COMMON FIXED POINTS OF GENERALIZED ALMOST NONEXPANSIVE MAPPINGS

Mujahid Abbas and Dejan Ilić

Abstract

The concept of a generalized almost nonexpansive mappings is introduced and the existence of common fixed points for this new class of mappings is proved. As an application, an invariant approximation result is obtained.

1 Introduction and preliminaries

In 1968, Kannan [12] proved a fixed point theorem for a map satisfying a contractive condition that did not require continuity at each point. This paper was a genesis for a multitude of fixed point papers over the next two decades. Sessa [13] coined the term weakly commuting maps. Jungck [8] generalized the notion of weak commutativity by introducing compatible maps and then weakly compatible maps [10].

The concept of almost contraction property was extended to a pair of selfmaps as follows:
Definition 1.1. Let T and f be two selfmaps of a metric space (X, d). A map T is called an almost f - contraction if there exist a constant $\delta \in] 0,1[$ and some $L \geq 0$ such that

$$
\begin{equation*}
d(T x, T y) \leq \delta d(f x, f y)+L d(f y, T x) \tag{1}
\end{equation*}
$$

for all $x, y \in X$. If we choose $f=I_{X}, I_{X}$ is the identity map on X, we obtain the definition of almost contraction, the concept introduced by Berinde ([5], [6]).
This concept was introduced by Berinde as 'weak contraction' in [5]. But in [6], Berinde renamed 'weak contraction' as 'almost contraction' which is appropriate. It was shown in [5] that any strict contraction, the Kannan [12] and Zamfirescu [14] mappings, as well as a large class of quasi-contractions, are all almost contractions.

[^0]Let T and f be two selfmaps of a metric space (X, d). T is said to be f-contraction if there exists $k \in[0,1)$ such that $d(T x, T y) \leq k d(f x, f y)$ for all $x, y \in X$. This definition can be obtained directly from (1) if we take $L=0$.
In 2006, Al-Thagafi and Shahzad [2] proved the following theorem which is a generalization of many known results.
Theorem 1.2 (Al-Thagafi and Shahzad ([2], Theorem 2.1)). Let E be a subset of a metric space (X, d) and f and T be selfmaps of E and $T(E) \subseteq f(E)$. Suppose that f and T are weakly compatible, T is f-contraction and $T(E)$ is complete. Then f and T have a unique common fixed point in E.
Babu, Sandhya and Kameswari [3] considered the class of mappings that satisfy 'condition (B)'.
Let (X, d) be a metric space. A map $T: X \rightarrow X$ is said to satisfy 'condition ($B)^{\prime}$ if there exist a constant $\delta \in] 0,1[$ and some $L \geq 0$ such that

$$
d(T x, T y) \leq \delta d(x, y)+L \min \{d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

for all $x, y \in X$.
Recently, Berinde established the following fixed point result.
Theorem 1.3 (Berinde ([6], Theorem 3.4)). Let (X, d) be a complete metric space and $T: X \rightarrow X$ a mapping for which there exist $\alpha \in] 0,1[$ and some $L \geq 0$ such that for all $x, y \in X$

$$
\begin{equation*}
d(T x, T y) \leq \alpha M(x, y)+L \min \{d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \tag{2}
\end{equation*}
$$

where, $M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}$. Then
(1) T has a unique fixed point, i.e., $F(T)=\left\{x^{*}\right\}$;
(2) for any $x_{0} \in X$, the Picard iteration $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by (1.1) converges to some $x^{*} \in F(T)$
(3) the prior estimate

$$
d\left(x_{n}, x^{*}\right) \leq \frac{\alpha^{n}}{(1-\alpha)^{2}} d\left(x_{0}, x_{1}\right)
$$

holds, for $n=1,2, \cdots$,
(4) the rate of convergence of Picard iteration is given by

$$
d\left(x_{n}, x^{*}\right) \leq \theta d\left(x_{n-1}, x^{*}\right)
$$

for $n=0,1,2, \cdots$.
The contractive condition (2) is termed as generalized condition B. We introduce the following definition as follows:
Definition 1.4. Let T and f be two selfmaps of a metric space (X, d). A map T is called generalized almost f - contraction if there exists $\delta \in] 0,1[$ and $L \geq 0$ such that

$$
\begin{equation*}
d(T x, T y) \leq \delta M(x, y)+L \min \{d(f x, T x), d(f y, T y), d(f x, T y), d(f y, T x)\} \tag{3}
\end{equation*}
$$

for all $x, y \in X$, where

$$
M(x, y)=\max \left\{d(f x, f y), d(f x, T x), d(f y, T y), \frac{d(f x, T y)+d(f y, T x)}{2}\right\}
$$

