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Abstract

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently

insufficiently understood. Here, common and rare variants from whole exome sequencing data of

about 4,000 SARS-CoV-2-positive individuals were used to define an interpretable machine

learning model for predicting COVID-19 severity. Firstly, variants were converted into separate sets

of Boolean features, depending on the absence or the presence of variants in each gene. An

ensemble of LASSO logistic regression models was used to identify the most informative Boolean

features with respect to the genetic bases of severity. The Boolean features selected by these logistic

models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable

index for describing the contribution of host genetics in COVID-19 severity, as demonstrated

through testing in several independent cohorts. Selected features belong to ultra-rare, rare,

low-frequency, and common variants, including those in linkage disequilibrium with known GWAS

loci. Noteworthly, around one quarter of the selected genes are sex-specific. Pathway analysis of the

selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease.

The proposed model might provide useful information for developing diagnostics and therapeutics,

while also being able to guide bedside disease management.

Keywords: COVID-19; Host genetics; Integrative polygenic score; Genetic science modelling,

pathway enrichment analysis.
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Introduction

For almost two years COVID-19 has demonstrated itself to be a disease having a broad spectrum

of clinical presentations: from asymptomatic patients to those with severe symptoms leading to

death or persistent disease (“long COVID”) [1-3]. While developing vaccination programmes and

other preventive measures to significantly dampen infection transmission and reduce disease

expression, a much deeper and more precise understanding of the interplay between SARS-CoV-2

and host genetics is required to support the development of treatments for new virus variants as they

arise. Furthermore, advances in modelling the interplay between SARS-CoV-2 and host genetics

hold significant promise for addressing other complex diseases. In this study, we demonstrate the

value of genetic modelling with its direct translatability into drug development and clinical care in

the context of a severe public health crisis.

The identification of host genetic factors modifying disease susceptibility and/or disease severity

has the potential to reveal the biological basis of disease susceptibility and outcome as well as to

subsequently contribute to treatment amelioration [4]. From a scientific point of view, COVID-19

represents a particularly interesting and accessible complex disorder for modeling host genetic data

because the environmental factor (SARS-CoV-2) can be readily identified by a PCR-based swab

test. The still moderate viral genome variability has thus far been shown to have relatively low

impact on disease severity [5] where currently age, sex, and comorbidities are the major factors

predicting disease susceptibility and outcome [6]. While these factors certainly have significant

value for prediction, they provide limited insights into disease pathophysiology and are of limited

relevance for drug development.

Common variants in the human genome affecting the susceptibility to SARS-CoV-2 infections

and COVID-19 severity have been successfully identified by Genome-Wide Association Studies

(GWASs) [7-9]. However, these variants only explain a small fraction of trait variability and, as it is

well documented, GWASs are difficult to interpret because they often associate non-coding variants
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with phenotype; therefore the relevant genes need to be pinpointed by deeper follow-up analyses. In

contrast, next-generation sequencing based studies have identified variants in a few genes related to

innate immunity which can solely underlie rare severe forms of COVID-19 [10-13]. In these rare

affected families, the predictivity is high as the susceptibility for severe COVID-19 follows

Mendelian inheritance patterns. However, these patients represent only a small proportion of those

severely affected by COVID-19. Taken together, genetic findings can currently only explain a

limited proportion of COVID-19 susceptibility and severity, in spite of the relatively high predicted

heritability of COVID-19 and COVID-19 symptoms [14]. A better and more holistic understanding

of host genetics could support the development of more specific, or even targeted drugs and

treatment interventions leading to less morbidity and  mortality.

The Italian GEN-COVID Multicenter Study collected more than two thousand biospecimens

and clinical data from SARS-CoV-2-positive individuals [15], and whole exome sequencing (WES)

analysis contributed to the identification of rare variants [7] and common polymorphisms [16-18]

associated with COVID-19 severity. In 2020, we started to investigate how common variants may

combine with rare variants to determine COVID-19 severity in WES data using a first small cohort

of hospitalized patients. This pilot analysis revealed that the combination of rare and common

variants could potentially impact clinical outcome [19]. We then proposed a new post-Mendelian

model for a genetic characterization of the disorder [20] based on an adapted Polygenic Risk Score

(PRS) [21], called Integrated PolyGenic Score (IPGS). This allowed us to reach a more precise

disease severity prediction than that based on sex and age alone. In this article, we substantially

improve this post-Mendalian model to include ultra-rare and low-frequency variants while also

demonstrating that IPGS significantly contributes to predictivity in combination with - as well as

alongside - age and sex, and is able to extract patient-specific genes. The IPGS predictivity was also

sustained in three independent European cohorts of the WES/Whole-Genome Sequencing study

working group within the COVID-19 Host Genetics Initiative [22].
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Material and Methods

Contributing cohorts

Five different cohorts (from Germany, Italy, Quebec, Sweden, UK) contributed to this study as

described in Supplementary Table 1. For multi ancestry cohorts (Quebec and UK) the

subpopulation of European Ancestry was included in the study. Institutional Review Board

approval was obtained for each study (Supplementary Table 1).

