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ABSTRACT. Compatible maps—a generalization of commuting maps—are

characterized in terms of coincidence points, and common fixed point theo-

rems for compatible maps and commuting maps on compact metric spaces are

obtained.

1. Introduction. Maps f,g: X —* X are said to commute iff fg — gf. The

concept of commuting maps has proven useful for generalizing in the context of

metric space fixed point theory (see, e.g., [1, 2, 4-11, 15, 16, 17]). Recently a less

restrictive concept called compatibility was introduced in [12] and promoted as a

means to more comprehensive results.

Now any two self-maps / and g of a set X commute on the set {x EX: f{x) =

g{x) = x} of common fixed points of / and g. As we shall show, if / and g are

continuous and X is compact metric, / and g are compatible iff they commute

on the set {x E X: f(x) = g(x)} oí coincidence points of / and g. The purpose

of this note is to consider and to emulate the relative merits of compatibility and

commutativity of maps in the setting of compact metric spaces. We shall do so

by proving three fixed point theorems which extend results by Fisher, Leader, Das

and Debata, and the author.

As to notation, we let R denote the reals with usual topology, N the set of

natural numbers, and 7V0 = N U {0}. If /: X —» X, Cf denotes the set of all maps

g: X —► X which commute with /, and we shall write fx for f(x) when convenient.

2. Compatible maps.

Definition 2.1 [12]. Self-maps / and g of a metric space (X,d) are com-

patible iff limn d{fgxn,gfxn) = 0 when {x„} is a sequence such that limn fxn —

lim„ gxn = t for some t in X.

Thus, if d{fgx, gfx) ->0as difx, gx) —► 0, then / and g are compatible. So if

/ and g commute they are obviously compatible. On the other hand, let fx — 5x3

and gx — 2x3 for x in R. Then [gx - fx\ = 3|x[3 —► 0 iff x —► 0, and \fgx - gfx\ =
210|x|9 —> 0 iff x —► 0. So / and g are compatible although they do not commute.

In fact, / and g are not even weakly commutative. Sessa defined self-maps /

and g of (X, d) to be weakly commuting iff d(fgx, gfx) < d(fx, gx) for x in X.

Clearly, commuting maps are weakly commuting and weakly commuting maps are

compatible, but neither implication is reversible as examples in [18] and the above

example (respectively) show.
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We now prepare to simplify the criterion given in Definition 2.1. by citing Propo-

sition 2.2(1) of [12] which states that if self-maps / and g of a metric space are

compatible then fgx = gfx when fx = gx. An example to follow shows that the

converse is not true in general. But upon noting that a mapping /: X —> Y be-

tween topological spaces is proper iff f~l(C) is compact in X when C is compact

in Y, we can say:

THEOREM 2.2. Let f and g be continuous self-maps of a metric space (X,d).

If f is a proper map, then f and g are compatible iff fx = gx implies fgx — gfx.

PROOF. The necessity of the condition follows from Proposition 2.2(1) of [12],

or can be easily proved by supposing that f(x) = g(x) and considering the sequence

{xn} where xn = x for n E N. To prove sufficiency let {xn} be a sequence in X

and suppose that

(1) lim fxn = lim gxn = t,    for some t E X.
n n

Then S = {fxn: n E N} U {i} is compact, so that f~l(S) is compact since / is

proper. Consequently, {x„} has a subsequence {xkn } which converges to an element

c of X. Since / and g are continuous, fxkn —» fc and gxkn —► gc. But then (1)

implies

(2) fxn,gxn^t = f(c) = g(c),

and fgc — gfc by hypothesis. Therefore, since fgxn —*■ fgc and gfxn —* gfc by

(2) and the continuity of / and g, d(fgxn,gfxn) —* 0 as desired.     D

EXAMPLE 2.4. Let A = 22, g(x) = 2 - x2 and f(x) = x2. f and g are both
continuous and proper. If f(x) = g(x), then x = ±1. gf(±l) = 1 = fg(±l) so that

/ and g are compatible; but they are not weakly commuting (let x = 3).

Since continuous self-maps of compact metric spaces are very proper, we have

the following.

COROLLARY 2.3. Two continuous self-maps of a compact metric space are

compatible iff they commute on their set of coincidence points.

The following example, referred to above, demonstrates the essential role played

by "proper maps" in ensuring compatibility.