If $f=I_{X}$, then we say that T satisfies 'generalized condition (B)'.
Example 1.5. Let $X=[0,1)$ with usual metric. Define $T, f: X \rightarrow X$ as

$$
T(x)= \begin{cases}\frac{1}{2} & \text { if } 0 \leq x<\frac{2}{3} \\ \frac{2}{3} & \text { if } \quad \frac{2}{3} \leq x<1\end{cases}
$$

and

$$
f(x)=\left\{\begin{array}{cl}
\frac{5}{6} & \text { if } 0 \leq x<\frac{2}{3} \\
\frac{4}{3}-x & \text { if } \frac{2}{3} \leq x<1
\end{array}\right.
$$

Here T is generalized almost f - contraction with $\delta=\frac{1}{2}$ and $L=0$.
But, when $x \in\left[0, \frac{2}{3}\right)$ and $y=\frac{2}{3}$, we have $d(T x, T y)=\frac{1}{6}$; and $d(f x, f y)=\frac{1}{6}$ so that for any $\alpha \in[0,1), T$ fails to be an f-contraction.
Let Y be a subset of a normed space $(X,\|\cdot\|)$. The set $P_{Y}(u)=\{x \in Y: \| x-$ $u \|=\operatorname{dist}(u, Y)\}$ is called the set of best approximants to $u \in X$ out of Y, where $\operatorname{dist}(u, Y)=\inf \{\|y-u\|: y \in Y\}$. We shall use \mathbb{N} to denote the set of positive integers, $c l(Y)$ to denote the closure of a set Y and $w c l(Y)$ to denote the weak closure of a set Y. Let $f: Y \rightarrow Y$ be a mapping. The set of fixed points of $T($ resp. f) is denoted by $F(T)$ (resp. $F(f)$). A point $x \in Y$ is a coincidence point (common fixed point) of f and T if $f x=T x(x=f x=T x)$. The set of coincidence points of f and T is denoted by $C(f, T)$. A pair (f, T) of self-mappings on X is said to be weakly compatible if f and T commute at their coincidence point (i.e. $f T x=T f x, x \in X$ whenever $f x=T x)$. A point $y \in X$ is called a point of coincidence of two self-mappings f and T on X if there exists a point $x \in X$ such that $y=T x=f x$.
The set Y is called q-starshaped with $q \in Y$, if the segment $[q, x]=\{(1-k) q+k x$: $0 \leq k \leq 1\}$ joining q to x is contained in Y for all $x \in Y$. For further details we refer to [4], [7], [9],[11] and referenced mentioned therein.
Definition 1.6. Let X be a normed space and M be a q-starshaped subset of X. Then a selfmap T of X is said to be generalized almost f - nonexpansive if

$$
\begin{align*}
d(T x, T y) \leq & \max \{d(f x, f y), \operatorname{dist}(f x,[q, T x]), \operatorname{dist}(f y,[q, T y]) \\
& \left.\frac{\operatorname{dist}(f x,[q, T y])+\operatorname{dist}(f y,[q, T x])}{2}\right\} \\
& +\operatorname{Limin}\{\operatorname{dist}(f x,[q, T x]), \operatorname{dist}(f y,[q, T y]), \operatorname{dist}(f x,[q, T y]), \\
& \operatorname{dist}(f y,[q, T x])\} \tag{4}
\end{align*}
$$

for all $x, y \in X, L \geq 0$.
Definition 1.7. Let (X, d) be a metric space, T and f be self-mappings on X, with $T(X) \subset f(X)$, and $x_{0} \in X$. Choose a point x_{1} in X such that $f x_{1}=T x_{0}$. This can be done since $T(X) \subset f(X)$. Continuing this process having chosen x_{1}, \cdots, x_{k}, we choose x_{k+1} in X such that

$$
f x_{k+1}=T x_{k}, \quad k=0,1,2, \cdots .
$$

The sequence $\left\{f x_{n}\right\}$ is called a T-sequence with initial point x_{0}.