Phenotype definitions

The training of the model proposed for predicting the severity of COVID-19 requires as inputs the

exome variants, age, sex, and COVID-19 severity assessed using a modified version of the WHO

COVID-19 Outcome Scale [23] as coded into the following six classifications: 1. death; 2.

hospitalized receiving invasive mechanical ventilation; 3. hospitalized, receiving continuous

positive airway pressure (CPAP) or bilevel positive airway pressure (BiPAP) ventilation; 4.

hospitalized, receiving low-flow supplemental oxygen; 5. hospitalized, not receiving supplemental

oxygen; and 6. not hospitalized. The aim of the model is to predict a binary classification of patients

into mild and severe cases, where a patient is considered severe if hospitalized and receiving any

form of respiratory support (WHO severity-grading equal to 4 or higher in 8 points classification).

The next section describes how the annotation of exome variants and the selection of patients were

performed in the GEN-COVID cohort. Following this the training and testing of the model are

described.

Massive parallel sequencing

GEN-COVID cohort

Whole Exome Sequencing with at least 97% coverage at 20x was performed using the Illumina

NovaSeq6000 System (Illumina, San Diego, CA, USA). Library preparation was performed using
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the Illumina Exome Panel (Illumina) according to the manufacturer's protocol. Library enrichment

was tested by qPCR, and the size distribution and concentration were determined using Agilent

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). The Novaseq6000 System

(Illumina) was used for DNA sequencing through 150 bp paired-end reads. Variant calling was

performed according to the GATK4[24] best practice guidelines, using BWA [25] for mapping and

ANNOVAR [26]  for annotating.

Swedish cohort

Whole Exome Sequencing was performed using the Twist Bioscience exome capture probe and was

sequenced on the Illumina NovaSeq6000 platform. Data were then analyzed using the McGill

Genome Center bioinformatics pipeline (https://doi.org/10.1093/gigascience/giz037) in accordance

with GATK best practices.

DeCOI Germany

800-1000 ng of genomic DNA of each individual was fragmented to an average length of 350 bp.

Library preparation was performed using the TruSeq DNA PCR-free kit (Illumina, San Diego, CA,

USA) according to the manufacturer’s protocol. Whole genome sequences were obtained as 150 bp

paired-end reads on S4 flow cells using the NovaSeq6000 system (Illumina). The intended average

sequencing depth was 30X. The DRAGEN pipeline (Illumina, version 3.6.3 or 3.5.7) was used for

alignment and joint variant calling was performed with the Glnexus software (version 1.3.2).

Individuals with a 20-fold coverage in less than 96% of the protein coding sequence were removed

as well as related individuals to retain only from related pairs. Variant QC was performed using hail

(version 0.2.58). European individuals were selected by performing PCA analysis along with the

1000 genomes data. Finally, annotation was performed using Variant Effect Predictor (VEP, version

101).
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BQC-19

Whole genome sequencing at mean coverage of 30x was performed on the Illumina NovaSeq6000

platform, then analyzed using the McGill Genome Center bioinformatics pipeline

(https://doi.org/10.1093/gigascience/giz037), in accordance with GATK best practice guidelines.

GenOMICC/ISARIC4C

Whole genome sequencing at mean coverage of 20x was performed on the Illumina NovaSeq6000

platform and then analysed using the Dragen pipeline (software v01.011.269.3.2.22 , hardware

v01.011.269) .  Variants were genotyped with the GATK GenotypeGVCFs tool v4.1.8.1.

PC analysis

The standard analysis of Principal Components was performed and the first principal components

turned out to be connected with the patient’s ethnicity collected in the medical records. Therefore,

the genetic ancestry of the patients was estimated using a random forest classifier trained on

samples from the 1000 genomes project and using as input features the first 20 principal

components computed from the common variants by PLINK [27]. In order to avoid bias in the

analysis due to the different ethnicity, only patients of genetic European ancestry were retained for

further analyses.

Definition of the Boolean features

Variants were converted into 12 sets of Boolean features to better represent the variability at the

gene-level. Firstly, any variant not impacting on the protein sequence was discarded. Then the

remaining variants were classified according to their minor allele frequency (MAF) as reported in

gnomAD for the reference population as: ultra-rare, MAF<0.1%; rare, 0.1%<=MAF<1%;
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low-frequency, 1%<=MAF<5%; and common, MAF>=5%. Non-Finnish European (NFE) was used

as a reference population. SNPs with MAF not available in gnomAD were treated as ultra-rare.

