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Abstract 

Induced pluripotent stem cell (iPSC) technology has enormous potential to provide 

improved cellular models of human disease. However, variable genetic and phenotypic 

characterisation of many existing iPSC lines limits their potential use for research and 

therapy. Here, we describe the systematic generation, genotyping and phenotyping of 

522 open access human iPSCs derived from 189 healthy male and female individuals as 

part of the Human Induced Pluripotent Stem Cells Initiative (HipSci: 

http://www.hipsci.org). Our study provides a comprehensive picture of the major sources 

of genetic and phenotypic variation in iPSCs and establishes their suitability for use in 

genetic studies of complex human traits and cancer. Using a combination of genome-

wide analyses we find that 5-25% of the variation in different iPSC phenotypes, including 

differentiation capacity and cellular morphology, arises from differences between 

individuals. We also assess the phenotypic effects of rare, genomic copy number 

mutations that are recurrently seen following iPSC reprogramming and present an initial 

map of common regulatory variants affecting the transcriptome of pluripotent cells in 

humans. 
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Introduction 

Induced pluripotent stem cells (iPSCs) are important model systems for human disease 

1. A critical unanswered question is whether iPSCs can be used to study the functions of 

genetic variants associated with complex disease and normal human phenotypic 

variation. Previous work has suggested that individual iPSC lines may be highly 

heterogeneous 2-5. Substantial iPSC heterogeneity means that the subtle effects of 

common genetic variants might be hard to detect. Existing iPSC lines often have limited 

genetic and phenotypic data of variable quality, or are derived from individuals with 

severe genetic disorders, limiting their utility for studying other phenotypes. Although 

previous large-scale studies in pluripotent stem cells have been undertaken, they have 

not systematically derived hiPSCs at scale nor focused on characterising phenotypic 

effects of naturally occurring genetic variation 5,6. Thus, there is a critical need for large, 

well-characterised collections of human iPSCs (hiPSCs) systematically generated using 

a single experimental pipeline. 

To overcome this problem there is a requirement for large, well-characterised collections 

of human iPSCs (hiPSCs) that have been systematically generated using a single 

experimental pipeline. Furthermore, The Human Induced Pluripotent Stem Cells Initiative 

(HipSci; www.hipsci.org) was established to generate a large, high-quality, open-access 

reference panel of human iPSC lines. A major focus of the program is the systematic 

derivation of iPSCs from hundreds of healthy volunteers using a standardised and well-

defined experimental pipeline. Each generated line is extensively characterised and lines 

with accompanying genetic and phenotypic data are available for use by the wider 

research community. Here, we report initial results from the characterization of the first 

522 iPSC lines derived from 189 healthy individuals. Our study shows that common 

genetic variants produce readily detectable effects in iPSCs, and provides the first map 

of regulatory variation in human pluripotent stem cells. We also demonstrate that 

differences between donor individuals have pervasive effects at all phenotypic levels in 

iPSCs, from the epigenome, transcriptome and proteome to cell differentiation and 

morphology. 

Results 

Sample collection and iPSC derivation 
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Samples for the project were collected over a period of 13 months between February 

2013 and March 2014 during which we received a total of 430 skin punch biopsies from 

healthy, unrelated research volunteers, the vast majority of which were of Northern 

European ancestry (Extended Data Fig. 1) recruited through the NIHR Cambridge 

BioResource (http://www.cambridgebioresource.org.uk). Fibroblast outgrowths from skin 

explants of each individual were reprogrammed using a Sendai viral vector system 7 on 

a feeder layer of mouse embryonic fibroblasts and 234 (54.4%) produced pluripotent 

colonies within 35 days post transduction on average. Unsuccessful reprogramming 

attempts were due to failure to produce fibroblast outgrowths (50 individuals, 11.6%) or 

failure to produce pluripotent colonies (146 individuals, 34.0%). Of the 234 successfully 

reprogrammed samples, 189 were sufficiently advanced in our experimental pipeline to 

be included in the current study.  

We established multiple independent lines from most donors (92% of donors had >1 

line, 72% had 3 lines) resulting in a total of 522 iPSC lines that were subjected to an 

initial set of genetic and phenotypic assays (hereafter ‘Tier 1’ assays) (Fig. 1a). Tier 1 

assays included array based genotyping and gene expression profiling of the iPSCs and 

their fibroblast progenitors. For 301 lines we quantified protein expression of NANOG, 

OCT4 and SOX2 using immunohistochemistry followed by quantitative image analysis 

using the Cellomics (Thermo Fisher Scientific) high content imaging system. We also 

differentiated 372 lines into neuroectoderm (dEC), mesoderm (dME), and endoderm 

(dEN), using a defined culture system 8, and measured the expression of three lineage-

specific differentiation markers (Fig. 1a) using the Cellomics platform (Extended Data 

Figure 2, Methods).  