EXAMPLE 2.5. Let /, g : [0, oo) -> [0, oo) be defined by f(x) - x(x + 1)_1 and
g(x) — (x for x < 1 and 1 for x > 1). Now / and g are both continuous but neither

is proper. Also, fx = gx implies x = 0, and /(0) = g(0) = 0 = fg(0) = gf(0), so
that the conditions of Theorem (2.2) except for that of being proper are met. But

if xn = n for n E N, then limn fxn = lim„ gxn = 1, whereas limn d(fgxn,gfxn) =

d(l/2,1) ^ 0; thus / and g are not compatible.

COROLLARY 2.6. Suppose that f and g are continuous self-maps of a metric

space and that f is proper. If fx = gx implies x = fx, then f and g are compatible.

PROOF. If fx — gx, then x = fx = gx and hence fgx = gfx. f and g are
therefore compatible by Theorem 2.2.    D

Note that the condition of Corollary 2.6 is sufficient but not necessary since

the functions / and g of Example 2.4 are continuous, proper, and compatible, but

f(-l) = g(-l) = l
The next result tells us that nice functions on nice spaces are compatible with

lots of functions.
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COROLLARY 2.7. Let M be a convex subset of a normed linear space and let

f: M —► M be proper and continuous. If s: M —► [0,1) is continuous and if

gs(x) = (1 — s(x))x + s(x)f(x) for x in M, then f and gs are compatible.

PROOF. Since M is convex, gs: M —► M, and gs is continuous since s and /

are. Moreover, if gs(x) = f(x), then (1 — s(x))f(x) — (1 — s(x))x so that f(x) = x

since s(x) ^ 1; i.e., / and gs are compatible by Corollary 2.6.    D

Functions of the form gs with s constant give rise to iteration processes which

produce sequences converging to fixed points of / (see e.g., [3]). We refer the reader

to [12] for further properties of compatible maps and for other examples which show

that compatible maps need not be weakly commuting (and hence not commutative).

Note also that Sessa has extended a variety of fixed theorems by substituting weak

commutativity for commutativity; we cite [18 and 19] as examples.

3. A fixed point theorem for compatible maps. We appeal to the following

generalization of a theorem of S. P. and S. L. Singh [20] to prove our next result.

THEOREM 3.1 [13]. Let A,B,S andT be self-maps of a complete metric space

(X,d). Suppose that S andT are continuous, the pairs A,S, and B,T are compat-

ible pairs, and that A(X) C T(X) and B(X) c S(X). If there exists r E (0,1) such

that d(Ax,By) < rmax(Mxy) for x,y in X, where

(1) Mxy = {d(Sx, Ty), d(Ax, Sx),d(By, Ty), \(d(Ax, Ty) + d(Sx, By))},

then there is o unique point z in X such that Az = Bz = Sz — Tz — z.

The following theorem generalizes Theorem 1 of Fisher [7] by requiring compat-

ibility in lieu of commutativity and replacing the terms | d(Ax,Ty), | d(Sx, By)

by \{d{Ax,Ty) +d{Sx,By)) in Mxy.

THEOREM 3.2. Let A,B,S,T be continuous self-maps of a compact metric

space (X,d) with A(X) C T(X) and B(X) C S{X). If A, S andB,T are compatible
pairs and d(Ax, By) < max(Mxy) (see (1)) when max(Mxy) > 0, then A, B, S,

and T have a unique common fixed point.

PROOF. We assert max(Mxy) = 0 for some pair x,y. Otherwise, the function

hxy — d(Ax, By)/ max(Mxy) is continuous and satisfies hxy < 1 on X x X. Since

X x X is compact, there exist c,d E X such that hxy < r = hcd < 1 for x,y E X.

Consequently, d(Ax,By) < rmax(Mxy) on X with r < 1, so by Theorem 3.1,

Az = Bz — Sz = Tz = z for some z. We have the contradiction, max(Mzz) = 0

and max(Mzz) > 0.

Since max(Mxy) = 0 for some x,y E X, (1) implies

(2) Sx = Ax = Ty = By and thus S By = S Ax and ASx = ABy.

Since A and S are compatible, Ax = Sx in (2) implies that SAx = ASx and

therefore SBy = ABy. We now prove that SBy — By so that By is a common

fixed point of A andS.