INDELs with frequency not available in gnomAD were treated as ultra-rare when present only once

in the cohort and otherwise discarded as possible artefacts of sequencing. For the ultra-rare variants,

3 alternative Boolean representations were defined, which are designed to capture the autosomal

dominant (AD), autosomal recessive (AR), and X-linked (XL) model of inheritance, respectively.

The AD and AR representations included a feature for all the genes on autosomes. These features

were equal to 1 when the corresponding gene presented at least 1 for the AD model, or 2 for the AR

model, and variants in the ultra-rare frequency range and 0 otherwise. The XL representation

included only genes belonging to the X chromosome. These features were equal to 1 when the

corresponding gene presented at least 1 variant in the ultra-rare frequency range and 0 otherwise.

The same approach was used to define AD, AR, and XL Boolean features for the rare and

low-frequency variants. Common variants were represented using a different approach that is

designed to better capture the presence of alternative haplotypes. For each gene, all the possible

combinations of common variants were computed. For instance, in the case of a gene belonging to

an autosome with 2 common variants (named A and B), 3 combinations are possible (A, B, and

AB), and (consequently) 3 Boolean features were defined both for the AD and AR model. In the

AR model each of these 3 features was equal to 1 if all the variants in that particular combination

were present in the homozygous state and 0 otherwise. The same rule was used for the AD model,

but setting the feature to 1 even if the variants in that particular combination are in the heterozygous

state. In both models, AD and AR, a further feature was defined for each gene to represent the

absence of any of the previously defined combinations. In the AD model this feature was equal to 1

if no common variant is present and 0 otherwise; in the AR model, it is equal to 1 if no common

variant is present in the homozygous state and 0 otherwise. The same approach was used to define
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the set of Boolean features for common variants in genes belonging to the X chromosome. The full

list of Boolean representations is reported in Supplementary Table 2.

Model Training

The dataset was divided into a training set and a testing set (90/10), and the entire procedure

described in this section was performed using only samples in the training set. A bootstrap approach

with 100 iterations was adopted to train the model. At each bootstrap iteration, 90% of the samples

were selected (without replication), and the following two steps were performed: (step 1) selection

of the most relevant features for each Boolean representations; and (step 2) definition of the weights

of the Integrated Polygenic Score (IPGS). After the 100 bootstrap iterations, the information

extracted on relevant features and weighting factors are merged to define the final IPGS (step 3).

The IPGS is then used, together with age and sex, for training a model that predicts the COVID-19

severity (step 4). These 4 steps of the training procedure are described in detail in the next

subsections. Because the model is based on a combination of rare and common variants, the

training procedure should be performed using a dataset with homogeneous ancestry.

Step 1: Features’ Selection

The subsets of the most relevant features were identified using logistic regression models with

Least Absolute Shrinkage and Selection Operator (LASSO) regularization. Separate logistic models

were trained for each of the 12 sets of Boolean features. The predicted outcome variable for each of

these models was a re-classified phenotype adjusted by age and sex. In order to compute these

re-classified phenotypes as adjusted by age and sex, the patients were first divided into males and

females. Then for each sex an ordinal logistic regression model was fitted by using the age to

predict the WHO phenotype classification into 6 grades. The ordinal logistic regression model was

chosen as: it imposes a simple monotone relation between input feature and target variable; and it

provides easily interpretable thresholds between the predicted classes. The patients with a predicted
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grading equal to the actual grading were excluded. The remaining patients were divided into two

classes depending on whether their actual phenotype was milder or more severe than the one

expected for a patient of that age and sex. This procedure has the benefit of isolating patients whose

genetic factors are most important for predicting COVID-19 severity. This binary trait, i.e.

phenotype more/less severe than expected, was used as the outcome variable for the 12 LASSO

logistic models based on the 12 separate Boolean representations. For each LASSO model, the

regularization strength was optimized by 10-folds cross-validation with 50 equally spaced values in

the logarithmic scale in the range [10-2, 101]. The optimal regularization strength was selected as the

one with the best trade-off between the simplicity of the model and the cross-validation score, i.e. as

the highest regularization strength providing an average score closer to the highest average score

than 0.5 standard deviations. Once the regularization strength was defined, the LASSO model was

re-trained using all the samples in that particular bootstrap iteration. The features with non-null

coefficients are the ones selected for the next step. In summary, for each bootstrap iteration, this

procedure returns 12 lists of features (one for each Boolean representation) that are expected to be

the most important features for predicting the phenotype adjusted by age and sex (in that particular

bootstrap iteration).

