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Abstract

In this article, we establish some common fixed point theorems for a hybrid pair {g,
T} of single valued and multi-valued maps satisfying a generalized contractive
condition defined on G-metric spaces. Our results unify, generalize and complement
various known comparable results from the current literature.
2000 MSC: 54H25; 47H10; 54E50.

Keywords: multi-valued mappings, common fixed point, weakly compatible map-
pings, generalized contraction

1. Introduction and preliminaries
Nadler [1] initiated the study of fixed points for multi-valued contraction mappings

and generalized the well known Banach fixed point theorem. Then after, many authors

studied many fixed point results for multi-valued contraction mappings see [2-13].

Mustafa and Sims [14] introduced the G-metric spaces as a generalization of the

notion of metric spaces. Mustafa et al. [15-19] obtained some fixed point theorems for

mappings satisfying different contractive conditions. Abbas and Rhoades [20] initiated

the study of common fixed point in G-metric spaces. While Saadati et al. [21] studied

some fixed point theorems in generalized partially ordered G-metric spaces. Gajić and

Crvenković [22,23] proved some fixed point results for mappings with contractive iter-

ate at a point in G-metric spaces. For other studies in G-metric spaces, we refer the

reader to [24-38]. Consistent with Mustafa and Sims [14], the following definitions and

results will be needed in the sequel.

Definition 1.1. (See [14]). Let X be a non-empty set, G : X × X × X ® ℝ+ be a func-

tion satisfying the following properties

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y Î X with x ≠ y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z Î X with y ≠ z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, aÎX (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on

X, and the pair (X, G) is called a G-metric space.
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Definition 1.2. (See [14]). Let (X, G) be a G-metric space, and let (xn) be a sequence

of points of X, therefore, we say that (xn) is G-convergent to x Î X if

lim
n,m→+∞G (x, xn, xm) = 0, that is, for any ε >0, there exists N Î N such that G(x, xn, xm)

< ε, for all n, m ≥ N. We call x the limit of the sequence and write xn ® x or

lim
n→+∞ xn = x.

Proposition 1.1. (See [14]). Let (X, G) be a G-metric space. The following statements

are equivalent:

(1) (xn) is G-convergent to x,

(2) G(xn, xn, x) ® 0 as n ® +∞,

(3) G(xn, x, x) ® 0 as n ® +∞,

(4) G(xn, xm, x) ® 0 as n, m ® +∞.

Definition 1.3. (See [14]). Let (X, G) be a G-metric space. A sequence (xn) is called a

G-Cauchy sequence if for any ε >0, there is N Î N such that G(xn, xm, xl) < ε for all m,

n, l ≥ N, that is, G(xn, xm, xl) ® 0 as n, m, l ® +∞.

Proposition 1.2. (See [14]). Let (X, G) be a G-metric space. Then the following state-

ments are equivalent:

(1) the sequence (xn) is G-Cauchy,

(2) for any ε >0, there exists N Î N such that G(xn, xm, xm) < ε, for all m, n ≥ N.

Definition 1.4. (See [14]). A G-metric space (X, G) is called G-complete if every G-

Cauchy sequence is G-convergent in (X,G).

Every G-metric on X defines a metric dG on X given by

dG
(
x, y

)
= G

(
x, y, y

)
+ G

(
y, x, x

)
, for allx, y ∈ X. (1)

Recently, Kaewcharoen and Kaewkhao [34] introduced the following concepts. Let X

be a G-metric space. We shall denote CB(X) the family of all nonempty closed

bounded subsets of X. Let H(.,.,.) be the Hausdorff G-distance on CB(X), i.e.,

HG (A,B,C) = max
{
sup
x∈A

G (x,B,C) , sup
x∈B

G (x,C,A) , sup
x∈C

G (x,A,B)

}
,

where

G (x,B,C) = dG (x,B) + dG (B,C) + dG (x,C) ,

dG (x,B) = inf
{
dG

(
x, y

)
, y ∈ B

}
,

dG (A,B) = inf {dG (a, b) , a ∈ A, b ∈ B} .
Recall that G(x, y, C) = inf {G(x, y, z), z Î C}. A mapping T : X ® 2X is called a

multi-valued mapping. A point x Î X is called a fixed point of T if x Î Tx.

