
REVIEW

Common garden experiments in the genomic era:
new perspectives and opportunities

P de Villemereuil1, OE Gaggiotti1,2, M Mouterde1 and I Till-Bottraud1

The study of local adaptation is rendered difficult by many evolutionary confounding phenomena (for example, genetic drift and
demographic history). When complex traits are involved in local adaptation, phenomena such as phenotypic plasticity further
hamper evolutionary biologists to study the complex relationships between phenotype, genotype and environment. In this
perspective paper, we suggest that the common garden experiment, specifically designed to deal with phenotypic plasticity, has
a clear role to play in the study of local adaptation, even (if not specifically) in the genomic era. After a quick review of some
high-throughput genotyping protocols relevant in the context of a common garden, we explore how to improve common garden
analyses with dense marker panel data and recent statistical methods. We then show how combining approaches from
population genomics and genome-wide association studies with the settings of a common garden can yield to a very efficient,
thorough and integrative study of local adaptation. Especially, evidence from genomic (for example, genome scan) and
phenotypic origins constitute independent insights into the possibility of local adaptation scenarios, and genome-wide
association studies in the context of a common garden experiment allow to decipher the genetic bases of adaptive traits.
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INTRODUCTION

Studying adaptation and the genetic bases of the adaptive traits is an
ambitious but daunting enterprise, especially for complex traits that
have a polygenic basis and are strongly influenced by the environment.
Indeed, uncovering the evidence of genetic adaptation is almost always
hampered by the pervasive effects of evolutionary phenomena such as
genetic drift, phenotypic plasticity, complex demographic history and
complex genetic architecture. In the particular case of local adaptation,
evolutionary biologists have developed efficient tools to overcome
these challenges and the common garden experiment is one of
them. The rationale behind this protocol is to control for the effects
of phenotypic plasticity and, to a certain extent, genotype-by-
environment interactions by growing individuals from different
populations in a common environment, and by using the quantitative
genetics toolbox (see Box 1) to study the genetic bases of complex
traits (for example, life history, morphological and physiological
traits).
Because it enables to unravel the genetic basis of complex

phenotypes across various populations without the confounding
effects of the corresponding environment, the common garden
experiment is used to test for local adaptation signal in traits of
interest such as life history traits (Kawakami et al., 2011), phenology
(Brachi et al., 2013) and allometric relationships (Gonda et al., 2011).
Local adaptation might be suspected because of the existence of an
environmental gradient such as latitude (Toräng et al., 2015) or
altitude (Alberto et al., 2011), or because of the existence of several
contrasting environments, such as sea and fresh water (DeFaveri and
Merilä, 2014). In addition, common garden experiments are also used

to study the consequences of local adaptation for conservation (McKay
et al., 2001) or even for ecosystem functioning (Bassar et al., 2010).
Despite its name, and although it has been used extensively with plants
(Linhart and Grant, 1996), this experimental approach can also be
applied to a large variety of organisms including fish (Bassar et al.,
2010; DeFaveri and Merilä, 2014), invertebrates (Spitze, 1993;
Luttikhuizen et al., 2003) and small mammals (Bozinovic et al.,
2009). The main limitations to this experimental design are the ability
to breed the species and to grow the produced offspring in laboratory
or seminatural conditions. Common garden experiments can also be
used to study genotype-by-environment interactions, by implementing
the same design in different environments. Although replicating
common garden experiments is logistically challenging, the outcomes
of such experiments are highly rewarding, as genotype-by-
environment effects are likely common and very important in the
wild (Stinchcombe, 2014). Note finally that, although common garden
experiments are closely related to reciprocal transplant experiments
(which aim at testing local adaptation by showing that the average
fitness of local individuals is higher than the average fitness of aliens,
see for example Ǻgren and Schemske, 2012), there are important
philosophical and practical differences between the two types of
experiments. The difference is that reciprocal transplants are designed
to prove local adaptation, whereas common gardens are designed to
study the genetic bases of traits, regardless of whether they are adaptive
or not. In practice, reciprocal transplants will typically create a
differential survival, because the locals will survive better. This will
be a confounding effect during the quantitative genetic analysis,
because only the phenotypes of ‘fit’ individuals are available. Common
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gardens, by contrast, are often designed to be ‘softer’ on the
individuals. Nevertheless, most of the elements in this article regarding
common garden experiments can also be applied to reciprocal
transplants, especially if one is interested in applying them to survival
or some other measure of fitness.
To perform the quantitative genetics analyses of the studied traits,