For if SBy ^ By, max(MByy) > 0 by (1), so that by hypothesis

d(ABy,By) < max{d(SBy,Ty),d(SBy,ABy),d(By,Ty),

\(d(ABy,Ty)+d(SBy,By))}.
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Then (2) and the fact that SBy = ABy imply

d(ABy, By) < max{d(ABy, By),0,0, \(d(ABy,By) + d(ABy, By))},

which yields the contradiction: d(ABy,By) < d(ABy,By).

We thus have Av = Sv — v, with v = By. Similarly, there exists w E X such

that Bw = Tw = w. Moreover, v — w. If not, (1) and the hypothesis imply

d(v,w) < uiax{d(v,w),0,0, \(d(v, w) + d(v,w))} = d(v,w);

again, a contradiction. We conclude that v = w is the common fixed point of

A, B, S, and T. In like manner, "uniqueness" follows immediately.      D

The following example verifies that Theorem 3.2 does indeed generalize Theorem

1 of Fisher referred to above.

EXAMPLE 3.3. Let X = [0,1] and d(x,y) = \x - y\. Define Sx = x1/2,

Tx = x1/2/2, Ax = x1/2/4, and Bx = x1/2/8. A, B, S, and T are continuous, and

A(X) = [0, \] C [0, \) = T(X); similarly, B(X) C S(X). A and S are compatible
by Corollary 2.3 since X is compact and Ax — Sx implies x = 0 = A5(0) =

5A(0). Likewise, B and T are compatible. Moreover, d(Ax,By) = \(Sx,Ty) <

\max.(Mxy), and the hypothesis of Theorem 3.2 is satisfied. However, A and

S are not weakly commutative—and hence not commutative—since |Ax — 5x| =

3x1/4|5Ax - ASx\, so that |Ax - 5x| < |5Ax - A5x| if x < 1/81. The hypothesis
of Fisher's Theorem 1 is therefore not satisfied.

To better appreciate how "tight" the hypothesis of Theorem 3.2 might be and to

better understand the relative roles of commutativity and compatibility, consider

the following.

THEOREM 3.4 (FISHER [6]). Let A,B,S, andT be mappings of a compact

metric space (X, d) into itself satisfying

(3)     d(Ax, By) < max{d(Sx,Ty), d(Sx, Ax), d(Ty, By),d(Sx, By), d(Ty, Ax)}

for all x, y in X for which the right-hand side of (3) is positive. If A and B commute,

if S andT commute with AB and if AB is continuous, then A, B, S, andT have

a unique common fixed point.

Example 6 by Sessa [19] shows that Theorem 3.4 is false even if the only change

in the hypothesis is to permit S and AB to be a weakly commuting pair.

4. Fixed point theorems for commuting maps. The proofs of our two

remaining theorems appeal to the following.

PROPOSITION 4.1.   Let f and g be commuting self-maps of a compact metric

space (X,d) such that gf is continuous. If A = On^iidf)"^)' then

(i) h(A)cAforhECgf,
(ii) A = f(A) = g(A) ¿ 0, and
(iii) A is compact.

PROOF. It is well known (see e.g., [14]) that A is not empty, that A is compact,

and that gf(A) = A. If h E Cg¡, we can write

CO oo oo

h(A) C fi h(gf)n(X) = f| (gfr(h(X)) C f| (gf)n(X) = A.
n=l n=l n=l
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Specifically, g(A) C A and f(A) C A. Thus A = gf(A) C g{A) C A, so g {A) = A.
Similarly, f{A) = A.    D

In our next result we use the standard notation diam(S) = sup{d(x, y): x,y E S}

if 5 is a subset of a metric space {X, d).

THEOREM 4.2. Let f and g be commuting self-maps of a compact metric space

(X, d) such that gf is continuous. If

(1) fx t¿ gy implies d(fx,gy) < diam{h(z): z E {x,y} and h E Cgj}, then there

is a unique point a in X such that a = fa = ga. In fact, a = ha for all h E Cgf.