2 Common fixed point theorems

First, we establish a result on the existence of points of coincidence and common fixed points for two weakly compatible maps. We then, apply this result to obtain common fixed point of generalized almost f - nonexpansive mapping.
Theorem 2.1. Let Y be a nonempty subset of a metric space (X, d), and f and T be weakly compatible self-maps of Y. Assume that $c l T(Y) \subset f(Y), \operatorname{clT}(Y)$ is complete, and T is generalized almost f - contraction. Then $Y \cap F(f) \cap F(T)$ is singleton.
Proof As $T(Y) \subseteq f(Y)$, one can choose $\left\{f x_{n}\right\}$ which is a T-sequence with initial point x_{0}. For each n, using (3), we have

$$
\begin{align*}
& d\left(T x_{n}, T x_{n+1}\right) \leq \delta M\left(x_{n}, x_{n+1}\right) \\
& \quad+L \min \left\{d\left(f x_{n}, T x_{n}\right), d\left(f x_{n+1}, T x_{n+1}\right), d\left(f x_{n}, T x_{n+1}\right), d\left(f x_{n+1}, T x_{n}\right)\right\} \tag{5}
\end{align*}
$$

where

$$
\begin{gathered}
M\left(x_{n}, x_{n+1}\right)=\max \left\{d\left(f x_{n}, f x_{n+1}\right), d\left(f x_{n}, T x_{n}\right), d\left(f x_{n+1}, T x_{n+1}\right),\right. \\
\left.\frac{d\left(f x_{n}, T x_{n+1}\right)+d\left(f x_{n+1}, T x_{n}\right)}{2}\right\}
\end{gathered}
$$

Using $T x_{n}=f x_{n+1}$ in (5), we obtain

$$
\begin{aligned}
d\left(T x_{n}, T x_{n+1}\right) & \leq \delta \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right), \frac{d\left(T x_{n-1}, T x_{n+1}\right)}{2}\right\} \\
& =\delta \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right)\right\}
\end{aligned}
$$

If for some $n, \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right)\right\}=d\left(T x_{n}, T x_{n+1}\right)$, then from above inequality we have

$$
d\left(T x_{n}, T x_{n+1}\right) \leq \delta d\left(T x_{n}, T x_{n+1}\right)
$$

a contradiction. Therefore

$$
\begin{equation*}
d\left(T x_{n}, T x_{n+1}\right) \leq \delta d\left(T x_{n-1}, T x_{n}\right) \tag{6}
\end{equation*}
$$

From (6), we obtain

$$
d\left(T x_{n}, T x_{n+1}\right) \leq \delta d_{0}
$$

where $d_{0}=d\left(T x_{0}, T x_{1}\right)$. Thus for $m, n \in N$ with $m>n$,

$$
\begin{aligned}
d\left(T x_{n}, T x_{m+n}\right) \leq & d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n+1}, T x_{n+2}\right)+\ldots+d\left(T x_{n+m-1}, T x_{m+n}\right) \\
& +(\delta)^{n} d_{0}+(\delta)^{n+1} d_{0}+\ldots+(\delta)^{n+m-1} d_{0} .
\end{aligned}
$$

