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We define a new property which contains the property (EA) for a hybrid pair of single-
and multivalued maps and give some new common fixed point theorems under hybrid
contractive conditions. Our results extend previous ones. As an application, we give a
partial answer to the problem raised by Singh and Mishra.

1. Introduction and preliminaries

Let (X ,d) be a metric space. Then, for x ∈ X , A ⊂ X , d(x,A) = inf{d(x, y), y ∈ A}. We
denote CB(X) as the class of all nonempty bounded closed subsets of X . Let H be the
Hausdorff metric with respect to d, that is,

H(A,B)=max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

, (1.1)

for every A,B ∈ CB(X). A self-map T defined on X satisfies Rhoades’ contractive defini-
tion in following sense: (see [19]) for all x, y ∈ X , x �= y,

d(Tx,Ty) < max
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
. (1.2)

The fixed points theorems for Rhoades-type contraction mapping were investigated by
many authors [1, 5, 8, 10, 13, 16, 22] and the more results on this fields can be found in
[2, 4, 9, 11, 15, 23]. Hybrid fixed point theory for nonlinear single-valued and multival-
ued maps is a new development in the domain of contraction-type multivalued theory
(see [3, 7, 10, 12, 14, 17, 18, 20] and references therein). In 1998, Jungck and Rhoades
[12] introduced the notion of weak compatibility to the setting of single-valued and mul-
tivalued maps. In [21], Singh and Mishra introduced the notion of (IT)-commutativity
for hybrid pair of single-valued and multivalued maps which need not be weakly com-
patible. Recently, Aamri and El Moutawakil [1] defined a property (EA) for self-maps
which contained the class of noncompatible maps. More recently, Kamran [13] extended
the property (EA) for a hybrid pair of single- and multivalued maps and generalized the
notion of (IT)-commutativity for such pair.
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The aim of this paper is to define a new property which contains the property (EA) for
a hybrid pair of single- and multivalued maps and give some new common fixed point
theorems under hybrid contractive conditions. As an application, we give an affirmative
(half-) answer (Theorem 2.8) to the open problem in [21].

Now we state some known definitions and facts.

Definition 1.1 [12]. Maps f : X → X and T : X → CB(X) are weakly compatible if they
commute at their coincidence points, that is, if f Tx = T f x whenever f x ∈ Tx.

Definition 1.2 [21]. Maps f : X → X and T : X → CB(X) are said to be (IT)-commuting
at x ∈ X if f Tx ⊂ T f x whenever f x ∈ Tx.

Definition 1.3 [1]. Maps f ,g : X → X are said to satisfy the property (EA) if there exists a
sequence {xn} in X such that limn→∞ f xn = limn→∞ gxn = t ∈ X .

Definition 1.4 [13]. Maps f : X → X and T : X → CB(X) are said to satisfy the property
(EA) if there exist a sequence {xn} in X , some t in X , and A in CB(X) such that

lim
n→∞ f xn = t ∈A= lim

n→∞Txn. (1.3)

Definition 1.5 [13]. Let T : X → CB(X). The map f : X → X is said to be T-weakly com-
muting at x ∈ X if f f x ∈ T f x.

For the rest of the introduction, we state the following theorem as the prototype in this
paper.

Theorem 1.6 (see [13]). Let f be a self-map of the metric space (X ,d) and let F be a map
from X into CB(X) such that

(1) ( f ,F) satisfies the property (EA);
(2) for all x �= y in X ,

H(Fx,Fy) < max

{
d( f x, f y),

d( f x,Fx) +d( f y,Fy)
2

,
d( f x,Fy) +d( f y,Fx)

2

}
. (1.4)

If f X is closed subset of X , then
(a) f and F have a coincidence point;
(b) f and F have a common fixed point provided that f is F-weakly commuting at v

and f f v = f v for v ∈ C( f ,F), where C( f ,F) = {x : x is a coincidence point of f
and F}.

2. Main results

We begin with the following definition.