individuals of controlled families (that is, group of individuals with
known genealogy) are used. An average relatedness between indivi-
duals is derived from this known genealogy and allows to infer within-
population additive genetic variance VA, whereas effects due to the
population of origin allows to infer the between-population additive
genetic variance Vpop. This is so because all individuals share the same
environment and, therefore, any average difference between popula-
tions must have a genetic origin. The residual variance VR accounts for
all other kinds of effects (for example, environmental). These variance
components can be used to estimate the heritability of the trait:

h2 ¼ VA

VA þ VR
ð1Þ

It is also possible to estimate QST, a standardised measure of genetic
differentiation for quantitative traits (Spitze, 1993; Edelaar et al., 2011).
QST is defined as the ratio of among-population (additive) genetic
variance VA over the total genetic variance (that is, including the
within-population additive variance Vpop), and in the case of diploid
species is given by:

QST ¼ Vpop

Vpop þ 2VA
ð2Þ

This parameter is a quantitative analogue of population genetics’ FST
and, under a hypothesis of neutrality, both should be equal. Hence, a

common approach for distinguishing between neutral drift and local
adaptation scenarios is to compare QSTs and FSTs. Consequently,
individuals from a common garden experiment are typically geno-
typed to compute FST.
Despite the advantages of common garden experiments, the study

of local adaptation in non-model species during the past decade has
been strongly driven by the study of genetic markers in natural
populations (Luikart et al., 2003). Typically, evolutionary biologists go
to natural populations, sample tissue from the individuals and
genotype them with high-throughput methods and then proceed with
a genome scan analysis of selection (see, for example, Eckert et al.,
2010; Bourret et al., 2013; Fischer et al., 2013). Although this method
can be quite powerful, it has some limitations (for example, false
positives, no information on the adaptive phenotype). Several calls
have been made to independently validate the results of such analyses
(see Buehler et al., 2014 for a striking example), possibly using
common garden or reciprocal transplant experiments (Holderegger
et al., 2008; Pardo-Diaz et al., 2014; Rellstab et al., 2015). Following
these lines, this perspective paper addresses three main questions:
where does the common garden experiment stand in the genomic era?
In particular, what can common garden experiments bring to
population genomics? Conversely, how can techniques from the
genomic fields (for example, high-throughput genotyping and
model-based inference of neutral evolution) extend the range and
scope of common gardens?
It is important to note that population genomics aims at linking

genotypes and environments through genome scans methods but
often completely neglects to study the phenotypic traits under
potential selection. There is much to gain by adding phenotypes into
the equation (Cushman, 2014). Yet, because phenotypic plasticity is
hard to distinguish from local adaptation in wild populations, it seems
useless, or at least dubious, to use phenotypes directly obtained in the
field. This simple fact lies at the heart of common garden experiments
and we suggest here that this approach is ideally suited to jointly study
genotypes, phenotypes and environments, especially when they are
combined with high-throughput genotyping and powerful statistical
methods. After a short introduction to the different high-throughput
genotyping methods available in the context of a common garden
experiment, we will discuss how those methods and powerful
statistical tools can rejuvenate this classical approach. Finally, we will
discuss the complementarity between population genomics and
common garden experiments, and how an integrative analysis can
deepen our understanding of local adaptation.

HIGH-THROUGHPUT GENOTYPING IN THE CONTEXT OF A

COMMON GARDEN

High-throughput genotyping defines any genotyping method yielding
a large number of markers, thus providing a dense marker panel
across the genome. Given the focus on non-model species in this
paper, we consider as few as 10 000 independent markers as fairly
‘dense’, provided that the genome of the species is not too large. For
example, 10 000 single-nucleotide polymorphisms (SNPs) in a genome
of size 100Mbp would represent ∼ 3% of all SNPs if a SNP occurs
every 300 bp.
The most straightforward high-throughput genotyping method is

whole-genome sequencing. This method yields the largest possible
number of markers, and offers the densest genotyping. However, this
technique requires high DNA quality and quantity, bioinformatics
computation power and, most importantly, access to genomic
resources (for example, genome assembly) within a relatively short
phylogenetic range. The huge number of markers generated can also

Box 1 Quantitative genetics glossary

Quantitative Genetics: Theoretical framework used to study the genetic basis of

(mostly) quantitative polygenic traits. It uses relatedness between individuals to

partition the phenotypic variance into (among others) genetic and nongenetic

components.

