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Abstract: We identify common genetic variants associated with cognitive performance using a 

two-stage approach, which we call the “proxy-phenotype method.” First, we conduct a genome-

wide association study of educational attainment in a large sample (N = 106,736), which 

produces a set of 69 “education-associated single-nucleotide polymorphisms (SNPs).” Second, 

using independent samples (N = 24,189), we measure the association of these education-

associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, rs2721173) 

are significantly associated with cognitive performance after correction for multiple hypothesis 

testing. In an independent sample of older Americans (N = 8,652), we also show that a polygenic 

score derived from the education-associated SNPs is associated with memory and absence of 

dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific 

genes (KNCMA1, NRXN1, POU2F3, SCRT). All of these are associated with a particular 

neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for 

learning and memory. 

 

 

Significance Statement: We identify several common genetic variants associated with cognitive 

performance using a two-stage approach: we conduct a genome-wide association study of 

educational attainment to generate a set of candidates, then we measure the association of these 

variants with cognitive performance. In older Americans, we find that these variants are jointly 

associated with cognitive health. Bioinformatics analyses implicate a set of genes that are 

associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main 

cellular mechanism for learning and memory. In addition to the substantive contribution, this 

paper also serves to demonstrate a “proxy-phenotype” approach to discovering common genetic 

variants that is likely to be useful for many phenotypes of interest to social scientists (such as 

personality traits). 

 

 

 

  



Introduction: Twin and family studies have shown that at least a moderate share of variation in 

most facets of cognitive performance (i.e., performance by healthy individuals on cognitive tests) 

is associated with genetic factors (1, 2). However, despite considerable interest and effort, 

research to date has largely failed to identify common genetic variants associated with cognitive 

performance phenotypes (3–5), with the exception of APOE which predicts cognitive decline in 

older individuals (6–8). Existing studies have relied on one of two research strategies. The first is 

a candidate-gene design, in which researchers test a small number of genetic variants for 

association with the phenotype of interest, typically based on hypotheses derived from the known 

biological functions of the candidate genes. The candidate-gene associations that have been 

reported with cognitive performance (9), however, fail to replicate when larger samples are used 

(3). The second research strategy is a genome-wide association study (GWAS), in which 

researchers atheoretically test hundreds of thousands of single-nucleotide polymorphisms (SNPs) 

for association with the phenotype and apply a threshold for “genome-wide” statistical 

significance—typically 5×10–8—in order to account for multiple-hypothesis testing. For physical 

and medical phenotypes, GWASs have identified many novel associations that replicate (10). 

GWASs on cognitive performance, however, have not yet identified any genome-wide-

significant associations (4, 5). 

 

Here, we apply an alternative, two-stage research strategy, which we call the proxy-phenotype 

method. In the first stage, we conduct a GWAS on a “proxy phenotype” to identify a relatively 

small set of SNPs that are associated with the proxy phenotype. In the second stage, these SNPs 

serve as candidates that are tested in independent samples for association with the phenotype of 

interest, at a significance threshold corrected for the number of proxy-associated SNPs. In the 

study reported here, our phenotype of interest is cognitive performance, for which we use 

Spearman’s measure of general cognitive ability (usually abbreviated to g; it is the general factor 

measured by a battery of diverse cognitive tests (4)). Our proxy phenotype is educational 

attainment, as measured by self-reported years of schooling. 

 

Rietveld et al. (11) had suggested the strategy of using SNPs associated with educational 

attainment as “empirically-based candidate genes” for association with cognitive performance; 

here we conduct that analysis and further develop the methodology for doing so. The SI 

Appendix contains our formal framework, building on that in (11), as well as power calculations 

under a range of assumptions. According to the framework, educational attainment is a good 

proxy phenotype for cognitive performance because cognitive performance is strongly 

genetically influenced and causally affects educational attainment. The genetic correlation 

between the two traits does not have straightforward implications for the statistical power to 

identify specific SNPs influencing cognitive performance; nonetheless, the high genetic 

correlation (estimated to be roughly 0.65 or higher (12–14)) may also provide a suggestive 

justification for the approach. 

 

Results: In our first stage, we conducted a GWAS of educational attainment in a pooled 

“Education Sample” of 106,736 individuals. We used the same data, analysis protocol, and 

quantitative years-of-schooling measure as (11), except that we omit cohorts with high-quality 

measures of cognitive performance; we instead include these cohorts in the subsequent 

“Cognitive Performance Sample.” We chose our “inclusion threshold” of p < 10–5 for selecting 

candidate SNPs based on ex ante power calculations whose goal was to maximize the number of 



true positives among the candidates (see SI Appendix). Pruning for linkage disequilibrium the 

927 SNPs that reach this threshold resulted in 69 approximately independent SNPs (see SI 

Appendix). 