Definition 2.1. (1) Let f ,g,F,G : X → X . The maps pair ( f ,F) and (g,G) are said to satisfy
the common property (EA) if there exist two sequences {xn}, {yn} in X and some t in X
such that

lim
n→∞Gyn = lim

n→∞Fxn = lim
n→∞ f xn = lim

n→∞g yn = t ∈ X. (2.1)
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(2) Let f ,g : X → X and F,G : X → CB(X). The maps pair ( f ,F) and (g,G) are said to
satisfy the common property (EA) if there exist two sequences {xn}, {yn} in X , some t in
X , and A, B in CB(X) such that

lim
n→∞Fxn =A, lim

n→∞Gyn = B, lim
n→∞ f xn = lim

n→∞g yn = t ∈A∩B. (2.2)

Example 2.2. Let X = [1,+∞) with the usual metric. Define f ,g : X → X and F,G : X →
CB(X) by f (x)= 2 + x/3, g(x)= 2 + x/2, and F(x)= [1,2 + x], G(x)= [3,3 + x/2] for all
x ∈ X . Consider the sequences {xn} = {3 + 1/n}, {yn} = {2 + 1/n}. Clearly, limn→∞Fxn =
[1,5] = A, limn→∞Gyn = [3,4] = B, limn→∞ f xn = limn→∞ g yn = 3 ∈ A∩ B. Therefore,
( f ,F) and (g,G) are said to satisfy the common property (EA).

Theorem 2.3. Let f , g be two self-maps of the metric space (X ,d) and let F, G be two maps
from X into CB(X) such that

(1) ( f ,F) and (g,G) satisfy the common property (EA);
(2) for all x �= y in X ,

H(Fx,Gy) < max

{
d( f x,g y),

d( f x,Fx) +d(g y,Gy)
2

,
d( f x,Gy) +d(g y,Fx)

2

}
. (2.3)

If f X and gX are closed subsets of X , then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v

and f f v = f v for v ∈ C( f ,F);
(d) g and G have a common fixed point provided that g is G-weakly commuting at v

and ggv = gv for v ∈ C(g,G);
(e) f , g, F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Since ( f ,F) and (g,G) satisfy the common property (EA), there exist two se-
quences {xn}, {yn} in X and u∈ X , A,B ∈ CB(X) such that

lim
n→∞Fxn = A, lim

n→∞Gyn = B,

lim
n→∞ f xn = lim

n→∞g yn = u∈ A∩B.
(2.4)

By virtue of f X and gX being closed, we have u= f v and u= gw for some v,w ∈ X .
We claim that f v ∈ Fv and gw ∈Gw. Indeed, condition (2) implies that

H
(
Fxn,Gw

)
< max

{
d
(
f xn,gw

)
,
d
(
f xn,Fxn

)
+d(gw,Gw)
2

,
d
(
f xn,Gw

)
+d
(
gw,Fxn

)
2

}
.

(2.5)
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Taking the limit as n→∞, we obtain

H(A,Gw) < max

{
d( f v,gw),

d( f v,A) +d(gw,Gw)
2

,
d( f v,Gw) +d(gw,A)

2

}

= d(gw,Gw)
2

.

(2.6)

Since gw = f v ∈ A, it follows from the definition of Hausdorff metric that

d(gw,Gw)≤H(A,Gw)≤ d(gw,Gw)
2

, (2.7)

which implies that gw ∈Gw.
On the other hand, by condition (2) again, we have

H
(
Fv,Gyn

)
< max

{
d
(
f v,g yn

)
,
d( f v,Fv) +d

(
g yn,Gyn

)
2

,
d
(
f v,Gyn

)
+d
(
g yn,Fv

)
2

}
.

(2.8)

Similarly, we obtain

d( f v,Fv)≤H(Fv,B)≤ d( f v,Fv)
2

. (2.9)

Hence f v ∈ Fv. Thus f and F have a coincidence point v, g and G have a coincidence
point w. This ends the proofs of part (a) and part (b).

Furthermore, by virtue of condition (c), we obtain f f v = f v and f f v ∈ F f v. Thus
u= f u∈ Fu. This proves (c). A similar argument proves (d). Then (e) holds immediately.

�

Remark 2.4. In Theorem 2.3, if F, G are two maps from K into CB(X), where K is a closed
subset of X . In this case, it is necessary to assume that (X ,d) is a metrically convex metric
space. In this direction, many excellent works have appeared (see [5, 21]).

Corollary 2.5 (see [13, Theorem 3.10]). Let f be a self-map of the metric space (X ,d)
and let F be a map from X into CB(X) such that

(1) ( f ,F) satisfies the property (EA);
(2) for all x �= y in X ,

H(Fx,Fy) < max

{
d( f x, f y),

d( f x,Fx) +d( f y,Fy)
2

,
d( f x,Fy) +d( f y,Fx)

2

}
.

