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COMMON FIXED POINT THEOREMS FOR
OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS

VIA IMPLICIT RELATIONS

Abdelkrim Aliouche and Valeriu Popa

Abstract

We prove common fixed point theorems for four mappings satisfying im-
plicit relations in symmetric spaces using the concept of occasionally weakly
compatible mappings. Our Theorems generalize results of [1], [3], [4] and [7].

1 Introduction and Preliminaries

Let A and S be self-mappings of a metric space (X, d) and C(A, S) the set of
coincidence points of A and S.

Definition 1.1 [5]. A and S are said to be weakly compatible if SAu = ASu
for all u ∈ C(A,S).

Definition 1.2 [2]. A and S are said to be occasionally weakly compatible if
SAu = ASu for some u ∈ C(A, S).

Remark 1.3 [2] If A and S are weakly compatible, then they are occasionally
weakly compatible, but the following Example shows that the converse is not true
in general.

Example 1.4. Let X = [1,∞) with the usual metric. Define A, S : X → X
by: Ax = 3x − 2 and Sx = x2. We have Ax = Sx iff x = 1 or x = 2 and
AS(1) = SA(1) = 1, but AS(2) 6= SA(2). Therefore, A and S are occasionally
weakly compatible, but they are not weakly compatible.

Lemma 1.5 [6]. If A and S have a unique coincidence point w = Ax = Sx,
then w is the unique common fixed point of A and S.

Definition 1.6. Let X be a set. A symmetric on X is a mapping d : X ×X →
[0,∞) such that

d(x, y) = 0 iff x = y and d(x, y) = d(y, x) for all x, y ∈ X.
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Let K6 the family of all continuous mappings F (t1, t2, t3, t4, t5, t6) : R6
+ → R

with t3 + t4 6= 0 satisfying the following conditions:
(K1) : K is decreasing in variables t5 and t6
(K2) : there exists 0 ≤ h < 1 such that for all u, v, w ≥ 0 with
(Ka) : F (u, v, v, u, u + v, 0) ≤ 0 or
(Kb) : F (u, v, u, v, 0, u + v) ≤ 0
we have u ≤ hv.
Let F6 the family of all continuous mappings F (t1, t2, t3, t4, t5, t6) : R6

+ → R
with t3 + t4 6= 0 satisfying the following condition:

(F1) : there exists 0 ≤ h < 1 such that for all u, v, w ≥ 0 with
(Fa) : F (u, v, v, u, w, 0) ≤ 0 or
(Fb) : F (u, v, u, v, 0, w) ≤ 0
we have u ≤ hv.
Let H6 the family of all continuous mappings H(t1, t2, t3, t4, t5, t6) : R6

+ → R
with t5 + t6 6= 0 satisfying the following conditions.

(H1) : there exists 0 ≤ h < 1 such that for all u, v, w ≥ 0 with
(Ha) : H(u, v, v, u, w, 0) ≤ 0 or
(Hb) : H(u, v, u, v, 0, w) ≤ 0

we have u ≤ hv.
(H2) : H(u, u, 0, 0, u, u) > 0 for all u > 0.
Let G6 the family of all continuous mappings G(t1, t2, t3, t4, t5, t6) : R6

+ → R
with t2 + t4 6= 0 satisfying the following conditions:

(G1) : there exists 0 ≤ h < 1 such that for all u, v ≥ 0 with
(Ga) : G(u, v, v, u, w, 0) ≤ 0 or
(Gb) : G(u, v, u, v, 0, w) ≤ 0

we have u ≤ hv.
(G2) : G(u, u, 0, 0, u, u) > 0 for all u > 0.
The following Theorems were proved by [1].
Theorem 1.7. Let f, g, S and T be self-mappings of a metric space (X, d)

satisfying the following conditions:

S(X) ⊂ g(X) and T (X) ⊂ f(X) (1.1)

F (d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0

for all x, y ∈ X if d(fx, Sx) + d(gy, Ty) 6= 0, where F ∈ F6 satisfies (F1), or

d(Sx, Ty) = 0 if d(fx, Sx) + d(gy, Ty) = 0.

Suppose that one of S (X) , T (X) , f(X) and g(X) is a complete subspace of X
and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a
unique common fixed point in X.

Theorem 1.8. Let f, g, S and T be self-mappings of a metric space (X, d)
satisfying (1.1) and

H(d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0
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for all x, y ∈ X if d(fx, Ty) + d(Sx, gy) 6= 0, where H ∈ H6 satisfies (H1) and
(H2), or

d(Sx, Ty) = 0 if d(fx, Ty) + d(Sx, gy) = 0.

Suppose that one of S (X) , T (X) , f(X) and g(X) is a complete subspace of X
and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a
unique common fixed point in X.