Relatedness: Probability of shared ancestry (identity by descent (IBD)) of any two

homologous alleles sampled among two individuals. Can also be defined in terms

of correlation of homologous alleles between two individuals when the reference

population is the sample itself. Relatedness is indeed always defined according

to a reference population (Wang, 2014).

Additive genetic variance (VA): Variance component due to the additive effects of

the alleles and genes responsible for the phenotype. Under general conditions

(no epistatis, no inbreeding), this is the only component transmitted to the

offspring generation.

Dominance variance (VD): Genetic variance arising from interactions between

alleles within each gene responsible for the phenotype. The dominance effect is

perceptible only when comparing full-sibs and in the presence of mild to strong

inbreeding (Wolak and Keller, 2014).

Parental effects: Direct or indirect effects of the parental phenotype on the

offspring phenotype, apart from the genetic heredity of the phenotype. This

includes, in particular, maternal energetic investment in offspring.

Heritability: Proportion of the phenotypic variance genetically transmissible to

the offspring generation within a population. Calculated as a ratio between VA
and the total phenotypic variance. The marker-based heritability is the proportion

of phenotypic variance explained by the whole genetic marker panel that is not

necessarily equal to the true heritability.

QST: Among-population genetic differentiation index. Ratio of the among-

population additive genetic variance Vpop to the total additive genetic variance

(calculated as Vpop+2VA).
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be problematic during the analyses because of high computation/
memory requirements, high redundancy in information between
linked markers and low signal-to-noise ratio. Still, whole- genome
sequencing is the ultimate high-throughput genotyping method,
yielding up to millions of SNP markers throughout the whole genome.
With a decreasing cost and an increase in the number of species for
which the whole genome has been sequenced over the years, it might
soon become a recommended technique even for non-model species.
A cheaper alternative to whole- genome sequencing are SNP genotyp-
ing chips, with most of the limitations above applying still.
For now, an approach likely to be best suited for non-model species

is genome representation sequencing. The overall principle of this
approach is to sequence only restricted, but random, parts of the
genome in order to decrease the sequencing effort, and hence the
overall costs and computational efforts associated with genotyping. To
do so, the above approaches mainly use DNA digestion by restriction
enzymes followed by a ligation of tags and primers and PCR
amplification. This is akin to the principle underlying amplified
fragment length polymorphism (AFLP) genotyping (Vos et al.,
1995). Here, however, the DNA fragments (or at least some of them)
are partially sequenced (∼100 bp) using next-generation technology
such as Illumina HiSeq (Illumina Inc., San Diego, CA, USA). This
kind of approach includes the genotyping-by-sequencing method
(Elshire et al., 2011) and the family of restriction site-associated
DNA sequencing methods (Miller et al., 2007; Baird et al., 2008).
The sequences obtained are then analysed using quality checks (that

is, selecting reads according to their sequencing quality, local coverage,
availability over all or most individuals and so on) and SNP calling
pipelines in order to identify SNP markers. Note that contrary to the
AFLP approach, markers issued from restriction site-associated DNA
sequencing are preferentially issued from nonpolymorphic restriction
sites and are codominant. Alternatively, when more than one SNP is
present on a 100-bp sequence, they can be combined into a new
marker with more than two alleles. The rationale behind this is that
very close SNPs are likely to be strongly associated because of physical
linkage, in which case fewer but independent markers composed of
more alleles are often preferable to strongly linked SNPs. Genome
representation protocols can yield up to several hundreds of thousands
of SNPs, but more typically tens of thousands. This can be achieved at
a cost comparable or up to 10 times the cost of an AFLP analysis.
For all of the above, it is clear that next-generation sequencing

makes possible the generation of a very large number of markers for a
moderate cost. When compared with AFLP markers, next-generation
sequencing marker panels are denser, and the markers are codominant
and less arbitrary in their interpretation (that is, no ‘binning’ process),
hence better in every way, except possibly for their cost. Microsatel-
lites, on the other hand, are very different: they usually provide very
sparse panels (up to a few dozens of markers), but highly mutable and
with a large allelic diversity. Although it has been argued that
microsatellites are better markers to infer relatedness (Ritland,
2000), they typically yield smaller relatedness estimates than SNP or
AFLP markers because of higher mutation rates (Uptmoor et al., 2003;
El Rabey et al., 2013). They also yield smaller FST estimates (Edelaar
and Björklund, 2011) for the same reason. Finally, although in theory
more accurate than SNPs for the same number of loci, they typically
yield one to two orders of magnitude less loci, and hence they are less
accurate in practice (Uptmoor et al., 2003).
A key issue is the number of individuals that need to be genotyped.