The Tier 1 assay data were used to select 1-2 high quality lines for each donor for 

further phenotyping and cell line banking, minimising the number of genetic 

abnormalities and maximizing pluripotency. For this study, 167 lines (hereafter ‘selected 

lines’) from 127 donors were selected based on Tier 1 assay data, and profiled using 

RNA-seq, with lines from 27 donors subjected to DNA methylation profiling, 9 donors to 

quantitative proteomics and 12 to cell morphological imaging (hereafter ‘Tier 2’ assays) 

(Extended Data Figure 3, Supplementary Table 1, 2). 
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Figure 1 | Experimental design of iPSC line generation and quality control. (a) 

Schematic of iPSC generation pipeline. hDF: human dermal fibroblasts; dEN: 

differentiated endoderm; dME: differentiated mesoderm; dEC: differentiated 
neuroectoderm. Samples for molecular profiling were taken at two stages: ‘Tier 1’ 

assays were profiled in cells at average passage 16, ‘Tier 2’ assays were carried out at 

average passage 30 for selected lines (Methods). Shown below the x-axis is the day 

number (where receipt of a skin punch was day 0) for an average line to go from 
registration to each pipeline stage and corresponding success rates. Times do not reflect 

continuous periods in culture and include intervals where lines were frozen. Time to Tier 

1 assay stage was defined as the mean day number when gene expression was profiled 
using microarrays. (b-h) Analyses of the Tier 1 quality control assays. (b) Pluripotency of 
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lines assessed using PluriTest 9, a computational assay based on gene expression 

arrays. Comparison of PluriTest novelty score versus pluripotency score for 522 lines 
generated (light blue), for selected (dark blue) and hDFs (red). (c) Estimated fraction of 

iPSCs expressing pluripotency markers (% of responding cells) measured using 

immunostaining and high content imaging (Methods). (d) The percentage of responding 

cells stained for differentiation markers for endoderm (dEN), mesoderm (dME) and 
neuroectoderm (dEC). (e-g) Genetic stability in hiPSCs. (e) Distribution of number of 

CNAs across all lines (dark blue - selected lines, light blue – lines not selected). (f) 

Fraction of CNAs shared by one, multiple or all clonal lines from the same donor. (g) 
Relationship between CNA count and line passage number. (h) Pairwise correlation 

between scores derived from immunostaining for pluripotency and differentiation and the 

PluriTest score. 

 

Pluripotency and genetic stability 

We analysed Tier 1 gene expression array data using PluriTest 9, which suggested that 

all 522 lines displayed expression patterns typical of pluripotent cells (Fig. 1b). Using the 

Cellomics imaging data we quantified the fraction of cells expressing each marker and 

estimated that, on average, between 18% and 62% of cells in the iPSC lines expressed 

all three pluripotency markers NANOG, OCT4 and SOX2 (Fig. 1c, S11). The vast 

majority of lines (>99%) successfully produced cells from all three germ layers during 

directed differentiation with the average line producing up to 70%, 84% and 77% of cells 

expressing all three markers of dEN, dME and dEC, respectively (Fig. 1d). Lineage-

specific marker expression was positively correlated between endoderm and mesoderm 

as well as between endoderm markers and expression of NANOG, OCT4 and SOX2 in 

the original iPSCs (Fig. 1h). Together, these data indicate that virtually all of the hiPSC 

lines we have derived are pluripotent. 

Aneuploidy and sub-chromosomal aberrations have frequently been observed in 

cultured pluripotent stem cells 6,10-12. We used genotyping arrays to detect copy number 

alterations (CNAs) between the 189 original fibroblasts and the 522 iPSCs lines derived 

from them, using a computational approach developed for this purpose 13. We estimate 

that we can detect genetic abnormalities of >1Mb that occur in 20% or more cells within 

an individual line. Using this approach we called a total of 147 larger CNAs (> 1Mb in 

size). 4% of all lines (none of the lines selected for Tier 2 assays) had trisomies and 21% 

of all lines (12% of the selected lines) harboured one or more CNAs of, on average, 

8.64Mb in length with duplications outnumbering deletions by 2.9 to 1 (Fig. 1e). Although 

the majority of CNAs are unique to single iPSC line, 36% are also observed in at least 

one replicate line from the same donor (with sharing defined as overlapping by at least 

one base), with 27% seen in all replicates (Fig. 1f). We found no significant association 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 25, 2016. ; https://doi.org/10.1101/055160doi: bioRxiv preprint 

https://doi.org/10.1101/055160


between the number of CNAs and any of passage number, donor age, gender and 

PluriTest score of a line (Fig. 1g, Extended Data Fig. 4). 