 

In our second stage, we tested these 69 “education-associated SNPs” for association with 

cognitive performance in the Cognitive Performance Sample, which comprises 24,189 genotyped 

subjects from 11 cohorts (see SI Appendix section 2). The specific cognitive tests differ across 

cohorts, but the cognitive performance measure in every cohort is calculated as Spearman’s g 

(see SI Appendix); previous research has found that g from different test batteries are highly 

correlated, especially if the batteries have many tests, or if the test is specifically constructed to 

measure g (15–17). We tested each SNP individually for association with cognitive performance 

using ordinary least squares, controlling for sex, age, and (depending on the cohort) at least four 

principal components of the genome-wide data (to reduce confounding from population 

stratification). At the cohort level, the analyses were conducted according to a prespecified plan 

that we preregistered on the Open Science Framework (see https://osf.io/z7fe2/). The cohorts’ 

results were then meta-analyzed using an inverse-variance weighting scheme. Two independent 

teams of analysts crosschecked and verified the results.  

To confirm that the education-based first stage identifies reasonable candidate SNPs for 

cognitive performance, Figure 1 plots the standardized regression coefficients from the 

regression of years-of-schooling on the education-associated SNPs in the Education Sample 

(with the reference allele chosen to ensure the coefficient is positive) against the standardized 

coefficients from the second-stage regression of cognitive performance on the SNPs in the 

Cognitive Performance Sample. The direction of the effect coincides in 53 out of 69 cases (two-

sided binomial test, p = 9.10×10–6), indicating that this is a good context for applying the proxy-

phenotype method. We were surprised that the correlation between the effect size on educational 

attainment and the effect size on cognitive performance is negative (ρ = -0.25; p = 0.03), 

although not significantly after dropping a possible outlier, the bottom-most point of the figure (ρ 

= -0.14 p = 0.26). Within our theoretical framework, a negative correlation suggests that SNPs 

that affect cognitive performance more strongly tend to affect other factors that matter for 

educational attainment (such as personality traits) less strongly, and vice-versa (see SI 

Appendix). 

To provide a benchmark for evaluating our list of education-associated candidate SNPs, we 

generated (via a pre-specified algorithm) a list of “theory-based” candidate SNPs for cognitive 

performance drawn from published findings in the candidate-gene literature (see SI Appendix). 

(This list does not include the SNPs comprising the APOE haplotype because these SNPs were 

not available in the cohort GWAS results.) After applying the same pruning procedure as for the 

education-associated SNPs, our list of theory-based SNPs contains 24 independent SNPs, of 

which only one is in a genomic region close to an education-associated SNP. Figure 2 overlays 

Q–Q plots for the theory-based and education-associated candidates. The education-associated 

candidates taken altogether are more strongly associated with cognitive performance than would 

be expected by chance (z = 5.98, p = 1.12×10–9). Whereas a visual inspection of the plot suggests 

that the theory-based candidates exhibit some association with cognitive performance, we cannot 

reject the null hypothesis for any SNP individually, nor for all of them taken together (z = 1.19, p 

= 0.12). 



The top three education-associated SNPs—rs1487441, rs7923609, and rs2721173—show clear 

separation from the others in Figure 2 and are significantly associated with cognitive 

performance after Bonferroni correction for multiple hypothesis testing (see Table 1). Consistent 

with the negative correlation in Figure 1, these SNPs are different from the three SNPs that 

reached genome-wide significance for association with educational attainment in the (11) 

analyses. After adjusting the SNPs’ estimated effect sizes (each R2 ≈ 0.0006) for the winner’s 

curse, we estimate each as R2 ≈ 0.0002 (see SI Appendix), or in terms of coefficient magnitude, 

each additional reference allele for each SNP is associated with ≈0.02 standard-deviation 

increase in cognitive performance (or 0.3 points on the typical “IQ” scale). This R2 ≈ 0.0002 is 

about the same as the R2 for the known SNP associations with educational attainment (11) but far 

smaller than the largest effect sizes for complex physical traits such as height (R2 ≈ 0.004) and 

BMI (R2 ≈ 0.003) (18, 19). 

Power calculations we report in the SI Appendix help shed light on why the proxy-phenotype 

method succeeded in identifying SNPs even though GWA studies to date on cognitive 

performance have not. A GWAS in our Cognitive Performance Sample of N = 24,189—which is 

larger than the largest GWA studies (N = 17,989 in Benyamin et al. (2014) and N = 3,511 in 

Davies et al. (2011))—would have had power 0.06% to identify a SNP whose association has R2 

= 0.0002. In contrast, our proxy-phenotype approach had power 12%. Given this power and the 

rather stringent significance threshold (0.05/69 ≈ .00072), Bayesian calculations using 

reasonable assumptions regarding priors suggest that the posterior probabilities that these three 

SNPs are associated with cognitive performance are high (see SI Appendix). 

