f y)) \leq 0
$$

for all $x, y \in X$ if $d(f x, S x)+d(f y, S y) \neq 0$, where $F \in F_{6}$, or

$$
d(S x, S y)=0 \text { if } d(f x, S x)+d(f y, S y)=0
$$

Suppose that the pair (S, f) is occasionally weakly compatible. Then, f and S have a unique common fixed point in X.

Corollary 3.10. Let f and S be self-mappings of a symmetric space (X, d) satisfying the following condition:

$$
H(d(S x, S y), d(f x, f y), d(f x, S x), d(f y, S y), d(f x, S y), d(S x, f y)) \leq 0
$$

for all $x, y \in X$ if $d(f x, S y)+d(S x, f y) \neq 0$, where $H \in H_{6}$ satisfies $\left(H_{1}\right)$, or

$$
d(S x, S y)=0 \text { if } d(f x, S y)+d(S x, f y)=0
$$

Suppose that the pair (S, f) is occasionally weakly compatible. Then, f and S have a unique common fixed point in X.

Corollary 3.11. Let f and S be self-mappings of a symmetric space (X, d) satisfying the following condition:

$$
G(d(S x, S y), d(f x, f y), d(f x, S x), d(f y, S y), d(f x, S y), d(S x, f y)) \leq 0
$$

for all $x, y \in X$ if $d(f x, f y)+d(f y, S y) \neq 0$, where $G \in G_{6}$ satisfies $\left(G_{1}\right)$, or

$$
d(S x, S y)=0 \text { if } d(f x, f y)+d(f y, S y)=0 .
$$

Suppose that the pair (S, f) is occasionally weakly compatible. Then, f and S have a unique common fixed point in X.

Now, we give Examples to support our Theorems.
Example 3.12. Let $X=[1, \infty), d(x, y)=(x-y)^{2}, f, g, S$ and T are self mappings of X defined by:
$S x=3 x-2, f x=x^{2}, T x=3 x^{2}-2, g x=x^{4}$ and $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=$ $t_{1}-a \frac{t_{3} t_{5}+t_{4} t_{6}}{t_{3}+t_{4}}-b t_{2}, a, b>0$. It is easy to see that the pairs (f, S) and (g, T) are occasionally weakly compatible, but they are not weakly compatible. We have for all $x, y \in X$

$$
\begin{aligned}
d(f x, g y) & =\left(x^{2}-y^{4}\right)^{2} \\
& =\left(x-y^{2}\right)^{2}\left(x+y^{2}\right)^{2} \\
& \geq 4\left(x-y^{2}\right)^{2} \\
& =\frac{4}{9} d(S x, T y) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& d(S x, T y) \leq \frac{9}{4} d(f x, g y) \\
\leq & a \frac{d(f x, S x) d(f x, T y)+d(g y, T y) d(S x, g y)}{d(f x, S x)+d(g y, T y)} \\
& +\frac{9}{4} d(f x, g y), a>0, \\
\text { if } d(f x, S x)+d(g y, T y) \neq & 0 . \\
d(S x, T y)= & 0 \text { if } d(f x, T y)+d(S x, g y)=0
\end{aligned}
$$

Common fixed point theorems for occasionally weakly compatible mappings... 105
and so for all $x, y \in X$

$$
\begin{aligned}
F(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) & \leq 0 \\
\text { if } d(f x, S x)+d(g y, T y) & \neq 0 .
\end{aligned}
$$

and

$$
d(S x, T y)=0 \text { if } d(f x, S x)+d(g y, T y)=0 .
$$

Then, all conditions of Theorem 3.1 hold and 1 is the unique common fixed point of f, g, S and T.

Example 3.13. Let $X=\{1\} \cup[\sqrt[3]{3}, \infty), d(x, y)=(x-y)^{2}, f, g, S$ and T are self-mappings of X defined by:

$$
\begin{aligned}
& S x=\left\{\begin{array}{rcc}
x^{3}+1 & \text { if } & x \in\{1\} \cup[\sqrt[3]{3}, \infty) \text { and } x \neq 4, \\
4 & \text { if } & x=4
\end{array},\right. \\
& f x=\left\{\begin{array}{rlc}
2 x^{6} & \text { if } & x \in\{1\} \cup[\sqrt[3]{3}, \infty) \text { and } x \neq 4 \\
4 & \text { if } & x=4
\end{array}\right. \\
& T x=\left\{\begin{array}{rr}
x^{2}+1 & \text { if } \\
4 \in\{1\} \cup[\sqrt[3]{3}, \infty) \text { and } x \neq 4
\end{array},\right. \\
& 4 x=\left\{\begin{array}{rrr}
2 x^{4} & \text { if } & x \in\{1\} \cup[\sqrt[3]{3}, \infty) \text { and } x \neq 4 \\
4 & \text { if } & x=4
\end{array}\right. \\
& \text { and } F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \frac{t_{3} t_{6}+t_{4} t_{5}}{t_{5}+t_{6}}-b t_{2}, a, b>0 \text { and } b<1 .
\end{aligned}
$$

It is easy to see that the pairs (f, S) and (g, T) are occasionally weakly compatible, but they are not weakly compatible