Definition 1.5. Let X be a given non empty set. Assume that g : X ® X and T : X ®
2X.

If w = gx Î Tx for some x Î X, then x is called a coincidence point of g and T and w

is a point of coincidence of g and T.

Mappings g and T are called weakly compatible if gx Î Tx for some x Î X implies gT

(x) ⊆ Tg(x).

Proposition 1.3. (see [34]). Let X be a given non empty set. Assume that g : X ® X

and T : X ® 2X are weakly compatible mappings. If g and T have a unique point of

coincidence w = gxÎ Tx, then w is the unique common fixed point of g and T.
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In this article, we establish some common fixed point theorems for a hybrid pair {g,

T} of single valued and multi-valued maps satisfying a generalized contractive condi-

tion defined on G-metric spaces. Also, an example is presented.

2. Main results
We start this section with the following lemma, which is the variant of the one given

in Nadler [1] or Assad and Kirk [4]. Its proof is a simple consequence of the definition

of the Hausdorff G-distance HG(A, B, B).

Lemma 2.1. If A, B Î CB(X) and a Î A, then for each ε >0, there exists b Î B such

that G(a,b,b) ≤ HG(A, B, B) + ε.

The main result of the article is the following.

Theorem 2.1. Let (X, G) be a G-metric space. Set g : X ® X and T : X ® CB(X).

Assume that there exists a function a : [0,+∞) ® [0,1) satisfying lim sup
r→t+

α(r) < 1for

every t ≥ 0 such that

HG
(
Tx,Ty,Tz

) ≤ α
(
G

(
gx, gy, gz

))
G

(
gx, gy, gz

)
, (2)

for all x, y, z Î X. If for any x Î X, Tx ⊆ g(X) and g(X) is a G-complete subspace of

X, then g and T have a point of coincidence in X. Furthermore, if we assume that gp Î
Tp and gq Î Tq implies G(gq, gp, gp) ≤ HG(Tq, Tp, Tp), then

(i) g and T have a unique point of coincidence.

(ii) If in addition g and T are weakly compatible, then g and T have a unique com-

mon fixed point.

Proof. Let x0 be arbitrary in X. Since Tx0 ⊆ g(X), choose x1 Î X such that gx1 Î Tx0.

If gx1= gx0, we finished. Assume that gx0 ≠ gx1, so G(gx0, gx1, gx1) >0. We can choose a

positive integer n1 such that

αn1
(
G

(
gx0, gx1, gx1

)) ≤ [
1 − α

(
G

(
gx0, gx1, gx1

))]
G

(
gx0, gx1, gx1

)
.

By Lemma 2.1 and the fact that Tx1 ⊆ g(X), there exists gx2 Î Tx1 such that

G
(
gx1, gx2, gx2

) ≤ HG (Tx0,Tx1,Tx1) + αn1
(
G

(
gx0, gx1, gx1

))
.

Using the two above inequalities and (2), it follows that

G
(
gx1, gx2, gx2

) ≤ HG (Tx0,Tx1,Tx1) + αn1
(
G

(
gx0, gx1, gx1

))
≤ α

(
G

(
gx0, gx1, gx1

))
G

(
gx0, gx1, gx1

)
+

[
1 − α

(
G

(
gx0, gx1, gx1

))]
G

(
gx0, gx1, gx1

)
= G

(
gx0, gx1, gx1

)
.

If gx1 = gx2, we finished. Assume that gx1 ≠ gx2. Now we choose a positive integer

n2> n1 such that

αn2
(
G

(
gx1, gx2, gx2

)) ≤ [
1 − α

(
G

(
gx1, gx2, gx2

))]
G

(
gx2, gx2, gx2

)
.

Since Tx2 Î CB(X) and the fact that Tx2 ⊆ g(X), we may select gx3 Î Tx2 such that

from Lemma 2.1

G
(
gx2, gx3, gx3

) ≤ HG (Tx1,Tx2,Tx2) + αn2
(
G

(
gx1, gx2, gx2

))
,
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and then, similarly to the previous case, we have

G
(
gx2, gx3, gx3

) ≤ HG (Tx1,Tx2,Tx2) + αn2
(
G

(
gx1, gx2, gx2

))
≤ α

(
G

(
gx1, gx2, gx2

))
G

(
gx1, gx2, gx2

)
+

[
1 − α

(
G

(
gx1, gx2, gx2

))]
G

(
gx1, gx2, gx2

)
= G

(
gx1, gx2, gx2

)
.