Turning from specific SNPs to the set of all 69 education-associated SNPs, we assess the 

explanatory power of a linear polygenic score that aggregates their coefficients (see SI 

Appendix). In pooled results from four family-based cohorts (4,463 individuals in total), we find 

that the score is significantly associated with cognitive performance (p = 8.17×10-4), with R2 

ranging approximately from 0.2% to 0.4% across samples.  Using only within-family variation, 

the pooled coefficient has the same sign but is smaller and has a larger standard error (p = 0.36). 

Thus we cannot rule out that some of the score’s explanatory power is due to population 

stratification, although even without stratification, the non-significance of the within-family 

coefficient is not surprising given the low power of this test (see SI Appendix). 

Next, we explore whether educational attainment might serve as a proxy phenotype for 

cognitive-health phenotypes (as opposed to cognitive performance in the normal range). Our 

sample comprises 8,652 European-descent individuals over the age of 50 from the Health and 

Retirement Study (HRS) (see SI Appendix). We confirm that, for the 60 out of 69 SNPs 

available in the HRS data, the direction of the effects on educational attainment generally 

coincides with the direction of the effects on the two cognitive-health phenotypes we study: 

“total word recall,” which is a test for memory problems (two-sided binomial test, p = 0.0067); 

and “total mental status,” which is a battery that screens for early signs of dementia (p = 0.0775). 

Next, we obtain the weights for a polygenic score by conducting a de novo meta-GWAS analysis 

of educational attainment just as in the first stage described above, but this time excluding the 

HRS from the Education Sample. 

Figure 3 shows that the score is associated with both of the cognitive-health phenotypes. The 

strength of the protective effect is approximately constant across age categories from age 50 to 

80, and becomes weaker for total word recall after age 80. These associations are essentially 

unaffected when we control for up to 20 principal components of the genome-wide data, 



suggesting that the associations are not driven by population stratification (20). The R2 of these 

associations range roughly 0.2%-0.4% (similar magnitudes as in the analysis of cognitive 

performance in the family-based cohorts). When we control for years of schooling, the estimated 

effect of the score falls roughly in half but remains statistically significant (see SI Appendix). 

The score is not associated with cognitive decline (i.e., the change in a cognitive phenotype 

across longitudinal survey waves), except for total word recall after age 80. 

Finally, we used the 14 (out of 69) education-associated SNPs that are nominally significantly 

associated with cognitive performance (p < .05) to explore possible biological pathways in a set 

of bioinformatic analyses (see SI Appendix). Two of the 14 SNPs are in gene deserts, but the 

other 12 are in close vicinity to at least one gene predicted (based on its expression profile) to be 

involved in the nervous system (see SI Appendix). Among the most promising genes across 

these loci are KNCMA1, NRXN1, POU2F3, and SCRT, all of which are predicted to be involved 

in a glutamate neurotransmission pathway (labeled in REACTOME as “unblocking of NMDA 

receptor, glutamate binding, and activation”) that is involved in synaptic plasticity, a cellular 

mechanism for learning and memory. Using different methods (but some overlapping data), this 

same pathway has previously been implicated in human cognitive performance (21). 

 

Discussion: This paper makes two contributions. First, we demonstrate that the “proxy-

phenotype method” generates positive findings in a domain in which neither candidate-gene nor 

GWAS approaches have so far made substantial progress. Similar approaches have sometimes 

been used in prior work (e.g., to find rare structural variants associated with cognition; (22)), and 

there is existing work focused on the related idea of increasing statistical power in GWAS by 

analyzing correlated phenotypes jointly (23, 24). 

We propose that the proxy-phenotype method, if systematically applied in social-science 

genetics, could be a useful complement to traditional gene discovery methods (such as GWAS) 

in cases where it affords greater statistical power. In the present case, it does so because (i) much 

larger genotyped samples are available for educational attainment than for cognitive 

performance, and (ii) some genetic variants are likely to be associated with educational 

attainment due to their more direct, stronger relationships with cognitive performance. For the 

same reasons, educational attainment might similarly serve as a proxy phenotype for personality 

traits such as persistence and self-control. In other contexts, the proxy-phenotype method may be 

better powered for different reasons. For example, for behavioral phenotypes with substantial 

measurement error—such as smoking, drinking, exercise, or eating habits—the proxy phenotype 

could be a medical outcome associated with the behavior (e.g., pulmonary disease for smoking, 

cirrhosis for alcohol consumption). We also note that, while our analysis plan specified that 

cohorts look up a relatively small set of education-associated SNPs in their existing GWAS 

results on cognitive performance, researchers with access to full GWAS results on the phenotype 

of interest could implement a more powerful version of the proxy-phenotype method. For 

example, first-stage results on the proxy phenotype could inform priors that are updated using 

GWAS results on the phenotype of interest. 