PROOF. Let A be as in Proposition 4.1 so that (i), (ii), and (iii) of Proposition

4.1 hold. We assert that A = {a} for some a in X. Otherwise diam(A) > 0, so by

compactness there exist distinct u, v E A such that d(u,v) — diam(A). By (ii), we

can find x,y E A such that u = fx and v = gy; i.e., d(fx,gy) — diam(A). Since

fx^gy, (1) implies

(2) diam(A) = d(fx,gy) < d(hiZi,h2z2)

for some hi E Cg¡ and z¿ E {x,y} (i = 1,2). Since z* E A, (i) of Proposition

4.1 implies that /i¿z¿ E A for i = 1,2; consequently, (2) yields the contradiction,

diam(A) < diam(A).

Thus A = {a} for some a in X. Then (i) implies that a = ha for h in Cgf, in

particular, a = fa = ga. Now if c = fc = gc, gfc = c and thus (gf)nc = c for

n E N; i.e., c E A — {a}. Hence, a is the only common fixed point of / and g.    D

Clearly, Theorem 3.4 follows from Theorem 4.2. For suppose that Ax ^ By.

Then the right member of (3) in Theorem 3.4 is positive and therefore the inequality

(3) holds. But since S,T E Cab by hypothesis, (1) of Theorem 4.2 with A = f and

B = g holds.

Observe also that since A in the above proof is shown to be a singleton, Leader's

Theorem 1 (Io and 7°) in [14] assures us that (gf)n (x) —► a uniformly for all x E X.

Thus a is a "uniformly contractive" point for gf, but it need not be for both / and

g as examples show.

Note also that in light of the above comments, the theorem by Das and Debata

[4] follows from Theorem 4.2, and the following corollary extends Corollary 2 of

Leader [14].

COROLLARY 4.3. If f is a continuous self-map of a compact metric space (X, d)

such that for some r, s E Nq,

(2) fTx ^ fsy implies d(frx,fsy) < diam{hz: z E {x,y}kh E Cf},

then f has a uniformly contractive fixed point.

PROOF. By the proof of Theorem 4.2 with / = fr and g = fs, D~=i(/T)n(A)

= A = {a}, a singleton. But p£=1 fn(X) C f£Li fpn(X) for any p E N. Thus

n^Li/"(AT) = {o}, and the conclusion obtains by Leader's Theorem 1 (Io and

7°).    D
Note. To appreciate the scope of Theorem 4.2 and hence of Corollary 4.3, observe

that the functions h E Cg¡ in the right member of (1) include all functions of the

form Fn with n E N0 and F = f,g, gf, or any function in Cf(~\Cg. Our final result

is a cousin to Theorem 4.2, but "reverses" the inequality in (1).
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THEOREM 4.4. Let f and g be continuous commuting self-maps of a compact

metric space (X,d). If

(4) fx ^ gy implies d(hx, hy) < d(fx, gy) for some hECf C\Cg,

then at least one of f or g has a fixed point.

PROOF. As above we let A = f]™=i(j/)nW, so that (i)-(iii) of Proposition 4.1

hold, noting that C/ H Cg C Cg¡. Since / and g are continuous and A is compact,

there exist, a,b E A such that

(5) d(a, fia)) < d{x, fix))    and    d(b, g(b)) < d(x, g(x))

for x € A. We assume without loss of generality that

(6) d{a,f{a))<dib,g{b)).

Since g(A) = A by (ii), g{c) = a for some c E A. But then, if a ^ f{a), g{c) ^

figic)), and (4) yields hECfnCg such that d{h{c), h{g{c))) < dig{c),f{g{c))) =
d{a,f{a)). Consequently,

(7) dih{c),g{hic)))<d{b,gib))

by (6) since h E Cg. But since h E C¡ n Cg, (i) implies that h(c) E A and (7)

therefore contradicts the right member of (5).

We conclude that the assumption a/ f(a) is false.    G

The following example reveals that not both / and g of Theorem 4.4 need have

a fixed point and that the fixed point may not be unique.

EXAMPLE 4.4. Let X = {0,1}, d(x,y) — \x - y\, h = g — i—the identity map,

and define / by /(0) = 1, f(l) = 0. Then / and g are continuous commuting maps

of a compact metric space into itself and h E C¡ fl Gg. Moreover, f(x) ^ g(y)

implies x - y or i(x) - i(y) = h(x) = h(y), so 0 = d(h(x),h(y)) < d(f(x),g(y)),

and (4) holds. And g has two fixed points while / has none.

We conclude by observing that the sufficiency portion of Corollary 2.3 in [9] is

à special case of Theorem 4.4 with f = g.
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