By repeating this process, for each k Î N*, we may choose a positive integer nk such

that

αnk
(
G

(
gxk−1, gxk, gxk

)) ≤ [
1 − α

(
G

(
gxk−1, gxk, gxk

))]
G

(
gxk−1, gxk, gxk

)
.

Again, we may select gxk+1 Î Txk such that

G
(
gxk, gxk+1, gxk+1

) ≤ HG (Txk−1,Txk,Txk) + αnk
(
G

(
gxk−1, gxk, gxk

))
. (3)

The last two inequalities together imply that

G(gxk, gxk+1, gxk+1) ≤ G(gxk−1, gxk, gxk),

which shows that the sequence of nonnegative numbers {dk}, given by dk = G(gxk-1,

gxk, gxk), k = 1, 2,. . ., is non-increasing. This means that there exists d ≥ 0 such that

lim
k→+∞

dk = d.

Let now prove that the {gxk} is a G-Cauchy sequence.

Using the fact that, by hypothesis for t = d, lim sup
r→d+

α(t) < 1 , it results that there

exists a rank k0 such that for k ≥ k0, we have a(dk) < h, where

lim sup
t→d+

α(t) < h < 1.

Now, by (3) we deduce that the sequence {dk} satisfies the following recurrence

inequality

dk+1 ≤ HG (Txk−1,Txk,Txk) + αnk(dk) ≤ α(dk)dk + αnk(dk), k ≥ 1. (4)

By induction, from (4), we get

dk+1 ≤
k∏
i=1

α(di)d1 +
k−1∑
m=1

k∏
i=m+1

α(di)αnm(dm) + αnk(dk), k ≥ 1,

which, by using the fact that a <1, can be simplified to

dk+1 ≤
k∏
i=1

α(di)d1 +
k−1∑
m=1

k∏
i=max{k0,m+1}

α(di)αnm(dm) + αnk(dk), k ≥ 1,

Referring to the proof of Theorem 2.1 in [11] or Lemma 3.2 in [12], we may obtain

k∏
i=1

α(di)d1 +
k−1∑
m=1

k∏
i=max{k0,m+1}

α(di)αnm(dm) + αnk(dk) ≤ chk,

where c is a positive constant. We deduce that

dk+1 = G(gxk, gxk+1, gxk+1) ≤ chk.
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Now for k ≥ k0 and m is a positive arbitrary integer, we have using the property (G4)

G(gxk, gxk+m, gxk+m) ≤ G(gxk, gxk+1, gxk+1) + G(gxk+1, gxk+2, gxk+2)

+ · · · + G(gxk+m−2, gxk+m−1, gxk+m−1) + G(gxk+m−1, gxk+m, gxk+m)

≤ c
[
hk + hk+1 + · · · + hk+m−1

]

≤ c
hk

1 − h
→ 0 as k → +∞,

since 0 < h <1. This shows that the sequence {gxn} is G-Cauchy in the complete sub-

space g(X). Thus, there exists q Î g(X) such that, from Proposition 1.1

lim
n→+∞G(gxn, gxn, q) = lim

n→+∞G(gxn, q, q) = 0. (5)

Since q Î g(X), then there exists p Î X such that q = gp. From (5), we have

lim
n→+∞G(gxn, gxn, gp) = lim

n→+∞G(gxn, gp, gp) = 0. (6)

We claim that gp Î Tp. Indeed, from (2), we have

G(gxn+1,Tp,Tp) ≤ HG(Txn,Tp,Tp)

≤ α(G(gxn, gp, gp))G(gxn , gp, gp).
(7)

Letting n ® +∞ in (7) and using (6), we get

G(gp,Tp,Tp) = lim
n→+∞G(gxn+1,Tp,Tp) = 0,

that is, gp Î Tp. That is T and g have a point of coincidence. Now, assume that if gp

Î Tp and gq Î Tq, then G(gq, gp, gp) ≤ HG(Tq, Tp, Tp). We will prove the uniqueness

of a point of coincidence of g and T. Suppose that gp Î Tp and gq Î Tq. By (2) and

this assumption, we have

G(gq, gp, gp) ≤ HG(Tq,Tp,Tp)