Theorem 1.9. Let f, g, S and T be self-mappings of a metric space (X, d)
satisfying (1.1) and

G(d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0

for all x, y ∈ X if d(fx, gy) + d(gy, Ty) 6= 0, where G ∈ C6 satisfies (G1) and
(G2), or

d(Sx, Ty) = 0 if d(fx, gy) + d(gy, Ty) = 0.

Suppose that one of S (X) , T (X) , f(X) and g(X) is a complete subspace of X
and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a
unique common fixed point in X.

The following Theorems was proved by [7].
Theorem 1.10. Let f, g, S and T be self-mappings of a metric space (X, d)

satisfying (1.1) and

K(d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0

for all x, y ∈ X if d(fx, Sx) + d(gy, Ty) 6= 0, where K ∈ K6 satisfies (K1) and
(K2), or

d(Sx, Ty) = 0 if d(fx, Sx) + d(gy, Ty) = 0.

Suppose that one of S (X) , T (X) , f(X) and g(X) is a complete subspace of X
and the pairs (S, f) and (T, g) are weakly compatible. Then, f, g, S and T have a
unique common fixed point in X.

It is our purpose in this paper to prove common fixed point theorems for oc-
casionally weakly compatible mappings satisfying implicit relations in symmetric
spaces. Our Theorems generalize results of [1], [3], [4] and [7].

2 Implicit relations

Let F6 the family of all functions F (t1, t2, t3, t4, t5, t6) : R6
+ → R with t3 + t4 6= 0

Example 2.1. F (t1, t2, t3, t4, t5, t6) = t1 − a
t2t3

t3 + t4
− b

t4t5
t5 + t6 + 1

, a, b > 0.

Example 2.2. F (t1, t2, t3, t4, t5, t6) = t1 − a
t2t4

t3 + t4
− b

t3t6
t5 + t6 + 1

, a, b > 0.

Example 2.3. F (t1, t2, t3, t4, t5, t6) = t1 − a
t3t5 + t4t6

t3 + t4
− bt2, a, b > 0.

Example 2.4. F (t1, t2, t3, t4, t5, t6) = t1 − at3t4 + bt5t6
t3 + t4

− ct2, a, b, c > 0.
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Let H6 the family of all functions H(t1, t2, t3, t4, t5, t6) : R6
+ → R with t5+t6 6= 0

satisfying the following condition:
(H1) : H(u, u, 0, 0, u, u) > 0 for all u > 0.

Example 2.5. H(t1, t2, t3, t4, t5, t6) = t1−a
t3t6 + t4t5

t5 + t6
−bt2, a, b > 0 and b < 1.

Example 2.6. H(t1, t2, t3, t4, t5, t6) = t1 − at3t5 + bt4t6
t5 + t6

− ct2, a, b, c > 0 and

c < 1.
Let G6 the family of all functions G(t1, t2, t3, t4, t5, t6) : R6

+ → R with t2 +t4 6= 0
satisfying the following condition:

(G1) : G(u, u, 0, 0, u, u) > 0 for all u > 0.

Example 2.7. G(t1, t2, t3, t4, t5, t6) = t1−a1
t2t5

t2 + t4
−a2(t3 + t4)−a3(t5 + t6)−

a4t2, a1, a2, a3, a4 > 0 and a1 + 2a3 + a4 < 1.

Example 2.8. G(t1, t2, t3, t4, t5, t6) = t1 − a
t2t4

t2 + t4
− b

t3t5
t5 + t6 + 1

, a, b > 0.

Example 2.9. G(t1, t2, t3, t4, t5, t6) = t1 − a
t2t4

t2 + t4
− b

t3t6
t5 + t6 + 1

, a, b > 0.

3 Main Results

Theorem 3.1. Let f, g, S and T be self-mappings of a symmetric space (X, d)
satisfying the following condition:

F (d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0 (3.1)

for all x, y ∈ X if d(fx, Sx) + d(gy, Ty) 6= 0, where F ∈ F6, or

d(Sx, Ty) = 0 if d(fx, Sx) + d(gy, Ty) = 0. (3.2)

Suppose that the pairs (S, f) and (T, g) are occasionally weakly compatible.
Then, f, g, S and T have a unique common fixed point in X.

Proof. Since the pairs (S, f) and (T, g) are occasionally weakly compatible,
there exist u, v ∈ X such that fu = Su and gv = Tv. As d(fu, Su)+d(gv, Tv) = 0,
it follows from (3.2) that Su = Tv and so fu = Su = gv = Tv. Moreover, if there
is another point u′ such that fu′ = Su′, using (3.2) it follows that fu′ = Su′ =
gv = Tv. Therefore, z = fu = Su is the unique point of coincidence of f and S.
By Lemma 1.5, z is the unique common fixed point of f and S. Similarly, z′ is the
unique common fixed point of g and T . On the other hand, d(fz, Sz)+d(gz′, T z′) =
0 implies that d(Sz, Tz′) = 0, hence z = fz = Sz = gz′ = Tz′ = z′. Therefore, z is
the unique common fixed point of f, g, S and T .

