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Abstract

Background—Vitamin D is crucial for maintaining musculoskeletal health. Recently, vitamin D

insufficiency has been linked to a number of extraskeletal disorders, including diabetes, cancer,

and cardiovascular disease. Determinants of circulating 25-hydroxyvitamin D (25-OH D) include

sun exposure and dietary intake, but its high heritability suggests that genetic determinants may

also play a role.

Methods—We performed a genome-wide association study of 25-OH D among ∼30,000

individuals of European descent from 15 cohorts. Five cohorts were designated as discovery

cohorts (n=16,125), five as in silico replication cohorts (n=9,366), and five as de novo replication
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cohorts (n=8,378). Association results were combined using z-score-weighted meta-analysis.

Vitamin D insufficiency was defined as 25-OH D <75 nmol/L or <50 nmol/L.

Findings—Variants at three loci reached genome-wide significance in the discovery cohorts, and

were confirmed in the replication cohorts: 4p12 (overall P=1.9 × 10-109 for rs2282679, in GC);

11q12 (P=2.1 × 10-27 for rs12785878, near DHCR7); 11p15 (P=3.3 × 10-20 for rs10741657, near

CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the

pooled sample (P=6.0 × 10-10 for rs6013897). A genotype score was constructed using the three

confirmed variants. Those in the top quartile of genotype scores had 2- to 2.5-fold elevated odds of

vitamin D insufficiency (P≤1 × 10-26).

Interpretation—Variants near genes involved in cholesterol synthesis (DHCR7), hydroxylation

(CYP2R1, CYP24A1), and vitamin D transport (GC) influence vitamin D status. Genetic variation

at these loci identifies individuals of European descent who have substantially elevated risk of

vitamin D insufficiency.

Background

Vitamin D insufficiency affects as many as one-half of otherwise healthy adults in

developed countries.1 The musculoskeletal consequences of inadequate vitamin D are well-

established, and include childhood rickets, osteomalacia, and fractures.2 A growing number

of other conditions have also been linked to vitamin D insufficiency, although causal

associations have not yet been established in randomized trials. These extra-skeletal

conditions include type 1 and 2 diabetes,2-4 cardiovascular disease,5,6 falls,7 and cancers of

the breast, colon, and prostate.8-10 A recent meta-analysis suggested that vitamin D

supplementation led to significant reductions in mortality.11

Personal, social, and cultural factors are important determinants of vitamin D status via their

influence on sun exposure and diet. Maintaining vitamin D status requires sufficient

exposure to ultraviolet light or adequate intake from diet or supplements. Levels of 25-OH

D, the widely-accepted biomarker of vitamin D status, are highest in the summer and lowest

in the winter in northern latitudes. However, only about a quarter of the inter-individual

variability in 25-OH D is attributable to season of measurement, geographic latitude, or

reported vitamin D intake.12,13 Previous twin and family studies suggest that genetic factors

contribute substantially to variability in 25-OH D,13,14 with estimates of heritability as high

as 53%. Although several rare Mendelian disorders cause functional vitamin D

insufficiency, there are few data on the influence of common genetic variation on vitamin D

status. Candidate gene studies have been performed to examine the effect of specific vitamin

D-pathway genes, but these studies have been limited by modest samples sizes and the small

numbers of variants examined.15-18

Thus, we conducted a large, multicentre genome-wide association study (GWAS) involving

approximately 30,000 subjects from 15 cohorts in Europe, Canada, and the United States.

Our aim was to identify common genetic variants influencing vitamin D levels and the risk

of vitamin D insufficiency.