≤ α(G(gq, gp, gp))G(gq, gp, gp),
(8)

and since a(G(gq, gp, gp)) < G(gq, gp, gp), so necessarily from (8), we have G(gq, gp,

gp) = 0, i.e., gp = gq. In view of

HG(Tq,Tp,Tp) ≤ α(G(gq, gp, gp))G(gq, gp, gp) = 0,

we get Tq = Tp. Thus, T and g have a unique point of coincidence. Suppose that g

and T are weakly compatible. By applying Proposition 1.3, we obtain that g and T have

a unique common fixed point.

Corollary 2.1. Let (X,G) be a complete G-metric space. Assume that T : X ® CB(X)

satisfies the following condition

HG(Tx,Ty,Tz) ≤ α(G(x, y, z))G(x, y, z), (9)

for all x, y, z Î X, where a : [0,+∞) ® [0,1) satisfies lim sup
r→t+

α(r) < 1for every t ≥ 0.

Then T has a fixed point in X. Furthermore, if we assume that p Î Tp and q Î Tq

implies G(q, p, p) ≤ HG(Tq, Tp, Tp), then T has a unique fixed point.

Proof. It follows by taking g the identity on X in Theorem 2.1.

Corollary 2.2. Let (X, G) be a G-metric space. Assume that g : X ® X and T : X ®
CB(X) satisfy the following condition
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HG(Tx,Ty,Tz) ≤ kG(gx, gy, gz), (10)

for all x, y, z Î X, where k Î [0,1). If for any x Î X, Tx ⊆ g(X) and g(X) is a G-com-

plete subspace of X, then g and T have a point of coincidence in X. Furthermore, if we

assume that gp Î Tp and gq Î Tq implies G(gq, gp, gp) ≤ HG(Tq, Tp, Tp), then

(i) g and T have a unique point of coincidence.

(ii) If in addition g and T are weakly compatible, then g and T have a unique com-

mon fixed point.

Proof. It follows by taking a(t) = k, k Î [0,1), in Theorem 2.1.

In the case of single-valued mappings, that is, if T : X ® X, (i.e., Tx = {Tx} for any x

Î X), it is obviously that

HG(Tx,Ty,Tz) = G(Tx,Ty,Tz), ∀ x, y, z ∈ X.

Furthermore, if gp Î Tp (i.e., gp = Tp) and gq Î Tq (i.e., gq = Tq), then clearly,

G(gq, gp, gp) = G(Tq,Tp,Tp) = HG(Tq,Tp,Tp),

that is, the assumption given in Theorem 2.1 is verified.

Also, the single-valued mappings T, g : X ® X are said weakly compatible if Tgx =

gTx whenever Tx = gx for some x Î X.

Now, we may state the following corollaries from Theorem 2.1 and the precedent

corollaries:

Corollary 2.3. Let (X, G) be a complete G-metric space. Assume that T : X ® X

satisfies the following condition

G(Tx,Ty,Tz) ≤ α(G(x, y, z))G(x, y, z) (11)

for all x, y, z Î X, where a : [0, +∞) ® [0, 1) satisfies lim sup
r→t+

α(r) < 1for every t ≥ 0.

Then, T has a unique fixed point.

Corollary 2.4. Let (X, G) be a G-metric space. Assume that g : X ® X and T : X ®
X satisfy the following condition

G(Tx,Ty,Tz) ≤ α(G(gx, gy, gz))G(gx, gy, gz) (12)

for all x, y, z Î X, where a : [0, +∞) ® [0, 1) satisfies lim sup
r→t+

α(r) < 1for every t ≥ 0.

If T(X) ⊆ g(X) and g(X) is a G-complete subspace of X, then

(i) g and T have a unique point of coincidence.

(ii) Furthermore, if g and T are weakly compatible, then g and T have a unique com-

mon fixed point.

Now, we introduce an example to support the useability of our results.

Example 2.1. Let X = [0, 1]. Define T : X ® CB(X) by Tx =
[
0,

1
16

x
]
and define g : X

® X by gx =
√
x. Define a G-metric on X by G(x, y, z) = max{|x-y|, |x-z|, |y-z|}. Also,

define a : [0, +∞) ® [0, 1) by α(t) =
1
2
Then:

(1) Tx ⊆ g(X) for all x Î X.