(2.10)

If f X is closed subset of X , then
(a) f and F have a coincidence point;
(b) f and F have a common fixed point provided that f is F-weakly commuting at v

and f f v = f v for v ∈ C( f ,F).
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Proof. Let F =G and f = g, then the results follow from Theorem 2.3 immediately. �

If f = g, we can conclude the following corollary.

Corollary 2.6. Let f be a self-map of the metric space (X ,d) and let F, G be two maps
from X into CB(X) such that

(1) ( f ,F) and ( f ,G) satisfy the common property (EA);
(2) for all x �= y in X ,

H(Fx,Gy) < max

{
d( f x, f y),

d( f x,Fx) +d( f y,Gy)
2

,
d( f x,Gy) +d( f y,Fx)

2

}
.

(2.11)

If f X is closed subset of X , then
(a) f , G and F have a coincidence point;
(b) f , G and F have a common fixed point provided that f is both F-weakly commuting

and G-weakly commuting at v and f f v = f v for v ∈ C( f ,F).

If both F and G are single-valued maps in Theorem 2.3, then we have the following
corollary.

Corollary 2.7. Let f , g, F, and G be four self-maps of the metric space (X ,d) such that
(1) ( f ,F) and (g,G) satisfy the common property (EA);
(2) for all x �= y in X ,

d(Fx,Gy) < max

{
d( f x,g y),

d( f x,Fx) +d(g y,Gy)
2

,
d( f x,Gy) +d(g y,Fx)

2

}
. (2.12)

If f X and gX are closed subsets of X , then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v

and f f v = f v for v ∈ C( f ,F);
(d) g and G have a common fixed point provided that g is G-weakly commuting at v

and ggv = gv for v ∈ C(g,G);
(e) f , g, F, and G have a common fixed point provided that both (c) and (d) are true.

Theorem 2.8. Let f , g be two self-maps of the complete metric space (X ,d), let λ ∈ (0,1)
be a constant, and let F, G be two maps from X into CB(X) such that for all x �= y in X ,

H(Fx,Gy)≤ λmax

{
d( f x,g y),d( f x,Fx),d(g y,Gy),

d( f x,Gy) +d(g y,Fx)
2

}
. (2.13)

If f X and gX are closed subsets of X and FX ⊂ gX , GX ⊂ f X , then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v

and f f v = f v for v ∈ C( f ,F);
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(d) g and G have a common fixed point provided that g is G-weakly commuting at v
and ggv = gv for v ∈ C(g,G);

(e) f , g, F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. For any given x0 ∈ X , by virtue of FX ⊂ gX , there is x1 ∈ X such that y1 = gx1 ∈
Fx0. Now since Fx0 and Gx1 are closed sets and y1 ∈ Fx0, we can find y2 ∈Gx1 such that

d
(
y1, y2

)≤H
(
Fx0,Gx1

)
+ λ. (2.14)

Since GX ⊂ f X , there exists x2 such that f x2 = y2 ∈ Gx1, then we choose y3 ∈ Fx2

satisfying

d
(
y2, y3

)≤H
(
Gx1,Fx2

)
+ λ2, (2.15)

and y3 = gx3 for some x3 ∈ X .
We continue this process to obtain a sequence {yn} in X such that

y2n = f x2n ∈Gx2n−1, y2n+1 = gx2n+1 ∈ Fx2n,

d
(
y2n, y2n+1

)≤H
(
Gx2n−1,Fx2n

)
+ λ2n,

d
(
y2n−1, y2n

)≤H
(
Fx2n−2,Gx2n−1

)
+ λ2n−1, n= 1,2, . . . .

(2.16)

Let an = d(yn, yn+1), then

a2n = d
(
y2n, y2n+1

)≤H
(
Gx2n−1,Fx2n

)
+ λ2n

≤ λmax

{
d
(
f x2n,gx2n−1

)
,d
(
f x2n,Fx2n

)
,d
(
gx2n−1,Gx2n−1

)
,

d( f x2n,Gx2n−1
)

+d
(
gx2n−1,Fx2n)

2

}
+ λ2n.