Methods

Study samples and genotyping

The discovery sample consisted of 16,125 individuals of European descent drawn from five

epidemiological cohorts: the Framingham Heart Study, Twins UK, the Rotterdam Study, the

1958 British Birth Cohort (1958BC), and the Amish Family Osteoporosis Study (AFOS).

There were five additional cohorts (n=9,366) with genome-wide association data used for in

silico replication: the Cardiovascular Health Study, the North Finland Birth Cohort 1966
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(NFBC1966), the Indiana cohort, the Dynamics of Health, Aging, Body, and Composition

study (Health ABC), and the Gothenburg Osteoporosis and Obesity Determinants study

(GOOD). We also performed genotyping of selected variants in 5,715 participants from four

additional epidemiologic cohorts (Canadian Multicentre Osteoporosis Study [CaMos],

Chingford, Hertfordshire, and the Aberdeen Prospective Osteoporosis Screening Study

[APOSS]), and 2,715 additional participants from one of the discovery cohorts (1958BC).

Full descriptions of all participating cohorts, as well as details of genotyping methods,

quality control, and imputation procedures, are provided in the Supplemental Methods.

Characteristics of the study samples are summarized in Supplemental Table 1.

25-OH D measurements

Concentrations of 25-OH D were measured by radioimmunoassay or chemiluminescent

assay (DiaSorin Inc, Stillwater, MN) in the following cohorts: Framingham Heart Study,

Twins UK, Rotterdam Study, Health ABC, AFOS, the GOOD cohort, and CaMoS.

Detection limits ranged from 4 to 10 nmol/L. In the 1958BC samples, 25-OH D was

measured using an automated application of the IDS OCTEIA ELISA on the Dade-Behring

BEP2000 analyser (sensitivity of 5.0 nmol/L).19 In the Cardiovascular Health Study,

NFBC1966, the Indiana cohort, Chingford, Hertsfordshire, and APOSS, total 25-OH D was

measured using high performance liquid chromatography-tandem mass spectrometry. Serum

vitamin D binding protein (DBP) was measured by an immunonephelometric assay in the

Twins UK cohort.20 The detection limit was 50 mg/L.

Statistical analyses

Genome-wide analyses were conducted within each cohort. In the Framingham Heart Study,

Twins UK, the Rotterdam Study, 1958BC, AFOS, NFBC1966, the Indiana cohort, Health

ABC, and the GOOD study, linear regression models were used to generate cohort-specific

residuals of naturally log transformed 25-OH D levels adjusted for age, sex, body mass

index (BMI), and season. Log transformation was used to reduce skewness in the

distribution of 25-OH D. Season was modeled using categorical variables for summer (July-

September), fall (October-December), winter (January to March), and spring (April to June).

A single set of definitions was used for season because the majority of the cohorts were at

similar latitudes, and all of them were in the northern hemisphere. In cohorts that included

related individuals (Framingham, Twins UK, AFOS, Indiana women), association between

the additively-coded SNP genotypes and the standardized 25-OH D residuals was assessed

using either linear mixed effect models or the score test implemented in MERLIN.21 For

imputed SNPs, expected number of minor alleles (i.e. dosage) was used in assessments of

association between genotype and 25-OH D residuals. In the Cardiovascular Health Study,

analyses were adjusted for age, sex, and study site by including each as a covariate in the

model. In all samples, the genomic control approach was used to adjust the P-values for

potential effects of mild population stratification and to prevent inflation of type I error

occurring from any departure from normality of the trait variable.

A priori, we designated the first five GWAS, all of which used immunoassays for measuring

25-OH D levels, as the “discovery samples.” The remaining five GWAS, three of which

measured 25-OH D by mass spectrometry and two by immunoassay, were designated as in

silico replication samples. We selected SNPs for replication if they had meta-analytic P-

values < 5 × 10-8 in the discovery samples. Additionally, we considered SNPs at or near six

pre-specified vitamin D pathway candidate genes: vitamin D receptor (VDR), 1-α-

hydroxylase (CYP27B1), 25-hydroxylase (CYP2R1), 24-hydroxylase (CYP24A1), vitamin D

binding protein (GC, DBP), and 27- and 25-hydroxlyase (CYP27A1). These SNPs were

tested in the replication samples if they met a P-value threshold of 10-3 in the discovery

samples. Lastly, selected SNPs were assessed for 25-OH D association in the de novo
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replication samples, using the same analytic approach. We then generated combined P-