If $x=y=4$ or $x=y=1$, we have

$$
d(S x, T y)=0 \text { since } d(f x, T y)+d(S x, g y)=0 .
$$

If $x \in[\sqrt[3]{3}, \infty), x \neq 4$ and $y \in\{1\} \cup[\sqrt[3]{3}, \infty), y \neq 4$, we get

$$
\begin{aligned}
d(f x, g y) & =4\left(x^{6}-y^{4}\right)^{2} \\
& =4\left(x^{3}-y^{2}\right)^{2}\left(x^{3}+y^{2}\right)^{2} \\
& \geq 64 d(S x, T y) .
\end{aligned}
$$

Therefore

$$
d(S x, T y) \leq \frac{1}{64} d(f x, g y)
$$

If $x \in[\sqrt[3]{3}, \infty), x \neq 4$ and $y=4$, we get

$$
d(f x, g y)=4\left(x^{6}-2\right)^{2}
$$

and

$$
d(S x, T y)=\left(x^{3}-3\right)^{2} .
$$

It follows that

$$
\begin{aligned}
\frac{d(f x, g y)}{d(S x, T y)} & =4\left(x^{3}+3+\frac{7}{x^{3}-3}\right)^{2} \\
& >64 \text { if } x \neq \sqrt[3]{3}
\end{aligned}
$$

Hence

$$
d(S x, T y)<\frac{1}{64} d(f x, g y)
$$

Similarly, if $x=4$ and $y \in[\sqrt[3]{3}, \infty), y \neq 4$ we get

$$
d(S x, T y)<\frac{1}{64} d(f x, g y)
$$

Then, for all $x, y \in X$

$$
\begin{aligned}
d(S x, T y) & \leq \frac{1}{64} d(f x, g y)+ \\
a \frac{d(f x, S x) d(f x, T y)+d(g y, T y) d(S x, g y)}{d(f x, S x)+d(g y, T y)}, a & >0 \text { if } d(f x, T y)+d(S x, g y) \neq 0 . \\
d(S x, T y) & =0 \text { if } d(f x, T y)+d(S x, g y)=0 .
\end{aligned}
$$

and so for all $x, y \in X$

$$
\begin{aligned}
H(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) & \leq 0 \\
\text { if } d(f x, T y)+d(S x, g y) & \neq 0
\end{aligned}
$$

and

$$
d(S x, T y)=0 \text { if } d(f x, T y)+d(S x, g y)=0
$$

Then, all conditions of Theorem 3.4 hold and 4 is the unique common fixed point of f, g, S and T.

Taking Example 3.13, It can be verified that for all $x, y \in X$

$$
\begin{aligned}
G(d(S x, T y), d(f x, g y), d(f x, S x), d(g y, T y), d(f x, T y), d(S x, g y)) & \leq 0 \\
\text { if } d(f x, g y)+d(g y, T y) & \neq 0
\end{aligned}
$$

and

$$
d(S x, T y)=0 \text { if } d(f x, g y)+d(g y, T y)=0
$$

where $G\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a_{1} \frac{t_{2} t_{5}}{t_{2}+t_{4}}-a_{2}\left(t_{3}+t_{4}\right)-a_{3}\left(t_{5}+t_{6}\right)-a_{4} t_{2}$, $a_{1}, a_{2}, a_{3}, a_{4}>0$ and $a_{1}+2 a_{3}+a_{4}<1$.

Then, all conditions of Theorem 3.6 hold and 4 is the unique common fixed point of f, g, S and T.

Remark 3.14. Theorems of [1], [3], [4] and [7] can not be applicable since the pairs (f, S) and (g, T) are not weakly compatible and the function d defined in Examples 3.12 and 3.13 is not a metric.

Acknowledgments. The authors would like to thank the referees for their useful suggestions.

Common fixed point theorems for occasionally weakly compatible mappings... 107

References

[1] A. Aliouche, Common fixed point theorems via implicit relations, submitted.
[2] M. A. Al-Thagafi and N. Shahzad, Generalized I-nonexpansive self maps and invariant approximations, Acta. Math. Sinica. 24 (5) (2008), 867-876.
[3] G. S. Jeong and B. E. Rhoades, Some remarks for improving fixed point theorems for more than two mappings, Indian J. Pure. Appl. Math., 28 (9) (1997), 11771196.
[4] G. S. Jeong, Some fixed point theorems under weak conditions, J. Geometry and Topology., 5 (2005), 83-96.
[5] G. Jungck, Common fixed points for non-continuous non-self maps on non metric spaces, Far East J. Math. Sci., 4 (2) (1996), 199-215.
[6] G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory., 7 (2) (2006), 287-296.
[7] V. Popa, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat., 19 (2005), 45-51.

Address
A. Aliouche: Department of Mathematics, University of Larbi Ben M'Hidi, Oum-El-Bouaghi, 04000, Algeria

E-mail: alioumath@yahoo.fr
V. Popa: Department of Mathematics University of Bacău Str. Spiru Haret nr.

8,600114 Bacău, Romania
E-mail: vpopa@ub.ro

[^0]: 2000 Mathematics Subject Classifications. 54H25, 47H10.
 Key words and Phrases. occasionally weakly compatible mappings, common fixed point, symmetric space.

 Received: November 29, 2007
 Communicated by Dragan Djordjević