Corollary 3.2. (Theorem 1.7).
Proof. By Theorem 1.7, there exists u, v in X such that z = Tv = gv = Su =

fu. Since weakly compatible mappings are occasionally weakly compatible, then
the conclusion follows from Theorem 3.l.

Corollary 3.3. (Theorem 1.10).
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Theorem 3.4. Let f, g, S and T be self-mappings of a symmetric space (X, d)
satisfying: the following condition:

H(d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0 (3.3)

for all x, y ∈ X if d(fx, Ty) + d(Sx, gy) 6= 0, where H ∈ H6 satisfies (H1), or

d(Sx, Ty) = 0 if d(fx, Ty) + d(Sx, gy) = 0. (3.4)

Suppose that the pairs (S, f) and (T, g) are occasionally weakly compatible.
Then, f, g, S and T have a unique common fixed point in X.

Proof. Since the pairs (S, f) and (T, g) are occasionally weakly compatible,
there exist u, v ∈ X such that fu = Su and gv = Tv. Assume that Su 6= Tv. As
d(fu, Tv) + d(Su, gv) 6= 0, using (3.3) we have

H(d(Su, Tv), d(Su, Tv), 0, 0, d(Su, Tv), d(Su, Tv)) ≤ 0

which is a contradiction of (H1) and so fu = Su = gv = Tv. The rest of the proof
follows as in Theorem 3.1.

Corollary 3.5 (Theorem 1.8).
Theorem 3.6. Let f, g, S and T be self-mappings of a symmetric space (X, d)

satisfying the following condition:

G(d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0 (3.5)

for all x, y ∈ X if d(fx, gy) + d(gy, Ty) 6= 0, where G ∈ G6 satisfies (G1), or

d(Sx, Ty) = 0 if d(fx, gy) + d(gy, Ty) = 0. (3.6)

Suppose that the pairs (S, f) and (T, g) are occasionally weakly compatible.
Then, f, g, S and T have a unique common fixed point in X.

Proof. It follows as in Theorem 3.4.
Corollary 3.7 (Theorem 1.9).
Corollary 3.8 (Theorem of [4]).
If T = S and g = f in Theorems 3.1, 3.3 and 3.6, we obtain the following

Corollaries which generalize Corollaries of Theorems 1.7, 1.8 and 1.9.
Corollary 3.9. Let f and S be self-mappings of a symmetric space (X, d)

satisfying the following condition:

F (d(Sx, Sy), d(fx, fy), d(fx, Sx), d(fy, Sy), d(fx, Sy), d(Sx, fy)) ≤ 0

for all x, y ∈ X if d(fx, Sx) + d(fy, Sy) 6= 0, where F ∈ F6, or

d(Sx, Sy) = 0 if d(fx, Sx) + d(fy, Sy) = 0.

Suppose that the pair (S, f) is occasionally weakly compatible. Then, f and S
have a unique common fixed point in X.
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Corollary 3.10. Let f and S be self-mappings of a symmetric space (X, d)
satisfying the following condition:

H(d(Sx, Sy), d(fx, fy), d(fx, Sx), d(fy, Sy), d(fx, Sy), d(Sx, fy)) ≤ 0

for all x, y ∈ X if d(fx, Sy) + d(Sx, fy) 6= 0, where H ∈ H6 satisfies (H1), or

d(Sx, Sy) = 0 if d(fx, Sy) + d(Sx, fy) = 0.

Suppose that the pair (S, f) is occasionally weakly compatible. Then, f and S
have a unique common fixed point in X.

Corollary 3.11. Let f and S be self-mappings of a symmetric space (X, d)
satisfying the following condition:

G(d(Sx, Sy), d(fx, fy), d(fx, Sx), d(fy, Sy), d(fx, Sy), d(Sx, fy)) ≤ 0

for all x, y ∈ X if d(fx, fy) + d(fy, Sy) 6= 0, where G ∈ G6 satisfies (G1), or

d(Sx, Sy) = 0 if d(fx, fy) + d(fy, Sy) = 0.

Suppose that the pair (S, f) is occasionally weakly compatible. Then, f and S
have a unique common fixed point in X.

Now, we give Examples to support our Theorems.
Example 3.12. Let X = [1,∞), d(x, y) = (x− y)2, f, g, S and T are self

mappings of X defined by:
Sx = 3x − 2, fx = x2, Tx = 3x2 − 2, gx = x4 and F (t1, t2, t3, t4, t5, t6) =

t1− a
t3t5 + t4t6

t3 + t4
− bt2, a, b > 0. It is easy to see that the pairs (f, S) and (g, T ) are

occasionally weakly compatible, but they are not weakly compatible. We have for
all x, y ∈ X

d(fx, gy) = (x2 − y4)2

= (x− y2)2(x + y2)2

≥ 4(x− y2)2

=
4
9
d(Sx, Ty).