Step 2: Weights of the Integrated Polygenic Score (IPGS)

In the previous step, the Boolean representations are considered isolated from each other. The aim

of the IPGS is to combine information from different representations (Equation 1). In order to

reach this goal, it is necessary to compute the relative weights of the different contributions. For

each bootstrap iteration, the list of relevant features extracted as described in the previous section

are used to compute the number of features that are associated with mildness or severity for the

different frequency ranges. For instance, corresponds to the number of features associated with𝑛𝑟𝑚
the mild phenotype coming from Boolean features computed for variants in the frequency range
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[0.1%, 1%]. A feature is considered associated with the mild phenotype when its coefficient in the

LASSO model estimated in step 1 is negative, i.e. it contributes to the prediction of the phenotype

adjusted by age and sex in the direction of a phenotype less severe than what expected at that

particular age and sex. The same rule, applied to the corresponding Boolean representation, is used

to define the other feature-counts appearing in Equation 1. The weighting factors in Equation 1

were estimated as the ones that maximize the Silhouette coefficient of the separation between the

clusters of patients more/less severe than expected. The minimization was performed with

weighting factors restricted to the following ranges: , and .𝐹𝐿𝐹 ∈ 1,  4[ ], 𝐹𝑅 ∈ 2, 8[ ] 𝐹𝑈𝑅 ∈ 5, 100[ ]
This procedure returns 3 optimal values for the weighing factors associated with each bootstrap

iteration.

Step 3: IPGS definition

In this step, the data extracted at each bootstrap iteration in steps 1 and 2 are combined to define the

IPGS. Firstly, for each of the Boolean features, of all the 12 representations, the number of times

this feature was selected in the 100 bootstrap iterations is computed. Then, the entire bootstrap

procedure is repeated using random input phenotypes, and the 5th percentile of the number of times

that a feature is associated with a random phenotype is estimated. This threshold, computed

separately for each Boolean representation, was used to select which Boolean features are included

in the final model. As no significant association is expected among the Boolean features and the

random phenotype, the threshold of the 5th percentile is expected to exclude with a 95% level of

confidence the possible false positive associations. For the GEN-COVID cohort, 7249 features were

selected by this procedure, which correspond to ~4.4% of the initial number of Boolean features.

The weighing factors in Equation 1 were computed as the median values of the estimates obtained

in the 100 bootstrap iterations.

Step 4: Training of the predictive model based on age, sex, and IPGS
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The procedure described in the previous sections completely defines how to calculate the IPGS.

The predictive model of the binary COVID-19 severity (hospitalized patients with any form of

respiratory support versus all other patients) was defined as a logistic model that uses as input

features IPGS, age, and sex. It should be noted that in steps 1-3, only patients that deviates from

their expected severity based on age and sex were used. The procedure was designed to isolate the

genetic basis of COVID-19 severity. Instead, in this final step, IPGS, age and sex are combined to

predict the actual COVID-19 severity, i.e. hospitalized patients with any form of respiratory

support. In order to prevent overfitting, the model was fitted using 466 samples different from the

training set adopted in steps 1-3. During the fitting procedure, the class unbalancing is tackled by

penalizing the misclassification of the minority class with a multiplicative factor inversely

proportional to the class frequencies. The percentile normalization of the IPGS scores is performed

within each cohort. An alternative logistic model that used as input features only age and sex was

also fitted on the same training set. The comparison between the two models is intended to evaluate

if the genetic information summarized in the IPGS improves the prediction of severity compared to

a model based on age and sex alone. A further logistic regression model is fitted by only

considering the IPGS variable.

Model Testing

The training procedure returned 2 logistic models to be compared: one using as input features only

age and sex, and the other one using as input features age, sex, and the IPGS. These models were

tested, without any further adjustment, using other cohorts of European ancestry. The performances

of the two models, with and without IPGS, were evaluated and compared in terms of accuracy,

precision, sensitivity, and specificity. The increases of the performances are evaluated with respect

to the performances of a model where the values of the IPGS feature have been shuffled, by

computing the p-value on the empirical null distribution. In addition, the empirical probability
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density function of IPGS has been estimated for the severe and non-severe patients of the cohort

including both train and test sets and a t-test is carried out to evaluate whether the means of the two

distributions were significantly different. As a further evaluation of the importance of the IPGS

score on the severity prediction, univariate logistic regression models using as independent

variables age (continuous represented in decades), sex, and IPGS were fitted to the dataset that

combines both the training set and the testing sets for a total of 2,240 patients. These models were

used to estimate the odds ratios and the p-values of the association with the severe phenotype.

Furthermore, a multivariable logistic regression was fitted using IPGS, age, and sex together.

Finally, a multivariable logistic regression was performed using as predictor variables: IPGS, age,

sex and comoribidities (congestive/ischemic heart failure; asthma/COPD/OSAS; diabetes;

hypertension; cancer). This latter model has been fitted in the training set, where the information on

comorbidities was available.