Recurrent copy number alterations in human iPSCs 

CNAs observed in pluripotent stem cells (PSCs) are known to recur in specific genomic 

locations 6,11,12. Using our CNA call set, we next identified regions of recurrent genomic 

alteration. Our analysis builds on previous work in three ways. First, we obtained 

reference material from the donor, which was not collected in previous large-scale 

studies, enabling us to distinguish CNAs that have appeared during somatic 

development or reprogramming from germline variants. Second, our sample size (522 

lines) was 14-fold larger than the largest reported sample of hiPSCs (37 hiPSCs in ref 

11), four times larger than previous studies of pluripotent stem cells (PSCs) (136 PSC 

lines in ref 6), and twice as large as the biggest karyotyping study to date 14. Third, 

because we collected gene expression data in the same cells, we were able to 

characterize the downstream consequences of each recurrent CNA on gene expression. 

We observed a number of regions where CNAs occurred significantly more often than 

expected under a uniform genomic distribution (Methods), including whole chromosome 

duplication of the X chromosome (six independent donors, p = 6.9x10-6), six sub-

chromosomal duplications - on chr20q11.21 (13 donors, p = 1x10-8), chr17q (5 donors, p 

= 3.4x10-5), chr10q (4 donors, p = 1.2x10-4), chr1q32.1 (4 donors, p = 1.6x10-5), 

chr1q42.2 (3 donors, p = 5x10-4) and chr3q26 (3 donors, p = 8.9x10-4); and two regions 

of recurrent deletion at chr1q23.3 (2 donors, p = 4.9x10-4) and chr9q21 (2 donors, p = 

1.2x10-3) (Fig. 2a, Supplementary Table 3). The six recurrent subchromosomal regions 

were between 0.8 and 6 Mb in length, with one comprising the short arm of chromosome 

10 and another 84.5% of the long arm of chromosome 17. A number of the recurrent 

CNAs we detected have been previously observed in PSCs, including X trisomy 6,14,15, 

duplications of the long arm of chromosome 17 and a minimum amplicon on 

chromosome 20 6. 
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Figure 2 | Locations and consequences of recurrent CNA regions. (a) Circos plot 

showing the genomic location of structural genetic alterations (copy number variants and 

trisomies) identified between each hiPSC line and the corresponding hDFs from which 
they were derived. Colours denote the significance level of recurrence of chromosomal 

(chromosome ring) and sub-chromosomal CNAs (frequency on the outside of the ring). 

(b) Selected recurrent CNAs and potential selection target genes in the region. (c,e) 
Location of the peak regions within the CNAs (top) and the genes expressed within 

these peak regions (bottom). In the top plot the y-axis denotes the number of lines with 

CN 3 (not necessarily a CNA as some donors have CN 3 on both the somatic cells and 

iPSCs). On the bottom plot the y-axis denotes the reduction in number of nuclei upon 
knockdown of a gene in a siRNA screen as a proxy phenotype for impact on cell 

proliferation. Highlighted are genes up-regulated when copy number increases and that 

are either known onco/tumour-suppressor genes or genes that score in the top 2% in ref. 
16. The colour code shows log2 gene expression fold change between the iPSC lines with 

copy number 2 and 3. (d) Differential expression of genes between lines with copy 

number 2 and 3 for the recurrent CNA on chromosome 17. Grey dots denote gene 
outside the CNA (regulated in trans), black dots denote genes inside the CNA (in cis). 

The significance level used (q = 0.01) is shown as a horizontal bar intersecting the y-

axis. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 25, 2016. ; https://doi.org/10.1101/055160doi: bioRxiv preprint 

https://doi.org/10.1101/055160


Although recurrent CNAs could be due to mutational hotspots, we did not find significant 

overlap between our recurrent CNA set and annotated chromosome fragile sites 17 (p = 

0.939, Methods). Recurrent CNAs could also arise if duplication or deletion of specific 

genes led to a selective advantage. For example, the chromosome 20 duplication is 

hypothesised to arise due to a growth advantage conferred by the overexpression of 

BCL2L1, a regulator of apoptosis 6,18. Consistent with this idea we found that 56% of 

CNA hotspots overlapped recurrent somatic copy number alterations in cancer, 

significantly more often than randomly generated control sets of equivalent size (18% 

overlap, p = 0.0095, lenient set from 19).  