So

$$
d\left(T x_{n}, T x_{m+n}\right) \leq \sum_{i=n}^{n+m-1}(\delta)^{i} d_{0}
$$

Therefore $\left\{T x_{n}\right\}$ is a Cauchy sequences in $T(Y)$. It follows from completeness of $c l T(Y)$ that $T x_{n} \rightarrow w \in c l T(Y)$ and hence $f x_{n} \rightarrow w$ as $n \rightarrow \infty$. Consequently, $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} T x_{n}=w \in c l T(Y)$. Thus $w=f y$ for some $y \in Y$. Now we show that $f y=T y$. If not, then for $n \geq 1$, we have

$$
\begin{align*}
d(w, T y) & \leq d\left(w, T x_{n}\right)+d\left(T x_{n}, T y\right) \leq d\left(w, T x_{n}\right) \\
& +\delta M\left(x_{n}, y\right)+L \min \left\{d\left(f x_{n}, T x_{n}\right), d(f y, T y), d\left(f x_{n}, T y\right), d\left(f y, T x_{n}\right)\right\} \tag{7}
\end{align*}
$$

where

$$
M\left(x_{n}, y\right)=\max \left\{d\left(f x_{n}, f y\right), d\left(f x_{n}, T x_{n}\right), d(f y, T y), \frac{d\left(f x_{n}, T y\right)+d\left(f y, T x_{n}\right)}{2}\right\}
$$

Letting $n \rightarrow \infty$, on both side of (7), we obtain

$$
d(w, T y) \leq \delta d(w, T y)
$$

a contradiction. Hence $T y=w=f y$. We now show the point of coincidence is unique. Suppose that for some $z \in Y, f z=T z$. Then by inequality (3), we get

$$
\begin{align*}
d(f y, f z) & =d(T y, T z) \\
& \leq \delta M(y, z)+L \min \{d(f y, T y), d(f z, T z), d(f y, T z), d(f z, T y)\} \tag{8}
\end{align*}
$$

where

$$
M(x, y)=\max \left\{d(f y, f z), d(f y, T y), d(f z, T z), \frac{d(f y, T z)+d(f z, T y)}{2}\right\}
$$

By (8), we have

$$
d(f y, f z) \leq \delta d(f y, f z)
$$

Hence $f z=f y=T y$ as $\delta \in(0,1)$. This implies that the point of coincidence of f and T is unique. Since f and T are weakly compatible and $f y=T y$, we obtain $T T y=f T y=T f y$, thereby showing that $T T y$ is a point of coincidence of f and T. By the uniqueness of point of coincidence, we have $T T y=f T y=T y$; thus $T y$ is a common fixed point of f and T. Consequently $T y$ is unique common fixed point of f and T.
Lemma 2.2. Let f and T be self-maps on a nonempty q-starshaped subset Y of a normed space X, f and T are weakly compatible, and T is generalized almost f-nonexpansive with $c l T(Y) \subset f(Y)$, define a mapping T_{n} on Y by

$$
T_{n} x=\left(1-\mu_{n}\right) q+\mu_{n} T x
$$

where $\left\{\mu_{n}\right\}$ is a sequence of numbers in $(0,1)$ such that $\lim _{n \rightarrow \infty} \mu_{n}=1$. Then for each $n \geq 1, T_{n}$ and f have exactly one common fixed point x_{n} in Y such that

$$
f x_{n}=x_{n}=\left(1-\mu_{n}\right) q+\mu_{n} T x_{n},
$$

provided one of the following conditions hold;
(i) $c l\left(T_{n}(Y)\right)$ is complete for each n,
(ii) for each $n, w c l\left(T_{n}(Y)\right)$ is complete.

Proof. By definition,

$$
T_{n} x=\left(1-\mu_{n}\right) q+\mu_{n} T x .
$$

Note that T_{n} is a self mapping on Y and $c l T_{n}(Y) \subset f(Y)$. Also by (4),