Pathway analysis

Pathway analysis was made using a ranked GSEA approach [28-29], modified according to the

specificity of our data. The metrics for gene ranking was calculated on the basis of the results of

feature selection models, weighting in each Boolean feature both beta values and the number of

bootstrap iterations where it was found significantly associated with severity/mildness

(Supplementary Tables 3-6). All the Boolean features that were found significant in at least one of

the models were included in the list. As the sign of beta depends on which allele is taken as

reference (which is relative for common variants), we decided to use absolute beta values for all the

features. To also weight the importance according to variant frequency, we used the F values from

the IPGS score for the four categories (Ultra-rare 5, Rare 4, Low Frequency 2, Common 1). Finally,

we summed all the weights of each Boolean feature by gene.  Briefly:

WgeneA = ∑FeaturesGeneA ABS(meanβ)∗count∗F
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Pathway enrichment analysis was made using the GSEA-preranked module (v. 7.2.4) of the

Genepattern platform [26], on several pathway categories (BIOCARTA, KEGG, REACTOME,

GOBP, HALLMARKS, C7 and C8), limiting the size of genesets to the 10-300 range and

performing 10,000 permutations. The networks showing similarity of significant pathways were

built using the EnrichmentMap algorithm [30] in the Cytoscape suite (v. 3.8.2) [31-32]. Parameters

used for network creations are: Jaccard Overlap Combined Index (k constant = 0.5), edge cutoff

0.05.

Website and data distribution

The coordination of international partners has been possible through the Host Genetics Initiative

(HGI) (https://www.covid19hg.org/projects/).

Results can be shared through the Gen-Covid website

(https://sites.google.com/dbm.unisi.it/gen-covid).

Code availability

Data analyses were performed using Python with the Scipy ecosystem [33], and the scikit-learn

library [34]. Statistical association was done with the statsmodel Python library. The code is freely

available at the github repository: https://github.com/gen-covid/pmm.
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Results

The post-Mendelian paradigm for COVID-19 modelization for combining interpretability

with predictivity based on ultra-rare, rare, low-frequency, and common variants.

The aim of the present study was to develop an easily interpretable model that could be used to

predict the severity of COVID-19 from host genetic data. Patients were considered severe when

hospitalized and receiving any form of respiratory support. The focus on this target variable is

motivated by the practical importance of rapidly identifying which patients are more likely to

require oxygen support, in an effort to prevent further complications. Interpretability has been a

guiding principle in the definition of the machine learning model, as only a readily interpretable

model can provide useful and reliable information for clinical practice while also contributing

significantly to diagnostic, and therapeutic targeting. The high dimensionality of host genetic data

poses a serious challenge to evident and reliable interpretability. So far, the development of a robust

predictive model able to make a direct association between single variants and disease severity

grading based on an accurate analysis of the vast number of host genetic variants compared to a

much smaller number of individual patients has proven to be too complex and ultimately unreliable.

In order to address the complexity with predictive reliability, an enriched gene-level representation

of host genetic data was modeled in a machine learning framework. The complexity of COVID-19

immediately suggests that both common and rare variants are expected to contribute to the

likelihood of developing a severe form of the disease. However, the contribution of common and

rare variants to the severe phenotype is not expected to be the same. A single rare variant that

impairs the protein function might cause a severe phenotype by itself after viral infection, while this

is not so probable for a common polymorphism, which is likely to have a less marked effect on

protein functionality. These observations led to the definition of a score, named , that includes𝐼𝑃𝐺𝑆
data regarding the variants at different frequencies:
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Equation 1𝐼𝑃𝐺𝑆 = 𝑛𝐶𝑠 − 𝑛𝐶𝑚( ) + 𝐹𝐿𝐹 · 𝑛𝐿𝐹𝑠 − 𝑛𝐿𝐹𝑚( ) + 𝐹𝑅 · 𝑛𝑅𝑠 − 𝑛𝑅𝑚( ) + 𝐹𝑈𝑅 · 𝑛𝑈𝑅𝑠 − 𝑛𝑈𝑅𝑚( )
In Equation 1, variables are used to indicate the number of input features of the predictive model𝑛
that promote the severe outcome (superscript ) or that protect from a severe outcome (superscript𝑠

) and with genetic variants having Minor Allele Frequency (MAF)>=5% (common, subscript ),𝑚 𝐶
1%<MAF<= 5% (low-frequency, subscript ), 0.1%<MAF<=1% (rare, subscript ), and𝐿𝐹 𝑅
MAF<0.1% (ultra-rare, substript ). The features promoting or preventing severity were𝑈𝑅
identified by an ensemble of logistic models, as described in the next section. The weighting factors

, , and were included to model the different penetrant effects of low-frequency, rare, and𝐹𝐿𝐹 𝐹𝑅 𝐹𝑈𝑅
ultra-rare variants, compared to common variants. Thus, the 4 terms of Equation 1 can be

interpreted as the contributions of common, low-frequency, rare, and ultra-rare variants to a score

that represents the genetic propensity of a patient to develop a severe form of COVID-19.