Our view is that ideally all individuals from the experimental garden(s)
should be genotyped, because this opens the way toward the more
refined or novel analyses detailed below. However, some of the

analyses suggested here (for example, genome scans) can be performed
even when a subsample of individuals have been genotyped. De Kort
et al. (2014), for example, have sampled one individual per family in
their common garden experiment to combine it with population
genomics (that is, genome scans) analyses. This cheaper subsampling
procedure might be very attractive to researchers who are not
interested in individual genotypes: that is, neither in the relatedness
inference nor in the genome-wide association studies that are
described below.

COMMON GARDENS 2.0: NEW MARKERS AND NEW METHODS

We are certainly not the first to encourage the evolutionary biology
community to switch toward next-generation sequencing technology
(Luikart et al., 2003; Savolainen et al., 2013), and it is clear that such a
‘revolution’ is already happening (reviewed in Pardo-Diaz et al., 2014).
However, we wish here to emphasise the interest of dense marker
panels in the context of a common garden experiment.
As stated above, a study of the genetics of complex traits such as

that measured in common garden experiments strongly relies on the
relatedness between individuals that is often assumed, especially when
individuals are siblings (see, for example, Hernández-Serrano et al.,
2014). Yet, contrary to the parent–offspring relationship, the related-
ness between siblings varies: the commonly used value of 0.25 between
half-sibs, for example, is only an average, expected value. Hence, using
realised relatedness, inferred from molecular data, can allow for better
estimates in the sense that (1) they are more robust to error in the
kinship assessment (for example, full-sibs instead of half-sibs) and
(2) they reflect more accurately the variation in relatedness between
siblings. Better relatedness estimates are useful because they will
improve the precision of the estimates of h2 and QST. Note however
that many markers are typically needed to obtain precise molecular
estimates of relatedness (Uptmoor et al., 2003). Dense markers
provided by high-throughput genotyping naturally fulfill this
requirement.
A large number of markers also allows the reconstruction of the

family structure. Indeed, even when relatedness is precisely estimated,
the family structure (that is, who is the mother/father of the
individuals, which individuals are full- or half-sibs) is of utmost
importance in order to account for many confounding effects such as
dominance (Wolak and Keller, 2014), parental effects (for example,
maternal, Wilson et al., 2010) or selfing (Gauzere et al., 2013). Note
that maternal effects can also be accounted for by weighting seeds
(in plants, Roach and Wulff, 1987) or reduced by using F2 generations
(Roach and Wulff, 1987; Mousseau and Dingle, 1991). However, the
possibility of using one of these methods will strongly depend on the
studied species. According to Jones et al. (2010), brood size is one of
the biggest limitations for parental reconstruction algorithms because
of issues of unsampled alleles when too few segregating individuals are
available. With many markers, even with low levels of polymorphism
(such as SNPs), this is no longer an issue, as it becomes possible to
reconstruct a large-enough proportion of the parental genomes to
obtain high certainties of assignment, even for small brood sizes. Now
that efficient algorithms such as those implemented in COLONY
(Jones and Wang, 2010; Wang, 2012), are available, the number of
markers should not be a problem. This software allows reconstructing
the family structure, as well as inferring parental genotypes, while
accounting for selfing or genotyping errors. Indeed, one crucial issue
for parental inference with a large number of markers is to include
possible genotyping errors that, if left unaccounted for, can severely
bias the results (Wang, 2004).
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The most innovative statistical method, especially designed to study
common garden data, is probably the one developed by Ovaskainen
et al. (2011) that overcomes several problems associated with the
classical FST–QST comparisons. In order to avoid clumsy comparisons
between two noisy estimators, Ovaskainen et al. (2011) conceived a
model of neutral phenotypic differentiation between populations that
is compared with phenotypic differentiation measured in a common
garden experiment (that is, the genetic differentiation linked to the
phenotype). When suspiciously strong phenotypic differentiation is
observed compared with the neutral expectation, a local adaptation
hypothesis can be proposed. The neutral model of phenotypic
differentiation is actually a combination of a within-population
‘animal model’ (see Kruuk, 2004 for a description of the model)
and an among-populations ‘F-model’ (see Gaggiotti and Foll, 2010 for
a description of the model) of phenotypic evolution (Karhunen and
Ovaskainen, 2012). By doing so, this model allows for a multivariate
genetic analysis to be performed, for example, to infer genetic
correlations and a G matrix. This is a perfect illustration of how
models emerging from the field of population genomics (here the F
model) can be used to dramatically improve the analysis of common
garden data sets. This method has been implemented in the
DRIFTSEL package (Karhunen et al., 2013). Using this method,
Karhunen et al. (2014) demonstrated the presence of strong footprints
of local adaptation in several populations of nine-spine stickleback
(Pungitius pungitius).