values across the 15 studies.22

Meta-analysis was conducted using a weighted z-score based approach, as implemented in

the software METAL (www.sph.umich.edu/csg/abecasis/metal/). In this approach,

association P-values are converted to signed z-statistics, where the sign reflects the direction

of effect with respect to a reference allele. Each z-score is assigned a weight proportional to

the square root of the sample size. Weighted z-statistics are summed across studies to obtain

a global z-score and a corresponding two-sided P-value. A P-value < 5 × 10-8 was

considered genome-wide significant.23

We also assessed whether selected genetic variants from the continuous trait analyses were

associated with vitamin D insufficiency in the Framingham Heart Study, Twins UK,

CaMoS, and 1958BC. Vitamin D insufficiency was defined using 2 cutpoints, 25-OH D <

75 nmol/L (30 ng/ml) and < 50 nmol/L (20 ng/ml).1 Covariates included age, sex, season,

and BMI. Effect estimates from the logistic regression analysis were combined across

cohorts by meta-analysis using inverse-variance weighting approach. We also performed

analyses using a lower cutpoint, 25 nmol/L (10 ng/ml), to examine whether genetic variants

were associated with severe vitamin D deficiency.

Additionally, a genotype score was constructed by taking a weighted average of the number

of risk alleles for members of a cohort, with the weights determined by the beta coefficients

from the meta-analysis. Logistic regression was performed to determine the odds of vitamin

D insufficiency according to quartile of the genotype score. For this analysis, data from the

Framingham Heart Study, Twins UK, and 1958BC were combined using a multivariate

approach, with beta coefficients for each quartile of genotype score meta-analysed jointly, as

previously described.24

Results

Results of genome-wide association analyses are summarized in Table 1. In the analysis of

data from the five discovery samples, SNPs at three unique loci met the pre-specified

threshold for genome-wide significance: 4p12 (lowest P=4.6 × 10-63 for rs2282679), 11q12

(P=1.6 × 10-13 for rs7944926), and 11p15 (P=3.9 × 10-8 for rs10741657). The 4p12 SNPs

were within or near the GC gene, and the top results included a non-synonymous SNP in this

gene, rs7041 (P=3.7 × 10-42 for association with 25-OH D). The 11q12 and 11p15 SNPs

were near DHCR7/NADSYN1 (7-dehydrocholesterol reductase, NAD synthetase 1) and

CYP2R1 (cytochrome P450, subfamily IIR), respectively.

The associations at all three loci were confirmed in the replication samples. The SNP at GC,

rs2282679, had a combined P-value of 2.9 × 10-48 in the in silico replication samples, with a

consistent direction of effect. Additional genotyping for this SNP was not performed. SNP

rs10741657 at CYP2R1 had P=2.1 × 10-14 in the in silico and de novo replication samples,

also with a consistent direction of effect. At the DHCR7/NADSYN1 locus, a perfect proxy

for rs7944926 (rs12785878, r2=1.0) was genotyped in the de novo replication samples. The

combined replication P-value (in silico and de novo replication samples) for rs12785878

was 2.4 × 10-16. Overall P-values (discovery and replication samples) for the three

confirmed SNPs ranged from 3.3 × 10-20 to 1.9 × 10-109, as shown in Table 1. Regional

plots for the results at each locus are shown in Figures 1A-C. In the discovery cohorts, SNPs

at the three confirmed loci (GC, DHCR7/NADSYN1, and CYP2R1) explained up to 1-4% of

the variation in 25-OH D concentrations.

Table 2 compares the influence of the genetic variants at the 3 validated loci with the

observed effects of supplementation and season. Means levels of 25-OH D by genotype
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category at the 3 validated loci are shown from the 2 largest cohorts (N=12,208), along with

mean levels by supplementation status and season. The relative differences in mean 25-OH

D between minor and major homozygotes for the strongest genetic variants were

comparable to those seen with supplementation in these cohorts, and nearly as large as those

seen with a one season change.