Feature selection and gene discovery

The definition of the single terms of the IPGS formula requires 4 separate steps (Fig. 1): (1)

the definition of a severity phenotype adjusted by age and sex; (2) the conversion of genetic

variants into Boolean features that represent the presence of variants in different frequency ranges

in each gene; (3) the selection of those features that are associated with disease severity; and (4) the

optimization of the weighting factors appearing in Equation 1. These 4 steps were executed using

data from a training set extracted from the GEN-COVID dataset (90% of the patients, n=1780, see

Methods). The phenotype adjusted by age and sex was computed using an ordered logistic

regression model, with the pourpose of facilitating the extraction of features associated with the

genetic basis of COVID-19 severity (Fig. 1B). The conversion of genetic variants into Boolean
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features led to the definition of 12 separate sets of input features (Supplementary Table 2). The

set of input features “ultra-rare_autosomal dominant” (UR_AD) is designed to represent in a binary

way an autosomal dominant hereditary model associated with variants with MAF lower than 0.1%;

i.e. these Boolean features are equal to 1 for genes presenting at least one variant in this frequency

range. Similarly, the set of input features “ultra-rare_autosomal recessive” (UR_AR) and

“ultra-rare_X-linked” (UR_X) were designed to describe the autosomal recessive and X-linked

models of inheritance of ultra-rare variants. Analogous principles were used for rare and

low-frequency variants. In the case of common variants, the same 3 sets of Boolean features

representing the autosomal dominant, autosomal recessive, and X-linked models of inheritance

were used. However, instead of simply defining the binary variables as “absence/presence of

variants”, the absence/presence of variant combinations was tested (Fig. 1C).

The Boolean representation of the genetic variability described in the previous paragraph

significantly reduces the dimensionality of the problem. However, the number of input features is

still orders of magnitude higher than the number of patients that can be reasonably collected for

training the model. In order to reduce the number of input features, a feature selection strategy

based on logistic models with the validated Least Absolute Shrinkage and Selection Operator

(LASSO) regularization was employed (Fig. 1D). The aim of LASSO regularization is to minimize

(shrink) the number of coefficients of the model, consequently minimizing the number of input

features used for predicting outcomes. Separate logistic models with LASSO regularization were

trained for the 12 sets of Boolean features for predicting COVID-19 severity, allowing us to identify

the relevant features for each set. About 4% of the cumulative tested features were found to

contribute to COVID-19 variability in severity (Fig. 1D).

Biological interpretability of extracted genetic features
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Selected genes contributed by ultra-rare, rare, low-frequency variants, or/and common

variants (Fig. 2A-D and Supplementary Tables 3a-g). Specifically, 54% contributed by only one,

29% by two, 11% by three, and 6% by four types of variants. Around 25% of the genes were

sex-specific. The latter group includes either genes located on the X chromosome, such as TLR7

and TLR8 in males, or genes regulated in opposite directions by androgens and estrogens when

contributing with less penetrant common variants, such as p.L412F in TLR3 and p.D603N in SELP

gene (Fig. 2A-D).

Among the extracted ultra-rare variants there was a group of genes, such as TLR3, TLR7 and

TICAM1, already shown to be directly involved in the Mendelian-like forms of COVID-19 (Fig. 2A

and Supplementary Table 3a-b). Furthermore, another group of genes are natural candidates

because of their function: these include the ACE2 shedding protein ADAM17, CFTR-related genes,

genes involved in glycolipid metabolism, genes expressed by cells of the innate immune system ,

and genes involved in the coagulation pathway. Finally, a group of genes led by ACE2 (if affected

by ultra-rare variants) confers protection from the severe disease. This group includes several genes

whose mutations are responsible for auto-inflammatory disorders.

Among the rare variants extracted, we identified some genes as candidates for COVID-19

severity, including TLR5 and SLC26A9 as well as other genes involved in the inflammatory

response Fig. 2B and Supplemnetary Table 4a-b).

Among the low-frequency variants extracted, we identified some genes associated with either

severity or protection from severe COVID-19 that are linked to the CFTR pathway (e.g., PSMA6) as

well as specific genes involved in the immune response (e.g., NOD2) (Fig. 2C and Supplementary

Table 5a-b).