To identify potential targets of selection, we defined peak regions of amplification 

(regions of maximum recurrence e.g. Fig. 2c,e top) within our CNAs and investigated 

the genes expressed in each of these regions. The eight peak regions contained 

between four and 397 expressed genes (FPKM>0 in >10% of lines) (Fig. 2b,c,e). We 

next filtered the list of putative targets using three criteria: (i) significant differential 

expression between lines with different copy numbers of the CNA region (ii) reported 

oncogenes from the COSMIC cancer gene census 20 or (iii) high scoring genes (in the 

top 2%) in a genome-wide siRNA of hES cell proliferation 16 (Fig. 2b,c,e). Using these 

criteria, we derived a candidate gene list that included BCL2L1 on chr20, EIF4A3, BIRC5 

(previously proposed as a putative target of selection by 21) and 10 others on chr17, and 

DOCK1, SMNDC1 on chr10 (Fig. 2b). Two genes on chr17, EIF4A3 and KPNB1, scored 

more highly than BCL2L1 in reducing proliferation after siRNA knock-down (top 0.1%) 

and were abundantly expressed in our iPSCs (top 98th and 99th mean expression 

percentile, respectively), but only one of these, EIF4A3, was found to be significantly 

over-expressed in lines with increased copy number (q = 7x10-6).  

Duplications on chromosome 20 and 17 were also associated with changes in the 

expression of many genes outside of the CNA region, 80 and 984 respectively  (false 

discovery rate 1%; FDR; Fig. 2b,d). Genes up regulated by the chr17 CNA were 

significantly enriched for members of the Notch signalling pathway. The Notch pathway 

may play a role in ESC proliferation 22 and down regulation of NOTCH1 is associated 

with cell growth inhibition and increased apoptosis 23. Genes down regulated by the 

chr17 CNA were significantly enriched for genes involved in apoptosis modulation and 

signalling, including three members of the Bcl-2 protein family BCL2L1 (pro/anti-

apoptotic), BID (pro-apoptotic) and PMAIP1/NOXA (pro-apoptotic), the pro-apoptotic Bcl-

2-interacting killer protein BIK, the pro-apoptotic genes CASP9, DFFA and 

MAP3K5/ASK1 and the context-dependent pro/anti-apoptotic gene DAXX (FDR < 5%; 

Supplementary Table 4). Furthermore up-regulation of EIF4A3, the top target in the cis 
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region of chr17, is thought to promote splicing of the anti-apoptotic BCL-XL isoform and 

the gene is known to regulate splicing of other apoptosis genes 24. In summary, we have 

produced the highest resolution map of recurrent CNAs in hiPSCs to date and identified 

a number of novel candidate genes that, when duplicated, may alter the growth 

properties of pluripotent stem cells, either by increasing proliferative capacity or 

decreasing apoptosis. 

Sources of hiPSC heterogeneity 

We next explored how different technical and biological factors affect variation among 

iPSC lines using linear mixed models to partition the sources of variation of both Tier 1 

and 2 assays (Fig. 3a; Methods). Our experimental design included multiple 

independent lines from the same individual (136 donors with three lines, 37 more with 

two lines in Tier 1, 40 donors with two lines in Tier 2), enabling us to quantify between-

individual differences (hereafter, ‘donor effects’) and to systematically compare this 

variance with that contributed by other factors. As expected, technical covariates, such 

as gene expression array batch, explained most variation in many of the assays. 

However, we also found consistent, statistically significant donor effects on the majority 

of iPSC phenotypes assayed, from methylation, through mRNA and protein abundances 

to cellular phenotypes such as pluripotency, differentiation capacity, and morphology 

(Fig. 3b,c). After accounting for technical batch factors, donor effects explained between 

6.6% and 26.3% of the variance in the genome-wide assays averaging across all 

features in the assay, Fig. 3a), between 21.4% and 45.8% in the single protein 

immunostaining assays in pluripotent and differentiated cells (Fig. 3b, S13), and 

between 7.9% and 22.8% in the cellular morphology assays using an Operetta (Perkin 