WHAT IS THE USE OF COMMON GARDEN EXPERIMENT IN

THE GENOMIC ERA?

It is well known in the domain of genome-wide association studies,
which aim at uncovering the loci responsible for phenotypic variation,
that such analyses should be performed with extreme caution because
of the potential effect of hidden population structure. Especially
important are the combined effects of genetic drift and gene flow,
and the confounding effect of phenotypic plasticity. However, both of
the aforementioned problems can be overcome. Structure between
population structure can be accounted for by using appropriate
models (see, for example, Nicholson et al., 2002; Beaumont and
Balding, 2004) or methods (Frichot et al., 2013) from the genome scan
literature. The second problem, on the other hand, is perfectly
addressed by common garden experiments that were specifically
designed to control for phenotypic plasticity.
As a result, combining common garden experiments of non-model

species with genome-wide association studies provides opportunity for
multiple-population genome-wide association studies (Brachi et al.,
2013; Slavov et al., 2014). For a locally adapted trait, it would even be
possible to differentiate markers explaining among-population phe-
notypic variability (by testing for among-population effects) from
markers explaining within-population variability (by testing for
within-population effects). The technique of within-group centring
(Davis et al., 1961; van de Pol and Wright, 2009) could be used to this
end. It simply consists in distinguishing between the mean-population
effect and the within-population effect of each predictor of an
association model, as follows:

yijBmþ bBxj þ bW xij � xj
� �þ uj þ eij; ð3Þ

where yij is the phenotype of individual i in population j, xij is its
genotype and xj the mean genotype in population j. The parameters
μ, βB and βW are the fixed effects of the model. Note that the within-
population effects can be tested independently by using a parameter
bjW for each population j. The term uj stands for any population
structure correction and eij is the residual. This equation is simply an

illustration of within-group centring and does not constitute a model
per se. Accounting for population structure should help in distinguish-
ing between neutral and selective scenarios for markers associated with
between-population variability. As always (Korte and Farlow, 2013),
the power of a genome-wide association study to actually detect loci
linked to the phenotypic variability strongly depends on the extent of
linkage disequilibrium and the density of markers along the genome,
in addition to the sample size. Hence, the most useful, but most
expensive, genotyping method for this kind of analysis is whole-
genome sequencing. Note also that heterogeneity in recombination/
mutation rates along the genome can generate false positives during
such analyses (Korte and Farlow, 2013). Here, the number of
populations is also of importance, as it will determine the power to
detect significance for the parameter βB. Note that Brachi et al. (2013)
used a different approach of multiscale (local to worldwide variation)
analysis and found very different results depending on the studied
scale of local adaptation. The approach that is probably the most
typical of the genomic era is to scan genomes for signal of selection
(mostly selective sweeps and local adaptation). Many methods have
been developed in the past decades to detect local adaptation
(Beaumont and Balding, 2004; Foll and Gaggiotti, 2008; Bonhomme
et al., 2010; Coop et al., 2010; Frichot et al., 2013; Duforet-Frebourg
et al., 2014; Guillot et al., 2014). Despite considerable efforts to
account for population structures, these methods have been shown to
display high error rates (de Villemereuil et al., 2014; Lotterhos and
Whitlock, 2014). Hence, validation of the results of a genome scan
must always be done using independent tests. Gene ontologies and
pathway analyses are the most common mean of checking these
results. However, it has been suggested that common garden experi-
ments might be a very efficient complement to those analyses
(De Kort et al., 2014; Lepais and Bacles, 2014; Rellstab et al., 2015).
Performing genome-scan analyses using common garden data can