The model was also able to identify a group of extracted common variants already shown to be

linked to either severe or mild COVID-19 (Fig. 2D and Supplementary Table 6a-b). Among them

are the L412F TLR3 and D603N SELP polymorphisms, already reported to be associated with the
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severe disease [17-18] and several coding polymorphisms in Linkage Disequilibrium (LD) with

already reported genomic SNP, such as the ABO blood group, OAS1-3 genes, PPP1R15A gene and

others [4]. In conclusion, considering their functions, genes involved in the immune and

inflammatory responses, or those involved in the coagulation pathway and NK and T cell receptor,

are to be considered natural candidates for severe or mild COVID-19.

Integrated PolyGenic Score definition

The Boolean features selected by the LASSO logistic models were used to calculate the𝑛
variables in Equation 1 (Fig. 3A-B). The corresponding weights ( variables) were defined by𝐹
optimizing the separation between severe and mild cases as offered by the IPGS formula. The

optimization was measured using the Silhouette coefficient, and the optimal values were computed

using a grid-search approach over a predefined grid ( , and ).𝐹𝐿𝐹 ∈ 1,  4[ ], 𝐹𝑅 ∈ 2, 8[ ] 𝐹𝑈𝑅 ∈ 5, 100[ ]
This optimization returned values of 2, 4, and 5 for the low-frequency, rare, and ultra-rare variants,

respectively (Fig. 3C-D).

Pathway analysis

In order to understand the biological mechanisms underlying the variability of disease, we

performed a pathways analysis of the genes carrying variants discovered in the feature selection

described above. The features obtained with this approach do not have the same predicted impact

and are not discovered with the same confidence. Therefore, we decided to perform a rank-based

pathway analysis, with genes with the highest impact and confidence ranking highest in the list,

rather than a simple over-representation approach. We ranked all the genes that were found to be

significantly associated with severity/mildness in at least one bootstrap repetition, based on a score

that takes into account three parameters: average coefficient in the LASSO models selecting the
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feature, number of significant bootstrap results, and the F correction factor for the frequency

category used in the IPGS (detailed in the Methods section below). For genes with more than one

significant Boolean feature, we summed up the scores of each feature. Gene Set Enrichment

Analysis (GSEA) was then performed using two separate ranked gene lists (Supplementary Table

7) for females and males, followed by the generation of similarity networks using EnrichmentMap

(Fig. 4A). The usage of rank-based search method allows to identify statistically significant

pathways starting from extensive list genes, as each gene is associated with its specific importance.

Although no pathways satisfied the 0.25% FDR threshold normally required for standard GSEA

analyses, the set of pathways considered significant using more relaxed thresholds on p values were

shown to group in meaningful modules, providing useful information on pathogenetic mechanisms

and on the genes that could explain how they can be affected. The network of all the pathways

significantly enriched in both females and males ranked gene lists (p<0.01, n=25) is depicted in

Fig. 4B, while the network of all the pathways enriched in either females or males with a more

stringent p-value (p<0.005, n=100) is shown in Fig. 4C. Detailed information on the names of the

pathways and p-values of enrichment is reported in Supplementary Figures 1 and 3. For the most

representative pathways of each network, the heatmaps of the genes with their weights of

association to disease variability are shown in Fig. 4D and Supplementary Figures 2 and 4, while

gene lists and gene weights for all the significant pathways are reported in Supplementary Table 8.

COVID-19 post-Mendelian model predictivity

The functional interpretation of the variants identified by the feature selection approach,

complemented by the strong link between the involved human biological pathways and COVID-19

pathogenicity, support the hypothesis that the IPGS equation developed here may contribute

significantly to predicting the severity of COVID-19. This hypothesis was tested by using a logistic

regression model that predicts COVID-19 severity based on age, sex and the the IPGS (after
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percentile normalization). The training set is composed of 466 patients not included in the training

set previously exploited for the IPGS feature engineering. The model’s performance was then tested

using three independent cohort sets of European ancestry (Fig. 5A). The model exhibited an overall

accuracy of 0.73, precision equal to 0.78, with a sensitivity and specificity of 0.72 and 0.75,

respectively. Noteworthy, all the aforementioned metrics are higher than the corresponding values

obtained using a logistic model that adopted as input features only age and sex. The increase in

performances of the model with IPGS suggests that this score indeed confers significant additional

(genetic) information for predicting COVID-19 severity compared to only age and sex. The

increase of the performances is statistically significant (p-value < 0.05 for accuracy, precision,

sensitivity, specificity) with respect to the distribution of performances for an ensemble of models

where the IPGS feature has been randomized (Fig. 5C lower left). A third logistic regression model

fitted with IPGS alone, shows performances well above the random guess. Furthermore, the

empirical probability density function of IPGS scores (Fig. 5C right) has been estimated for the

severe and non-severe patients of the cohort including both training and testing sets. It is worth

noting the shift on the right of the IPGS distribution for the severe patients, with significant p-value

(<0.001) for the t-test of mean difference. This difference between severe and non-severe cases is

preserved for the male and female cohorts when analyzed separately (p-values <0.001 and 0.024,

respectively).