Elmer) high content imaging system (Fig. 3c). Collectively, these results support the 

conclusion that differences between donor individuals affect the majority of iPSC cellular 

traits. 
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Figure 3 | Variance component analysis of HipSci assays. (a-c) Variance component 
analysis for Tier-1 (270-522 lines) and Tier-2 assays (16-32 lines), partitioning 

phenotypic variability into donor effects, iPSC-specific experimental factors and assay 

batch. Left hand panels in (a-c) show the breakdown of total variance, right hand panels 

show proportion of variance explained by donor after accounting for technical covariates 
such as assay batches. For genomic assays, the average proportion of variance for 

genes in different abundance bins (medium, mid and high expressed) is shown. (a) 

genomic and proteomic assays (b) differentiation and pluripotency markers (c) cell 
morphology. (d) Breakdown of variance components of gene expression arrays from 522 

Tier 1 lines excluding variance from assay batches. Left panel shows the distribution of 

the relative estimated donor, media, trisomy, CNA, passage number and gender 
variance components. Middle panel shows the number of genes where a particular 

variance component is the primary driver of heterogeneity (defined as the factor that 

explains to most variance). Right hand panel shows the mean gene expression level of 

the corresponding genes. (e) Relationship between donor variance component 
estimates and effect size estimates of lead eQTLs identified using gene expression 

arrays. Numbers above the boxplots denote the number of array probes in each 

variance bin. 
 

We next investigated whether the variation we observed in iPSC gene expression could 

be further partitioned into additional biological factors after removing technical batch 

effects. Here we used data from Tier 1 gene expression arrays, the assay for which we 

have the largest number of donors and lines. Of the 25,391 remapped probes (17,011 

genes) (Methods; Supplementary Table 5) measured, donor was the factor that 

explained the most variation in 51.8% of probes (52.1% of genes), substantially more 

than any other factor, including culture conditions (15.8%), trisomy status (15.1%), CNV 

status (12.2%), passage (2.6%) or gender (2.5%, Fig. 3d). Donor effects also appeared 
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to be relatively consistent across all genes, while factors like culture condition or CNV 

status had large effects but only on a small numbers of genes (Fig. 3d). We observed 

only minor effects of gender on autosomal genes and line passage number explained 

little variation overall. 

In principle, variation attributed to the donor in the variance component model may be 

due to shared environment during reprogramming, in addition to common genetic 

background, because replicate lines were derived from the same population of fibroblast 

cells. To address this, we used the Tier 1 gene expression array data to map cis-acting 

expression quantitative trait loci (eQTL) in replicate lines from the same donor 

(Supplementary Table 6). We found that eQTL effect sizes were robust across replicate 

lines (Extended Data Figure 5), and large donor variation from the variance component 

model was associated with larger effect sizes of lead eQTL variants (Fig. 3e, Methods). 

This result strongly suggests that estimated donor variance components predominantly 

reflect genetic differences between donors. 

Identification of iPSC-specific regulatory variants 

We next set out to characterise how the transcriptome of pluripotent cells is shaped by 

common genetic differences between individuals. We mapped expression quantitative 

trait loci (eQTL) using 167 iPSC lines from 127 unrelated donors using deep RNA-seq 

data, considering cis-acting variants within 1 Mb of the gene start. Genome-wide, we 

identified 2,169 genes with an eQTL at FDR 5% (hereafter referred to as ‘eGenes’) 

(Supplementary Table 7; Methods). Notably, power to discover eGenes in iPSCs was 

comparable to that in 44 somatic tissues studied by the GTEx Consortium 25 given our 

sample size (Extended Data Figure 6; Supplementary Table 8). Overall, iPSC eQTLs 

showed similar properties to eQTLs reported in other cell lines and somatic tissues 

(Extended Data Figure 6). 

As many eQTLs are shared among tissues, we sought to place iPSC eQTLs in the 

broader context of somatic tissues. To define hiPSC-specific eQTLs we tested for 

replication of our eQTL signals in 44 tissues from GTEx, considering lead eQTL variants 

and their proxy variants (linkage disequilibrium r2 > 0.8; LD). Replication was defined 

using a nominal p < 0.01, Bonferroni adjusted for the total number of tissues tested. 

Using these criteria, we identified 503 eQTLs (503 eGenes) that were specific to iPSCs 

(Fig. 4a; Methods). We note that the proportion of iPSC-specific eQTLs (23%) was 

higher than in most GTEx tissues with comparable discovery sample size, with the 

exception of testis, a known outlier tissue 26. Notably, most of these signals (77%) 
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occurred in genes with at least one reported GTEx eQTL that was not in high LD with the 

lead iPSC eQTL signal, suggesting that most iPSC specific eQTLs are driven by an 

alternative regulatory variant. Only 6% of the iPSC-specific eQTLs were explained by 

tissue-specific gene expression (Methods) (Fig. 4b), despite the known ubiquitous 

expression levels in iPS cells compared to somatic tissues (Extended Data Figure 6). 