$$
\begin{aligned}
&\left\|T_{n} x-T_{n} y\right\|= \mu_{n}\|T x-T y\| \\
& \leq \mu_{n} \max \{\|f x-f y\|, \operatorname{dist}(f x,[q, T x]), \operatorname{dist}(f y,[q, T y]), \\
&\left.\frac{\operatorname{dist}(f x,[q, T y])+\operatorname{dist}(f y,[q, T x])}{2}\right\} \\
&+ \mu_{n} L \min \{\operatorname{dist}(f x,[q, T x]), \operatorname{dist}(f y,[q, T y]), \operatorname{dist}(f x,[q, T y]), \\
&\operatorname{dist}(f y,[q, T x])\} \\
& \leq \mu_{n} \max \left\{\|f x-f y\|,\left\|f x-T_{n} x\right\|,\left\|f y-T_{n} y\right\|,\right. \\
&\left.\frac{\left\|f x-T_{n} y\right\|+\left\|f y-T_{n} x\right\|}{2}\right\}+\mu_{n} L\left\{\left\|f x-T_{n} x\right\|,\left\|f y-T_{n} y\right\|,\right. \\
&\left.\left\|f x-T_{n} y\right\|,\left\|f y-T_{n} x\right\|\right\}
\end{aligned}
$$

for each $x, y \in Y$. By Theorem 2.1, for each $n \geq 1$, there exists a unique $x_{n} \in Y$ such that $x_{n}=f x_{n}=T_{n} x_{n}$. Thus for each $n \geq 1, F\left(T_{n}\right) \cap F(f) \neq \phi$.
(ii) Conclusion follows from Theorem 2.1.

Theorem 2.3. Let f and T be self-maps on a q-starshaped subset Y of a normed space X. Assume that f and T are weakly compatible,,T is a generalized almost f-nonexpansive mapping with $\operatorname{cl} T(Y) \subset f(Y)$. Then $F(T) \cap F(f) \neq \phi$, provided one of the following conditions holds;
(i) $\operatorname{cl}(T(Y))$ is compact and T is continuous;
(ii) X is complete, f is weakly continuous, $\operatorname{wcl}(T(Y))$ is weakly compact and $f-T$ is demiclosed at 0 .

Proof.
(i) Define a mapping T_{n} on Y by

$$
T_{n} x=\left(1-\mu_{n}\right) q+\mu_{n} T x
$$

where $\left\{\mu_{n}\right\}$ is a sequence of numbers in $(0,1)$ such that $\lim _{n \rightarrow \infty} \mu_{n}=1$. Notice that compactness of $c l(T(Y))$ implies that $c l T_{n}(Y)$ is compact and thus complete. From Lemma 2.2, for each $n \geq 1$, there exists $x_{n} \in Y$ such that $x_{n}=f x_{n}=\left(1-\mu_{n}\right) q+\mu_{n} T x_{n}$. Also,

$$
\begin{aligned}
\left\|x_{n}-T x_{n}\right\| & =\left\|\left(1-\mu_{n}\right) q+\mu_{n} T x_{n}-T x_{n}\right\| \\
& =\left(1-\mu_{n}\right)\left\|q-T x_{n}\right\| \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Since $c l(T(Y))$ is compact, there exists a subsequence $\left\{T x_{m}\right\}$ of $\left\{T x_{n}\right\}$ such that $T x_{m} \rightarrow y$ as $m \rightarrow \infty$. Now, $x_{m}=\left(1-\mu_{m}\right) q+\mu_{n} T x_{m}$ implies that $x_{m} \rightarrow y$ as $m \rightarrow \infty$. By the continuity of f and T and the fact $\left\|x_{m}-T x_{m}\right\| \rightarrow 0$, we have $y \in F(T) \cap F(f)$. Thus $F(T) \cap F(f) \neq \phi$.
(ii) The weak compactness of $w c l T(Y)$ implies that $w c l T_{n}(Y)$ is weakly compact and hence complete due to completeness of X. From Lemma 2.2, for each $n \geq 1$, there exists $x_{n} \in Y$ such that $x_{n}=f x_{n}=T_{n} x_{n}=\left(1-\mu_{n}\right) q+\mu_{n} T x_{n}$. The analysis in (i), implies that $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. The weak compactness of $w c l T(Y)$ implies that there is a subsequence $\left\{x_{m}\right\}$ of $\left\{x_{n}\right\}$ converging weakly to $y \in Y$ as $m \rightarrow \infty$. Weak continuity of f implies that $f y=y$. Also we have, $f x_{m}-T x_{m}=x_{m}-T x_{m} \rightarrow 0$ as $m \rightarrow \infty$. If $f-T$ is demiclosed at 0 , then $f y=T y$ and hence $F(T) \cap F(f) \neq \phi$.