Therefore

d(Sx, Ty) ≤ 9
4
d(fx, gy)

≤ a
d(fx, Sx)d(fx, Ty) + d(gy, Ty)d(Sx, gy)

d(fx, Sx) + d(gy, Ty)

+
9
4
d(fx, gy), a > 0,

if d(fx, Sx) + d(gy, Ty) 6= 0.
d(Sx, Ty) = 0 if d(fx, Ty) + d(Sx, gy) = 0
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and so for all x, y ∈ X

F (d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0
if d(fx, Sx) + d(gy, Ty) 6= 0.

and
d(Sx, Ty) = 0 if d(fx, Sx) + d(gy, Ty) = 0.

Then, all conditions of Theorem 3.1 hold and 1 is the unique common fixed
point of f, g, S and T .

Example 3.13. Let X = {1} ∪ [ 3
√

3,∞), d(x, y) = (x− y)2, f, g, S and T are
self-mappings of X defined by:

Sx =
{

x3 + 1 if x ∈ {1} ∪ [ 3
√

3,∞) and x 6= 4
4 if x = 4

,

fx =
{

2x6 if x ∈ {1} ∪ [ 3
√

3,∞) and x 6= 4
4 if x = 4

,

Tx =
{

x2 + 1 if x ∈ {1} ∪ [ 3
√

3,∞) and x 6= 4
4 if x = 4

,

gx =
{

2x4 if x ∈ {1} ∪ [ 3
√

3,∞) and x 6= 4
4 if x = 4

and F (t1, t2, t3, t4, t5, t6) = t1 − a
t3t6 + t4t5

t5 + t6
− bt2, a, b > 0 and b < 1.

It is easy to see that the pairs (f, S) and (g, T ) are occasionally weakly compat-
ible, but they are not weakly compatible

If x = y = 4 or x = y = 1, we have

d(Sx, Ty) = 0 since d(fx, Ty) + d(Sx, gy) = 0.

If x ∈ [ 3
√

3,∞), x 6= 4 and y ∈ {1} ∪ [ 3
√

3,∞), y 6= 4, we get

d(fx, gy) = 4(x6 − y4)2

= 4(x3 − y2)2(x3 + y2)2

≥ 64d(Sx, Ty).

Therefore

d(Sx, Ty) ≤ 1
64

d(fx, gy).

If x ∈ [ 3
√

3,∞), x 6= 4 and y = 4, we get

d(fx, gy) = 4(x6 − 2)2

and

d(Sx, Ty) = (x3 − 3)2.
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It follows that

d(fx, gy)
d(Sx, Ty)

= 4(x3 + 3 +
7

x3 − 3
)2

> 64 if x 6= 3
√

3.

Hence
d(Sx, Ty) <

1
64

d(fx, gy).

Similarly, if x = 4 and y ∈ [ 3
√

3,∞), y 6= 4 we get

d(Sx, Ty) <
1
64

d(fx, gy).

Then, for all x, y ∈ X

d(Sx, Ty) ≤ 1
64

d(fx, gy) +

a
d(fx, Sx)d(fx, Ty) + d(gy, Ty)d(Sx, gy)

d(fx, Sx) + d(gy, Ty)
, a > 0 if d(fx, Ty) + d(Sx, gy) 6= 0.

d(Sx, Ty) = 0 if d(fx, Ty) + d(Sx, gy) = 0.

and so for all x, y ∈ X

H(d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0
if d(fx, Ty) + d(Sx, gy) 6= 0.

and
d(Sx, Ty) = 0 if d(fx, Ty) + d(Sx, gy) = 0.

Then, all conditions of Theorem 3.4 hold and 4 is the unique common fixed point
of f, g, S and T .

Taking Example 3.13, It can be verified that for all x, y ∈ X

G(d(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) ≤ 0
if d(fx, gy) + d(gy, Ty) 6= 0.

and
d(Sx, Ty) = 0 if d(fx, gy) + d(gy, Ty) = 0,

where G(t1, t2, t3, t4, t5, t6) = t1 − a1
t2t5

t2 + t4
− a2(t3 + t4) − a3(t5 + t6) − a4t2,

a1, a2, a3, a4 > 0 and a1 + 2a3 + a4 < 1.
Then, all conditions of Theorem 3.6 hold and 4 is the unique common fixed

point of f, g, S and T .
Remark 3.14. Theorems of [1], [3], [4] and [7] can not be applicable since

the pairs (f, S) and (g, T ) are not weakly compatible and the function d defined in
Examples 3.12 and 3.13 is not a metric.
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