Similar proportions were also seen when replicating eQTLs discovered in GTEx tissues. 

Interestingly, 20 of the iPSC-specific eQTLs regulate known cancer genes (Fisher p = 

6.7x10-4 compared to eGenes regulated by non-specific eQTLs), including the tumour-

suppressor TP53 (Supplementary Table 9). For three of these genes (NRAS, HNF1A, 

and NFATC2) there was no eQTL detected in any other GTEx tissue. Compared to 

tissue-specific effects in GTEx tissues, iPSC-specific eQTLs appeared to regulate more 

cancer-implicated genes than somatic tissues (Extended Data Figure 7). We also found 

an iPSC-specific eQTL with a large effect size for BIRC5 (Extended Data Figure 7), a 

gene that is commonly overexpressed in tumours and identified as one of the candidate 

genes under selection by a recurrent CNA on chromosome 17 (Fig. 2e). 

 

For a subset of iPSC-specific eGenes we observed a corresponding effect on protein 

abundance, although the small number of lines with proteomics data (Extended Data 

Figure 3) prevented genome-wide analysis of proteome quantitative trait loci (pQTL). An 

example is shown for rs10999085 targeting the H2AFY2 (H2A Histone Family, Member 

Y2) gene (Fig. 5a,b), which encodes for a replication-independent histone protein that 

functions in transcriptional repression and has been connected with differentiation ability 

in pluripotent cells 27. Taken together, our results suggest that gene regulation in iPSCs 

is partly driven by iPSC-specific regulatory elements, in line with a recent study 

assessing self-renewal capacity in ESCs and macrophages 28. 
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Figure 4 | iPSC eQTL map in the context of somatic tissues. (a) Proportion of tissue-
specific eQTLs (considering the replication of lead eQTLs and their high-LD proxies; r2 > 

0.8) as a function of the discovery sample size. Points other than iPSC (this study) are 
from the GTEx Consortium (44 somatic tissues and cell lines) 25. (b) Assignment of the 

most likely causes for tissue-specific eQTLs shown for iPSCs, GTEx testis and the 

average of GTEx somatic tissues and cell lines. Breakdown: gene not expressed (red); 

gene expressed but not no eQTL (blue); eQTL effect is driven by distinct lead variants (r2 
< 0.8; green). (c) Heatmap of the fold enrichment (FE) difference between iPSC-specific 

and non-specific eQTLs at 25 chromatin states from the Roadmap Epigenomics Project 
29, shown for five aggregated clusters representing 127 different cell types. Colouring: 
higher FE in iPSC-specific (blue), higher FE in somatic (red). (d) Enrichment of iPSC 

eQTLs at promoter proximal and distal (defined as less than or greater than 2 kb from 

the transcription start site) transcription factor binding sites (TFBS) in H1-hES cells from 
the ENCODE Project 30. Significant fold enrichments per factor are shown for iPSC-

specific and non-specific eQTLs. Pluripotency-associated factors are indicated with an 

asterisk. 
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Functional genomic context of iPSC-specific eQTLs 

The transcriptional regulatory networks that maintain pluripotency are unique to stem 

cells. We next investigated how common variants modulate these networks to produce 

iPSC-specific genetic effects on expression. We used chromatin state annotations from 

127 reference epigenomes from the Roadmap Epigenomics Project 29 to quantify the 

fold enrichment of iPSC-specific and nonspecific eQTL sets across all chromatin states 

relative to randomized matched variants (Methods). iPSC-specific eQTLs were highly 

enriched in two clusters: active enhancers and poised promoters in pluripotent stem cells 

and in ESC-derived cell types, primarily the three embryonic germ layers. In contrast, 

eQTLs that are not tissue-specific were most highly enriched near active promoters and 

transcribed regions across different somatic tissues (Fig. 4c). iPSC-specific eQTLs were 

also significantly enriched for binding sites of key regulators of pluripotency obtained 

from the ENCODE Project 30, including NANOG, POU5F1 (OCT4), and multiple other 

factors relevant for pluripotency 9,31, compared with non-specific eQTLs which did not 

show comparable enrichment for these factors (Methods; Fig. 4d). This enrichment was 

predominantly seen at distal transcription factor binding sites (defined as > 2 kb away 

from the TSS), in accordance with previous observations of tissue and context-specific 

regulatory elements being more likely distal than proximal 32,33. Our results suggest that 

common genetic differences between individuals may affect regulation during early 

stages of development.   