Following is an invariant approximation result.
Theorem 2.4. Let Y be a subset of a normed space X and $f, T: X \rightarrow X$ be mappings such that $u \in F(f) \cap F(T)$ for some $u \in X$ and $T(\partial Y \cap Y) \subseteq$ Y. Suppose that $P_{Y}(u)$ is nonempty and q-starshaped, f is continuous on $P_{Y}(u)$, $\|T x-T u\| \leq\|f x-f u\|$ for each $x \in P_{Y}(u)$ and $f\left(P_{Y}(u)\right) \subseteq P_{Y}(u)$. If T and f are weakly compatible, $F(f)$ is nonempty and q-starshaped for $q \in F(f), T$ is almost generalized f-nonexpansive type then $P_{Y}(u) \cap F(f) \cap F(T) \neq \phi$, provided one of the following conditions is satisfied;
(i) T is continuous and $\operatorname{cl}\left(T\left(P_{Y}(u)\right)\right)$ is compact;
(ii) X is complete, $\operatorname{wcl}\left(T\left(P_{Y}(u)\right)\right)$ is weakly compact, f is weakly continuous and either $f-T$ is demiclosed at $\mathbf{0}$.

Proof. Let $x \in P_{Y}(u)$. Then for any $h \in(0,1),\|h u+(1-h) x-u\|=(1-h)\|x-u\|<$ $\operatorname{dist}(u, C)$. It follows that the line segment $\{h u+(1-h) x: 0<h<1\}$ and the set Y are disjoint. Thus x is not in the interior of Y and so $x \in \partial Y \cap Y$. Since $T(\partial Y \cap Y) \subseteq Y, T x$ must be in Y. Also $f x \in P_{Y}(u), u \in F(f) \cap F(T)$ and f and T satisfy $\|T x-T u\| \leq\|f x-f u\|$, thus we have

$$
\|T x-u\|=\|T x-T u\| \leq\|f x-f u\|=\|f x-u\|=\operatorname{dist}(u, Y) .
$$

It further implies that $T x \in P_{Y}(u)$. Therefore T is a self map of $P_{Y}(u)$. The result now follows from Theorem 2.3.

References

[1] M. A. Al-Thagafi, Common fixed points and best approximation, J. Approx. Theory 85(1996), 318-323.
[2] M. A. Al-Thagafi and N. Shahzad, Noncommuting selfmaps and invariant approximations, Nonlinear Anal., 64(2006), 2778-2786.
[3] G. V. R. Babu, M. L. Sandhya and M. V. R. Kameswari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math., 24(1) (2008), 08-12.
[4] I. Beg and M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory and Applications, vol. 2006, Article ID 74503, 7 pages, 2006.
[5] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9(1) (2004), 43-53.
[6] V. Berinde, General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., 24(2) (2008), 10-19.
[7] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9(4) (1986), 771-779.
[8] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc., 103(1988), 977-983.
[9] G. Jungck and S. Sessa, Fixed point theorems in best approximation theory, Math. Japon., 42(1995), 249-252.
[10] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4(1996), 199-215.
[11] G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl., 325(2007), 1003-1012.
[12] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 10 (1968), 71-76.
[13] S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math., 32(1982), 149-153.
[14] T. Zamfirescu, Fix point theorems in metric spaces, Arch. Mat. (Basel), 23 (1972), 292-298.

Adresses:
Mujahid Abbas
Department of Mathematics, Lahore University of Management Sciences, 54792 Lahore, Pakistan
E-mail: mujahid@lum.edu.pk
Dejan Ilić
Department of Mathematics, University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia
E-mail: ilicde@ptt.rs

[^0]: *Work supported by the Serbian Council of Science and Environmental Protection, grant 144034.

 2010 Mathematics Subject Classifications. 47H10,54H25.
 Key words and Phrases. Coincidence point; point of coincidence; common fixed point; almost contraction; generalized almost nonexpansive mapping.

 Received: March 12, 2010.
 Communicated by Vladimir Rakočević.