(2.17)

By f x2n ∈Gx2n−1, we have

d
(
gx2n−1,Gx2n−1

)≤ d
(
gx2n−1, f x2n

)
, d

(
f x2n,Fx2n

)≤H
(
Gx2n−1,Fx2n

)
. (2.18)

Thus, we rewrite (2.17) as

a2n ≤ λmax

{
d
(
f x2n,gx2n−1

)
,
d
(
gx2n−1,Fx2n

)
2

}
+ λ2n. (2.19)

Hence, we obtain

a2n ≤ λmax

{
a2n−1,

a2n−1 + a2n

2

}
+ λ2n. (2.20)

If a2n−1 ≤ a2n for some n, we have a2n ≤ λ2n/(1− λ). Otherwise, we get

a2n ≤ λa2n−1 + λ2n. (2.21)
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Therefore, by (2.20), we achieve

a2n ≤max
{
λa2n−1 + λ2n,

λ2n

1− λ

}
. (2.22)

On the other hand,

a2n−1 ≤H
(
Gx2n−1,Fx2n−2

)
+ λ2n−1

≤ λmax

{
d
(
f x2n−2,gx2n−1

)
,d
(
f x2n−2,Fx2n−2

)
,d
(
gx2n−1,Gx2n−1

)
,

d
(
f x2n−2,Gx2n−1

)
+d
(
gx2n−1,Fx2n−2

)
2

}
+ λ2n−1.

(2.23)

Since gx2n−1 ∈ Fx2n−2, we have

d
(
gx2n−1,Gx2n−1

)≤H
(
Gx2n−1,Fx2n−2

)
,

d
(
f x2n−2,Fx2n−2

)≤ d
(
gx2n−1, f x2n−2

)
.

(2.24)

Thus, we obtain

a2n−1 ≤ λmax

{
a2n−2,

a2n−2 + a2n−1

2

}
+ λ2n−1. (2.25)

Similarly, we get

a2n−1 ≤max
{
λa2n−2 + λ2n−1,

λ2n−1

1− λ

}
. (2.26)

By (2.22) and (2.26), we obtain

an ≤max
{
λan−1 + λn,

λn

1− λ

}
, n= 1,2, . . . . (2.27)

It is easy to see that

an ≤max
{
λn(a0 +n),

λn

1− λ

}
, n= 1,2, . . . . (2.28)

Thus, there exists n0 > 0 such that for n≥ n0,

an ≤ λn
(
a0 +n

)
. (2.29)

Hence limn→∞ an = 0.
In order to prove that {yn} is Cauchy sequence, for any ε > 0, we choose a sufficiently

large number N such that

λN
(
a0 +N

)≤ ε(1− λ)
2

, λN ≤ ε(1− λ)2

4
. (2.30)
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Thus, for any positive integer k, we obtain

d
(
yN , yN+k

)≤ k−1∑
i=0

aN+i ≤
k−1∑
i=0

λN+i(a0 +N + i
)

< λN
(
a0 +N

) 1
1− λ

+ λN
( k−1∑

i=0

iλi
)

< λN
(
a0 +N

) 1
1− λ

+ λN
2

(1− λ)2
≤ ε.

(2.31)

This implies that {yn} is a Cauchy sequence. Thus there is u satisfying

lim
n→∞ yn = u= lim

n→∞ f x2n = lim
n→∞gx2n+1. (2.32)

Since f X and gX are closed, there exist a, b such that f a = u = gb. A similar argument
proves that

lim
n→∞Fx2n = lim

n→∞Gx2n+1,

u∈ lim
n→∞Fx2n = lim

n→∞Gx2n+1.
(2.33)

Then ( f ,F) and (g,G) satisfy the common property (EA). The rest of the proof follows
Theorem 2.3 immediately, then the proof of Theorem 2.8 is complete. �

Corollary 2.9. Let f , g be two self-maps of the complete metric space (X ,d), let λ∈ (0,1)
be a constant, and let F, G be two maps from X into CB(X) such that for all x �= y in X ,

H(Fx,Gy)≤ αd( f x,g y) +βmax
{
d( f x,Fx),d(g y,Gy)

}
+ γmax

{
d( f x,Gy) +d(g y,Fx),d( f x,Fx) +d(g y,Gy)

}
,

(2.34)

and α+β+ 2γ < 1. If f X and gX are closed subsets of X and FX ⊂ gX , GX ⊂ f X , then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v

and f f v = f v for v ∈ C( f ,F);
(d) g and G have a common fixed point provided that g is G-weakly commuting at v

and ggv = gv for v ∈ C(g,G);
(e) f , g, F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Let λ=α+β+ 2γ. Following (2.34) and max{d( f x,Fx),d(g y,Gy)} ≥ (d( f x,Fx) +
d(g y,Gy))/2, it is easy to see that

H(Fx,Gy)≤ λmax

{
d( f x,g y),d( f x,Fx),d(g y,Gy),

d( f x,Gy) +d(g y,Fx)
2

}
. (2.35)

Thus by Theorem 2.8, we arrive to the conclusion in Corollary 2.9. �



Yicheng Liu et al. 3053

The next theorem involves a function ϕ. Various conditions on ϕ have been investi-
gated by different authors [4, 6, 15, 16]. Let ϕ :R+ →R+ continue and satisfy the follow-
ing conditions:

(A1) ϕ is nondecreasing on R+,
(A2) 0 < ϕ(t) < t, for each t ∈ (0,+∞).