iPSC eQTLs tag common disease variants 

Although the value of iPSCs for genetic engineering experiments is clear, much less is 

known about their relevance as a model cell type for functional interpretation of common 

disease-associated variants. To explore this, we overlapped all iPSC eQTLs (lead 

variants and their high-LD proxies) with the NHGRI-EBI catalogue for genome-wide 

association studies (GWAS). iPSC eQTLs and their proxies tagged a total of 85 

catalogued variants associated with 67 different traits. Amongst the 85 variants there 

were 46 distinct loci for which the eQTL effect was strongest in iPSC cells, and 8 loci 

that were tagged by iPSC-specific eQTLs (Supplementary Table 10; Methods). 

Globally, this number of tagging events was similar to what is expected by chance (using 

randomized eQTL variants matched for allele frequency, distance to the nearest 

transcription start site, gene density, and number of LD proxy variants; Methods). 

However, when considering individual traits, we found eQTLs to be enriched for variants 

associated with 12 traits (minimum two variants; Supplementary Table 10). 
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Figure 5. iPSC-specific eQTLs tag disease-associated variation. (a) Example of an 

iPSC-specific eQTL locus, highlighting the lead eQTL variant rs10999085 (red), the 

target eGene (H2AFY2; H2A Histone Family, Member Y2; gray; upper panel), and 

somatic eQTL signal at the same locus (lower panel). Shown is the -log10(minimum 

eQTL p-value) derived from 44 GTEx tissues, highlighting the distinct loci driving the 

regulation of H2AFY2 in iPSCs and somatic tissues. The orange horizontal line 

indicators the family-wise error rate (FWER) of 10% (Methods). Start positions for other 

protein-coding genes are indicated with vertical grey lines. (b) Replication of the 

H2AFY2 eQTL on the protein level, showing the log10 scaled iBAQ values for 17 iPSC 

lines (9 donors) (pQTL nominal p = 0.0085; linear regression), stratified by their 

genotype at rs10999085. (c) Example of a disease-tagging iPS specific eQTL locus on 

chromosome 5. The disease variant rs10069690 is associated with multiple different 

types of cancer, including breast and ovarian cancer 34,35 and tagged by an eQTL for 

TERT (Telomerase Reverse Transcriptase). The lead eQTL variant is highlighted in red 

and additional cancer-associated variants in blue. The gene region of TERT in indicated 

in solid gray and transcription start sites for other protein-coding genes in the region are 

shown with vertical gray lines. (d) Boxplot showing TERT intron 4 retention ratio (PSI, 

percent spliced in) in iPSC lines of all individual donors stratified by their genotype at 

rs10069690. 

 

We conclude with one example of a GWAS variant that shows an iPSC-specific eQTL 

effect, which illustrates how studying the genetic regulation of gene expression in iPSCs 

may help generate insights into the mechanisms through which GWAS disease variants 
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act. Variant rs10096960 on chromosome five is a lead eQTL variant for the TERT 

(Telomerase Reverse Transcriptase) gene, which encodes the catalytic subunit of the 

human telomerase enzyme (Fig. 5c,d). This variant is associated with germline 

predisposition to seven different cancers 34-36, and there are multiple additional variants 

at the same locus associated with cancer as well as other phenotypes such as telomere 

length 37,38. TERT promoter mutations are also the most frequent non-coding somatic 

mutations observed in a variety of cancers such as melanoma 39. To explore putative 

mechanistic effects of rs10069690, we analysed alternative splicing of the TERT gene, 

as previous studies have reported aberrant splicing caused by this variant 38 as well as 

highly abundant alternative TERT transcripts in ESCs 40. We quantified TERT intron 

retention rates and identified two alternative splicing events associated with rs10069690 

(i.e. splicing QTLs). One of them affects the intron where the variant is located, with the 

minor allele of rs10069690 (T), increasing the fraction of TERT transcripts in which intron 

4 is retained (p = 4.6e-05, Bonferroni adjusted) (Methods; Fig. 5d, Extended Data 

Figure 8). Recent work has shown that an increase in TERT expression caused by 

regulatory promoter mutations only manifests in differentiated cells, where increased 

TERT expression results also in increased telomerase activity 41. We therefore speculate 

that the eQTL affecting TERT expression in iPSCs results in genotype-dependent 

variability in telomerase activity in somatic cell types, possibly mediated by aberrant 

splicing, which leads to differential cancer susceptibility. 