have many advantages. If a strong adaptive signal is detected both
using both using genome scan methods (that is, using genotypic and
possibly environmental data) and the phenotypic data from a
common garden experiment, that will constitute two independent
piece of evidence favouring the hypothesis of local adaptation
(Holderegger et al., 2008). As stated above, genome scan results need
to be validated anyhow (Pardo-Diaz et al., 2014; Rellstab et al., 2015),
and performing a common garden experiment is an elegant way to do
so. We suggested that, whenever possible, combining genome scan
approaches with common garden experiments is an efficient approach
to the study of local adaptation. Moreover, by comparing the loci
showing strong signals of differentiation and the loci associated with
among-population phenotypic differentiation, it is possible to isolate
candidate loci for local adaptation with very little information
regarding the functional annotation of the species’ genome. Third,
using the environmental information allows not only to identify the
selected phenotypes (that is, strongly differentiated genetically), but
also to infer the environmental variable driving the selective pressure.
In particular, if a locus is strongly associated with an environmental
variable and with the among-population phenotypic differentiation,
one might conclude that a relationship exists between the environ-
mental variable and the phenotype (although only correlatively: each
variable is a putative proxy for the real selective/selected variable).
An important problem when performing genome-scan analyses

directly on common garden individuals is to correctly infer the source-
population allele frequencies. The preferred way is simply to genotype
the parents of the common garden individuals. However, this is not
always possible (for example, genotyping the father for plants is
impossible most of the time). In that case, allele frequencies inferred
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directly from the individuals should be accurate, as long as there is no
sex-dependent allelic frequency bias. But the confidence in that
inference will be overestimated by the fact that many related
individuals were sampled. To account for this situation, a conservative
solution is to calculate the allele frequencies based on the individuals
of the common garden, but to consider that the sample size of these
estimates are the number of parents that have generated the offspring.
With these kind of data, all population-based methods (such as
Bayescan, Foll and Gaggiotti, 2008, or BayEnv, Coop et al., 2010) can
be used. A second solution, if the confidence in parental genotypic
reconstruction is high enough, is to directly use the inferred genotypes
of the parents, both to infer allele frequencies in the population and
directly as data for individual-based genome scan methods. Yet, in
practice, these data will always be inferred with some uncertainty, and
the consequences of ignoring this uncertainty during post hoc analyses
is unknown. Still, the interest of this approach is that individual-based
methods (such as Latent Factor Mixed Model, Frichot et al., 2013, or
PCAdapt, Duforet-Frebourg et al., 2014) can be used to analyse the
data. A last solution is the one implemented by De Kort et al. (2014)
that consists in using only one individual per family. Although this
solution requires a sufficiently large number of families for each
population, it has the compelling advantage of simplicity and
efficiency.

CONCLUSION

Local adaptation is a play starring three actors: the environment, the
phenotype and the genotype. The environment selects the phenotypes
that are (partly) determined by a number of genes. The evolutionary
result is a change in allele frequencies of the polymorphic coding
genes. Understanding the relationships between the three actors
requires precise but large-scale measurements, rigorous experiments
and powerful statistical methods. Because phenotypic plasticity is such
a pervasive phenomenon and because it is nearly impossible to
account for its effect on in situ phenotypes, phenotypes should never
be directly compared between different populations, unless a case is
made that the comparison is safe enough (low environmental
contrasts or little phenotypic plasticity). In contrast, common garden
experiments are ideally suited to perform such kinds of analyses, and
hence to study the phenotypic traits affected by local adaptation. Now
that dense marker panels are obtainable for many individuals at a
moderate cost, common garden experiments are expected to be
performed more routinely. Of course, this is unless the biological
characteristics (for example size, behaviour, generation time) prevent
the applicability of this experiment. Common gardens could possibly
even replace the field work required to obtain tissue samples for
genotyping: as we mentioned, it would still allow for population
genomics approaches, while guaranteeing independent validation
through the study of phenotypes (Pardo-Diaz et al., 2014; Rellstab
et al., 2015), hence saving the cost of another genotyping campaign. As
emphasised by Lepais and Bacles (2014), deciphering the genetic basis
of local adaptation will only be accomplished by combining all the
information yielded by dense marker panels, careful experiments and
in situ sampling and observations. Replicating common garden
experiments in different environments can also provide insight into
complicated relationships between the three actors such as genotype-
by-environment interactions. High-throughput genotyping provides
an abundance of genetic data. World-wide fine-scale databases (for
example, WorldClim, Hijmans et al., 2005) and the advent of cheap
in situ sensors also provide high-quality environmental data. However,
collecting phenotypic data is still time consuming, tedious and
sometimes expensive. It thus seems that the last challenge that needs

to be overcome is the development of high-throughput phenotyping
allowing for a scaling-up and a more widespread use of common
garden experiments.
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