In the candidate gene analysis, SNP rs6013897 near CYP24A1 (cytochrome P450, family 24,

subfamily A) had a P-value of 7.2 × 10-4 in the discovery cohorts, and was tested for

replication. The P-value was 8.4 × 10-8 in the replication cohorts, resulting in an overall P-

value (discovery and replication) of 6.0 × 10-10. A regional plot for the results at the

CYP24A1 locus is shown in Figure 1D. An additional candidate SNP, rs2544037 near VDR,

had a P-value of 6.2 × 10-4 in the discovery cohorts, but failed to replicate in the replication

samples. There were no SNPs near CYP27B1 or CYP27A1 with P-values less than 10-3 in

the discovery cohorts.

We performed additional analyses to assess the influence of the three variants identified by

GWAS on the risk of clinical vitamin D insufficiency (25-OH D < 75 nmol/L or < 50 nmol/

L). Results for the variants, individually and in combination, are shown in Table 3.

Individuals with a “genotype score” (combining the 3 variants) in the top quartile had a 2- to

2.5-fold increased odds of vitamin D insufficiency (Figure 2). The genotype score was also

associated with the risk of severe vitamin D deficiency (25-OH D < 20 nmol/L), with an

adjusted odds ratio in the top quartile of 1.43 (95% confidence interval, 1.13-1.79; p=0.002).

Given the strong association of genetic variants at GC with 25-OH D concentrations, we

also examined whether these variants were associated with serum DBP, which was

measured in 1,674 individuals in the Twins UK cohort. SNP rs2282679 was strongly

associated with DBP (P=4.0 × 10-42), with the minor allele related to lower DBP

concentrations.

Discussion

Vitamin D insufficiency has been implicated in a wide range of musculoskeletal and

extraskeletal diseases,1,2 which has led to substantial interest in the determinants of vitamin

D status. Our findings establish a role for common genetic variants in the regulation of

circulating 25-OH D levels. Indeed, the presence of deleterious alleles at the three confirmed

loci more than doubled the odds of vitamin D insufficiency. These findings improve our

understanding of vitamin D homeostasis and may assist in the identification of a subgroup of

Caucasians at risk for vitamin D insufficiency.

DHCR7/NADSYN1 is a novel locus for association with vitamin D status, but one with

compelling biological plausibility. DHCR7 encodes the enzyme 7-dehydrocholesterol

reductase, which converts 7-dehydrocholesterol (7-DHC) to cholesterol, thereby removing

the substrate from the synthetic pathway of vitamin D3, a precursor of 25-OH D3. Rare

mutations in DHCR7 lead to Smith-Lemli-Opitz syndrome, which is characterized by

reduced activity of 7-dehydrocholesterol reductase, accumulation of 7-DHC, low

cholesterol, and multiple congenital abnormalities.25 It has been speculated that mutations in

DHCR7 also confer a competitive advantage to heterozygous carriers, because high levels of

7-DHC could provide protection against rickets and osteomalacia from hypovitaminosis D.
26 However, there are few data on vitamin D status in individuals with Smith-Lemli-Opitz

syndrome or carriers of known mutations.27 The finding that common variants at DHCR7

are strongly associated with circulating 25-OH D suggests that this enzyme could play a

larger role in the normal regulation of vitamin D status than previously recognized.
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The gene at the second locus, CYP2R1, encodes a hepatic, microsomal enzyme first

described in 2003. It has been suggested that CYP2R1 is the enzyme responsible for 25-

hydroxylation of vitamin D in the liver, but this is uncertain because many other enzymes

with 25-hydroxylase activity in vitro have been described.28 Prior clinical studies have been

limited to a case report of a Nigerian man with a point mutation in CYP2R1 who had a

history of rickets,28 and a previous candidate gene study in 133 individuals with type 1

diabetes.18 Because affected individuals with CYP2R1 polymorphisms have been difficult to

identify, it has been proposed that there is redundancy in the enzymes responsible for the 25-

hydroxylation step. Thus, our finding that common variants at the CYP2R1 locus are

associated with circulating 25-OH D represents the strongest evidence to date that CYP2R1

is the enzyme responsible for the critical first step in vitamin D metabolism.