Discussion 

Here we present the first analyses of genetic and phenotypic data from 522 human iPSC 

lines derived by HipSci. Our study illustrates that iPSC technology is sufficiently mature 

to generate high quality cell lines from hundreds of individuals, facilitating large-scale 

studies of the consequences of human genetic variation in pluripotent stem cells. 

Strikingly, our data demonstrate that donor effects are a major driver of molecular and 

cellular heterogeneity in iPSCs after accounting for technical batch effects. While inter-

individual variation in gene expression is perhaps not surprising, our data suggest that 

genetic differences affect a wide range of molecular and cellular phenotypes, including 

the efficiency at which iPS cells differentiate into the three embryonic germ layers 42-44. 

One interpretation of this finding is that common genetic variation has subtle effects on 

core components of the regulatory networks controlling cellular differentiation and 

responses to external environmental stimuli. A major advantage of genetic studies in 

iPSCs compared to other immortalised cell lines such as EBV-transformed 

lymphoblastoid cell lines 45-47 is that effects can be analysed and compared in different 
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derived cell types, while sharing genetic data. Future efforts to map quantitative trait loci 

that regulate these networks will provide a novel and powerful tool for dissecting the 

genetic architecture of development and somatic tissue physiology. 

 

We have generated the most extensive map so far of the locations of recurrent genetic 

abnormalities in iPSCs. Compared to previous large-scale studies in human embryonic 

and induced pluripotent stem cells 6,11, we observed lower levels of genetic aberrations 

in our lines. One possibility for this difference is that previous studies have primarily 

focused on cells with relatively high passage numbers compared to our hiPSCs, 

although we did not notice a significant increase in rate of CNAs with passage number in 

our study. Alternatively, due to the lack of reference donor samples in previous work, 

some germline CNAs might have been mistaken for events that occurred during 

reprogramming and cell culture. Indeed, even within our study, the CNAs could have 

occurred somatically in the donor prior to skin biopsy, and been selected either in the 

donor or in the reprogramming and cell growth process, as has been suggested by 

recent work 12. This would be consistent with the same variant appearing in separately 

selected iPSC lines from the same donor fibroblast pool. We were also able to link a 

subset of the CNAs to downstream transcriptional changes, the most notable association 

being between CNAs on chromosome 17 and changes in genes that regulate apoptosis 

and Notch signalling, suggesting that these changes may result from a growth 

advantage conferred by duplication of specific genes. 

 

Our study provides the first map of common regulatory variation in human pluripotent 

cells. We show that variation in local gene regulation in iPSCs is similar to that in 

somatic tissues, with eQTLs driving lineage-specific expression profiles through distal 

tissue-specific regulatory elements such as enhancers. We have identified a set of 

variants that show regulatory function only in pluripotent cells and identified complex 

disease-associated loci tagged by these variants. These loci may drive disease-

susceptibility through molecular changes early in development or more generally in cells 

with ‘stem-like’ characteristics, which are not well captured by studies of differentiated 

primary tissues from adult individuals. A compelling example of this is the iPSC-specific 

eQTL regulating TERT expression. In human tissues, telomerase activity is mainly 

restricted to stem cells, with most somatic tissues silencing TERT expression. However, 

cancer cells bypass this tumor suppressive mechanism by reactivating telomerase 

activity 48, returning to a more ‘stem-like’ state. This result highlights how iPSCs could be 

used to study the genetic effects of diseases that manifest in transient states during 
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cellular growth and differentiation, which are known to be particularly important in cancer 

49.  

 

In summary, our study provides a first comprehensive picture of the genetic and 

phenotypic variability in human pluripotent stem cells, including the major drivers of this 

variation. Data and cell lines from this study are being made available through 

www.hipsci.org and the European Collection of Authenticated Cell Cultures (ECACC).  

As the HipSci resource continues to expand in sample size and assays, it will enable the 

study of more subtle genetic effects, under a wider range of conditions, in an increasing 

range of disease-relevant differentiated cell types. 

Methods 

All samples for the HipSci resource were collected from consented research volunteers 

recruited from the NIHR Cambridge BioResource (http://www.cambridgebioresource. 

org.uk). Samples were collected initially under existing Cambridge BioResource ethics 

for iPSC derivation (REC Ref: 09/H0304/77, V2 04/01/2013), with later samples 

collected under a revised consent (REC Ref: 09/H0304/77, V3 15/03/2013). Details of 

the generation and phenotyping of all cell lines used in the study, data generation and 

analysis are described in the Supplementary Information. 
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