(2) g(X) is a G-complete subspace of X.

(3) g and T are weakly compatible.

(4) HG(Tx, Ty, Tz) ≤ a(G(gx, gy, gz))G(gx, gy, gz) for all x, y, z Î X.
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Proof. The proofs of (1), (2), and (3) are clear. By (1), we have

dG
(
x, y

)
= G

(
x, y, y

)
+ G

(
y, x, x

)
= 2

∣∣x − y
∣∣ for all x, y ∈ X.

To prove (4), let x, y, z Î X. If x = y = z = 0, then

HG
(
Tx,Ty,Tz

)
= 0 ≤ α

(
G

(
gx, gy, gz

))
G

(
gx, gy, gz

)
.

Thus, we may assume that x, y, and z are not all zero. With out loss of generality, we

assume that x ≤ y ≤ z. Then

HG
(
Tx,Ty,Tz

)
= HG

([
0,

1
16

x
]
,
[
0,

1
16

y
]
,
[
0,

1
16

z
])

= max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup

0≤a≤
1
16

x

G
(
a,

[
0,

1
16

y
]
,
[
0,

1
16

z
])

, sup

0≤b≤
1
16

y

G
(
b,

[
0,

1
16

z
]
,
[
0,

1
16

x
])

,

sup

0≤c≤
1
16

z

G
(
c,

[
0,

1
16

x
]
,
[
0,

1
16

y
])

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Since x ≤ y ≤ z, so

[
0,

1
16

x
]

⊆
[
0,

1
16

y
]

⊆
[
0,

1
16

z
]
This implies that

dG([0,
1
16

x], [0,
1
16

y]) = dG([0,
1
16

y], [0,
1
16

z]) = dG([0,
1
16

x], [0,
1
16

z]) = 0.

For each 0 ≤ a ≤ 1
16

x, we have

G
(
a,

[
0,

1
16

y
]
,
[
0,

1
16

z
])

= dG

(
a,

[
0,

1
16

y
])

+dG

([
0,

1
16

y
]
,
[
0,

1
16

z
])

+dG

(
a,

[
0,

1
16

z
])

= 0.

Also, for each 0 ≤ b ≤ 1
16

y , we have

G
(
b,

[
0,

1
16

z
]
,
[
0,

1
16

x
])

= dG

(
b,

[
0,

1
16

z
])

+ dG

([
0,

1
16

z
]
,
[
0,

1
16

x
])

+ dG

(
b,

[
0,

1
16

x
])

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if b ≤ x

16
2b−

x
8

if b≥
x
16

.

This yields that

sup

0≤b≤
1
16

y

G
(
b,

[
0,

1
16

z
]
,
[
0,

1
16

x
])

=
y
8

− x
8
.
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Moreover, for each 0 ≤ c ≤ 1
16

z , we have

G
(
c,

[
0,

1
16

x
]
,
[
0,

1
16

y
])

= dG

(
c,

[
0,

1
16

x
])

+ dG

([
0,

1
16

x
]
,
[
0,

1
16

y
])

+ dG

(
c,

[
0,

1
16

y
])

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if c ≤ x
16

2c − x
8
if

x
16

≤ c ≤ y
16

4c − x
8

− y
8
if c ≥ y

16
.

This yields that

sup

0≤c≤
1
16

z

G
(
c,

[
1
16

c
]
,
[
0,

1
16

y
])

=
z
4

− x
8

− y
8
.

We deduce that

HG(Tx,Ty,Tz) =
z
4

− x
8

− y
8

≤ 1
4
(z − x)

=
1
2

(
1
2
(z − x)

)

≤ 1
2

(
z − x√
x +

√
z

)

=
1
2
(
√
z − √

x)

On the other hand, it is obvious that all other hypotheses of Theorem 2.1 are satis-

fied and so g and T have a unique common fixed point, which is u = 0.

Remark 1• Theorem 2.1 improves Kaewcharoen and Kaewkhao [[34], Theorem 3.3]

(in case b = c = d = 0).

• Corollary 2.3 generalizes Mustafa [[15], Theorem 5.1.7] and Shatanawi [[35],

Corollary 3.4].
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