The third gene, GC, encodes DBP, a 52-59 kDA protein synthesized in the liver that binds

and transports vitamin D and its metabolites (including 25-OH D and 1,25(OH)2D).29 A few

recent studies have reported associations between nonsynonymous SNPs in this gene,
15-17,30,31 and 25-OH D concentrations. However, these studies were relatively small (≤
1500 subjects) and lacked replication. The most commonly studied GC variants are the

nonsynonymous SNPs rs7041 (Asp→Glu) and rs4588 (Thr→Lys). The older nomenclature

for GC haplotypes (GC1S, GC1F, and GC2) is based on specific combinations of alleles at

these nonsynonymous SNPs.15 Our data strongly confirm the association of rs7041 with

circulating 25-OH D (overall meta-analytic P=1.9 × 10-109). The other variant, rs4588, is not

in the HapMap dataset and thus not part of our imputed results. However, rs4588 is only 11

bp away from rs7041, and direct genotyping of rs4588 in one of our samples (Twins UK)

confirms that it is in linkage disequilibrium (r2>0.99) with multiple associated variants from

our genome-wide association study.

We also showed that GC variants associated with lower 25-OH D concentrations were

strongly related to lower levels of DBP. Whether variation in the amount of circulating DBP

influences further metabolism and availability of vitamin D is not well established. It has

been hypothesized that levels of DBP may affect the delivery of 25-OH D and activated

vitamin D (1,25(OH)2D) to target organs, as well as clearance of vitamin D metabolites

from the circulation.15,16 On the other hand, alterations in quantity or function of DBP could

be accompanied by changes in the relative proportions of free and bound 25-OH D, with the

free fraction being the potential rate-limiting factor for 1,25(OH)2D production. Further

studies are needed to assess the effects of variation in serum DBP.

In a screen of candidate gene variants, we observed an additional association at the locus

containing CYP24A1 that was genome-wide significant in pooled analyses of the discovery

and replication samples (P=6 × 10-10). CYP24A1 encodes 24-hydroxylase, which initiates

the degration of both 25-OH D and 1,25(OH)2D. Prior candidate gene and linkage studies

have failed to show an association of variants at this locus with 25-OH D levels, but these

studies were small and based on highly-selected cohorts.30,32

A high “genotype score” using the three confirmed GWAS variants conferred a 2- to 2.5-

fold risk of having vitamin D insufficiency to individuals in the upper quartile of the score

compared with those in the lower quartile, after accounting for the usual environmental

factors. This observation indicates that variation at a relatively small number of genetic loci

could have a clinically-important impact on the risk of vitamin D insufficiency. The

genotype score was also associated with an elevated risk of severe vitamin D deficiency (25-

OH D < 25 nmol/L), although the odds ratio was slightly lower (1.4 in the highest quartile).

It is unclear whether the lower odds ratio reflects a greater contribution of environmental

factors to the most severe forms of vitamin D deficiency, because the prevalence of severe

deficiency was low in our community-based cohorts.
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Whether this genetic predisposition modifies the response to sun exposure or dietary

supplementation warrants further study, particularly given the large inter-individual

differences that have been observed in response to treatment with identical doses of vitamin

D.33 Furthermore, these variants might serve as useful genetic tools for studies in disease

cohorts to determine whether vitamin D insufficiency plays a causal role in a variety of

chronic diseases with which it has been epidemiologically linked.

The validity of our findings is supported by the large study sample (more than 30,000

subjects combined in discovery and validation samples), consistent results across several

standard assays for 25-OH D, and the strong biological plausibility of genes at the principal

loci. Several limitations of the study also deserve mention, however. The study was not

designed to identify uncommon or rare variants. Resequencing at selected loci, based in part

upon our results, could be used to identify less common variants of potentially larger effects.