Theorem 2.10. Let f , g be two self-maps of the metric space (X ,d) and let F,G : X → X be
two maps from X into CB(X) such that

(1) ( f ,F) and (g,G) satisfy the common property (EA);
(2) for all x �= y in X ,

H(Fx,Gy)≤ ϕ
(

max
{
d( f x,g y),d( f x,Fx),d(g y,Gy),d( f x,Gy),d(g y,Fx)

})
. (2.36)

If f X and gX are closed subsets of X , then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v

and f f v = f v for v ∈ C( f ,F);
(d) g and G have a common fixed point provided that g is G-weakly commuting at v

and ggv = gv for v ∈ C(g,G);
(e) f , g, F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Since ( f ,F) and (g,G) satisfy the common property (EA), there exist two se-
quences {xn}, {yn} in X and u∈ X , A,B ∈ CB(X) such that

lim
n→∞Fxn =A, lim

n→∞Gyn = B,

lim
n→∞ f xn = lim

n→∞g yn = u∈A∩B.
(2.37)

By virtue of f X and gX being closed, we have u= f v and u= gw for some v,w ∈ X .
We claim that f v ∈ Fv and gw ∈Gw. Indeed, condition (2) implies that

H
(
Fxn,Gw

)≤ ϕ
(

max
{
d
(
f xn,gw

)
,d
(
f xn,Fxn

)
,d(gw,Gw),d

(
f xn,Gw

)
,d
(
gw,Fxn

)})
.

(2.38)

Taking the limit as n→∞, we obtain

H(A,Gw)≤ ϕ
(

max
{
d( f v,gw),d( f v,A),d(gw,Gw),d( f v,Gw),d(gw,A)

})
≤ ϕ

(
d(gw,Gw)

)
< d(gw,Gw).

(2.39)

Since gw = f v ∈ A, it follows from the definition of Hausdorff metric that

d(gw,Gw)≤H(A,Gw) < d(gw,Gw), (2.40)

which implies that gw ∈Gw.
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On the other hand, by condition (2) again, we have

H
(
Fv,Gyn

)≤ ϕ
(

max
{
d
(
f v,g yn

)
,d( f v,Fv),d

(
g yn,Gyn

)
,d
(
f v,Gyn

)
,d
(
g yn,Fv

)})
.

(2.41)

Similarly, we obtain

d( f v,Fv)≤H(Fv,B) < d( f v,Fv). (2.42)

Hence f v ∈ Fv. Thus f and F have a coincidence point v, g and G have a coincidence
point w. This ends the proofs of part (a) and part (b). The rest of proof is similar to the
argument of Theorem 2.3. �

References

[1] M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive
conditions, J. Math. Anal. Appl. 270 (2002), no. 1, 181–188.

[2] A. Ahmad and M. Imdad, Some common fixed point theorems for mappings and multi-valued
mappings, J. Math. Anal. Appl. 218 (1998), no. 2, 546–560.

[3] J. S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl. 284
(2003), no. 2, 690–697.

[4] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969),
no. 2, 458–464.

[5] Lj. B. Ćirić and J. S. Ume, Multi-valued non-self-mappings on convex metric spaces, Nonlinear
Anal. 60 (2005), no. 6, 1053–1063.

[6] D. Downing and W. A. Kirk, A generalization of Caristi’s theorem with applications to nonlinear
mapping theory, Pacific J. Math. 69 (1977), no. 2, 339–346.

[7] R. Espı́nola and W. A. Kirk, Set-valued contractions and fixed points, Nonlinear Anal. 54 (2003),
no. 3, 485–494.

[8] M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications, Proc.
Amer. Math. Soc. 128 (2000), no. 10, 2957–2965.

[9] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics,
Springer, New York, 2003.

[10] T. Hicks and B. E. Rhoades, Fixed points and continuity for multivalued mappings, Int. J. Math.
Math. Sci. 15 (1992), no. 1, 15–30.
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