We caution that the proxy-phenotype method (like theory-based candidate-SNP approaches) 

could generate an unacceptably high rate of false positives if it were applied when underpowered 

and if results were reported selectively. To avoid this, we propose a set of “best practices” that 

proxy-phenotype studies should follow: researchers should (a) conduct power calculations ex 

ante to justify the use of the method for a particular phenotype of interest, and report these 



calculations in the SI; (b) circulate an analysis plan to all cohorts prior to conducting any 

analysis, and register the plan in a public repository; (c) commit to publishing all findings from 

the study, including null results; and (d) conduct Bayesian calculations of the credibility of any 

findings. We followed these procedures in this paper. While replication of findings in an 

independent cohort would be ideal, we anticipate that it will often be infeasible given the 

unavailability of genotyped samples that may motivate the proxy-phenotype approach in the first 

place. 

The second contribution of this paper is to identify common genetic variants associated with 

cognitive phenotypes. Knowing the three significant SNPs is not useful for predicting any 

particular individual’s cognitive performance because the effect sizes are far too small, but it 

does enable follow-up research—e.g., pinpointing the causal variants and then conducting 

knock-out experiments in animals—that may ultimately shed light on biological pathways 

underlying cognitive variation. The polygenic scores constructed from our results may prove 

useful for studying gene-environment interactions. In future work, the magnitude of explained 

variance will increase as researchers gain access to datasets with even larger first-stage samples. 

Our results suggest that such scores hold promise for eventually identifying individuals whose 

cognitive health at older ages is at greatest risk, which could allow for appropriate preparation 

and (if possible) preventative intervention. 

 

Materials and Methods: See SI Appendix for all details on the samples and methods. 
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Table 1. The SNPs significantly associated with cognitive performance after Bonferroni correction (for full results see Table S4). The 

chromosome and basepair position are from the NCBI genome annotation (build 36), and the nearest gene from the SCAN database. 

“Allele frequency” refers to the Cognitive Performance Sample. 

 

      

Years of Schooling 

(Education Sample) 

Cognitive Performance  

(Cognitive Performance Sample) 

SNP Chromosome 

Basepair 

position Nearest gene 

Effective 

allele 

Allele 

frequency 

Standardized 

coefficient P-value 

Standardized 

coefficient P-value 

rs1487441 6 98660615 LOC100129158 A 0.473 0.026 1.78×10-9 0.036 1.24×10-4 

rs7923609 10 64803828 JMJD1C  A 0.521 -0.021 1.06×10-6 -0.034 2.58×10-4 

rs2721173 8 145715237 LRRC14  T 0.473 -0.020 8.61×10-6 -0.034 2.88×10-4 

 

  



 

Figure 1. The relationship between standardized coefficients from the first-stage regression of 

years of schooling on the education-associated SNPs in the Education Sample (x-axis) and 

standardized coefficients from the second-stage regression of cognitive performance on these 

SNPs in the Cognitive Performance Sample (y-axis). The reference allele is chosen such that the 

coefficient on years of schooling is positive. Each point represents one of the 69 education-

associated SNPs. (The cloud of points is bounded away from zero effect on years of schooling 

because the criterion for including a SNP was its reaching p < 10-5 in the GWAS on years of 

schooling in the Education Sample.) Since the standard deviation of years of schooling is 

approximately 3, a coefficient of 0.03—a typical size for a years-of-schooling standardized 

coefficient—means that each reference allele is associated with an increase of 0.03×3 ≈ 0.09 

years of educational attainment. In conventional “IQ” units that have a standard deviation of 15, 

a standardized regression coefficient on cognitive performance of 0.03 corresponds to ≈0.45 “IQ 

points.” 

 



Figure 2. Q–Q plot for a regression of cognitive performance on the education-associated SNPs 

(the dark points) with 95% confidence interval around the null hypothesis (the darkly shaded 

region); and Q–Q plot for a regression of cognitive performance on the theory-based SNPs (the 

light points) with 95% confidence interval around the null hypothesis (the lightly shaded region). 

The table shows the nominal effect sizes and p-values for the three labeled SNPs, which are the 

SNPs are statistically significantly associated with cognitive performance after Bonferroni 

correction (for testing the 69 education-associated SNPs).  

 
 



Figure 3. Coefficients from regression of standardized cognitive phenotype (Total Word Recall 

or Total Mental Status) on standardized polygenic score within age category, controlling for sex 

and clustering standard errors by individual (see SI Section 14 for details). Error bars show ±1 

standard error. 
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