We used a multi-stage design in order to maximize the homogeneity of the assays used in

the discovery analyses. It is possible that more genome-wide significant associations would

have been identified by combining all GWAS cohorts into a single stage, although we would

have lacked a large replication sample. Other factors that may have contributed to reduced

statistical power include second-order interactions (such as with age) and the use of a

stringent p-value threshold in the discovery stage.34 Accordingly, the absence of certain

candidate genes from our top hits, such as those affecting vitamin D action or skin

pigmentation, doesn't exclude a role for genetic variation at these loci in influencing vitamin

D levels, but their contribution may be small compared with the genes identified.

Some cohorts used different assays for measurement of 25-OH D levels. To minimize the

potential variability introduced by cohort-specific measurement techniques, we performed

analyses in which 25-OH D levels were standardized within cohort and analyzed as a

continuous trait. Furthermore, primary results were meta-analysed using a z-score weighted

approach, which is not scale-dependent. Specific information on dietary intake and sunlight

exposure was not available from all of the cohorts. Such factors likely contribute to non-

genetic variability in 25-OH D concentrations, which would tend to reduce the effect

observed in our analyses.

The identified SNPs may not be the causal variants, but rather in linkage disequilibrium with

them. We did not examine “downstream” markers of vitamin D status, because 25-OH D

concentrations are considered the most reliable indicators of vitamin D status. Other

molecules, such as 1,25(OH)2D or parathyroid hormone, have greater intra-individual

variability and reflect the influence of multiple determinants in addition to vitamin D status.

Lastly, we studied only white individuals of European descent. Whether the genetic variants

identified in the present study influence vitamin D status in other racial/ethnic groups is

unknown and warrants further study.

In conclusion, we report the results of the first large-scale, systematic investigation of

genetic determinants of vitamin D insufficiency. Elucidating the genetic architecture of this

trait provides a better understanding of the regulation of vitamin D metabolism.

Additionally, the genetic variants described in this report identify individuals at substantially

elevated risk for vitamin D insufficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Regional linkage disequilibrium plots for SNPs at GC (panel 1A), DHCR7/NADSYN1 (panel

1B), CYP2R1 (panel 1C), and CYP24A1 (panel 1D).
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Figure 2.

Risk of vitamin D insufficiency (using threshold of 75 nmol/L), according to quartile of

genotype score. Bars indicate 95% confidence intervals.
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Table 2

Mean 25-OH D levels by genotype, season, and supplementation status

Framingham Heart Study (n=5,656) 1958 British Birth Cohort (n=6,552)

GC*

Major homozygotes 82.6 (0.73) 61.9 (0.33)

Heterozygotes 74.8 (0.81) 57.0 (0.30)

Minor homozygotes 64.6 (1.79) 52.8 (0.27)

DHCR7†

Major homozygotes 79.7 (0.71) 59.6 (0.31)

Heterozygotes 76.3 (0.86) 56.3 (0.30)

Minor homozygotes 71.7 (2.01) 55.7 (0.32)

CYP2R1**

Major homozygotes 75.4 (0.87) 56.8 (0.34)

Heterozygotes 78.6 (0.76) 60.2 (0.32)

Minor homozygotes 81.6 (1.26) 61.1 (0.29)

Season

Winter 61.6 (1.00) 43.2 (0.26)

Spring/Fall 77.4 (0.68) 57.1 (0.30)

Summer 95.8 (1.00) 71.7 (0.30)

Supplementation

Yes 83.4 (0.80) 65.9 (0.30)

No 74.7 (0.69) 56.9 (0.31)

Means (SE) are shown, in nmol/L. Sample from 1958 British Birth cohort is combined from the GWAS sample and the de novo genotyping sample

(see Supplementary Methods).

*
rs2282679 in Framingham, rs4588 in 1958 Birth Cohort (r2 between SNPs >0.99).

†
rs7944926 in Framingham, rs12785878 in 1958 Birth Cohort (r2 between SNPs >0.99).

**
rs10741657 in Framingham and 1958 Birth Cohort.
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