In line with the results obtained using the overall test set, the model including IPGS, age, and

sex performed better than the model considering only sex and age as inputs, in each of the testing

cohorts, separately (Fig. 5D). The increase in performance was systematically observed throughout

all the cohorts: on average +1.33% for accuracy, +1% for precision, +1.33% for sensitivity, +1.67%

for specificity. Considering the difference in phenotype classification inherent to a comparison

among various international cohorts, and the genetic variability among different European

sub-populations, the consistent increase in performances observed for the model with IPGS
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demonstrates that this score provides a robust index for predicting COVID-19 severity. As a further

test for the importance of the IPGS score for predicting COVID-19 severity, the univariate logistic

models were used on the overall set including both train and test cohorts to estimate the OR of

severe COVID-19 for IPGS, age, and sex, separately. The test confirmed that severity was

associated with IPGS, showing an OR of 2.32 (p<0.001, 95% confidence interval [1.79, 3.01]) with

age, measured in decades, and sex, having OR of 1.89 (p<0.001, 95% confidence interval [1.79,

2.00]) and 2.99 (p<0.001, 95% confidence interval [2.58, 3.46]) respectively (Fig. 5E). The

multivariate logistic regression using sex, age, and IPGS together, provided similar results reported

in Supplementary Table 9 confirming the goodness of the regressors’ OR. When adjusting for

comorbidities, in the train cohort where the comorbidities were available, with a multivariable

logistic model, OR of IPGS was 2.46 (p=0.05, 95% confidence interval [1.15, 5.25]) as shown in

Supplementary Table 10. This result further confirms that IPGS is a reliable predictor of

COVID-19 clinical severity.

Advantages of IPGS and clinical interpretability of connected features

We then wanted to compare the clinical outcome with the probability of severity obtained from

three different models: IPGS alone, sex-age alone or combined model (represented as heatmap in

Fig. 6). It appears evident that in a subset of patients, the 2 models based on sex-age alone and

IPGS alone have a discordant prediction (left and right end of dendrogram in Fig. 6A). In these

cases IPGS appears to be a relevant predictor of severity (Fig. 6A). This is in accordance with the

above presented logistic regression analysis (Fig. 5E) that shows IPGS having an OR of 2.32 for

severity. Moreover, the list of features on which the IPGS score is built, represent a biological

handle for pathophysiological mechanisms and possible personalized adjuvant treatments.

For example, three male patients, within two distinct age ranges (46-50, 51-55) (panels B, C and

D) with severe outcome (intubation and CPAP) are imperfectly represented by the sex-age model
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(probability of severity from 0,52 to 0,66) and better represented by the IPGS model (probability of

severity from 0,91 to 0,95). The detected genetic variants that would allow to clinically consider

putative personalized treatments in similar cases are: i) TLR7 ultra rare mutation indicating to

consider possible adjuvant treatment with IFN gamma administration [12]; ii) homozygosity

603Asn in SELP gene suggesting putative adjuvant treatment with anti selectin P autoantibodies

(e.g. Crizanlizumab)[18] and iii) polyQ longer than 23 in AR gene suggesting to consider possible

adjuvant treatment with testosterone [16].

In a female patient, within age range 31-35, the sex-age model showed a probability of severity

of 0.17 (panel D) while the IPGS score was 336 corresponding to a probability of severity of 0.95.

The patient had no comorbidities except for hypothyroidism. She underwent steroid treatment and

CPAP ventilation. She was found to be carrier of ADAMTS13 ultra rare mutation, being more

susceptible to thrombosis (due to reduced capacity of cutting von Willebrand factor); she had

indeed a high D-dimer value. Caplacizumab (an antibody anti vWF) would be an option to consider

as possible adjuvant treatment in the clinical management of similar cases

Two male patients, within two distinct age ranges (81-85, 86-90) (panel F and G) with a

relatively mild respiratory outcome (hospitalised with low flow oxygen therapy) presented an IPGS

score of -258 and -141 respectively. Their severity probabilities calculated on sex-age (0.9 and

0.94) do not mirror the relatively mild clinical outcome, which is instead better represented by the

severity probability calculated in IPGS only (0.23 and 0.41). Those two patients presented ultra-rare

variants in ACE2 gene, likely responsible for reduced viral load [35], and in AGTR2 gene, which

reduced activity is known to prevent cystic fibrosis pulmonary manifestation [36].
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Discussion

The importance of combination of rare and low frequency variants has already been

demonstrated to contribute to the prediction of susceptibility in other complex disorders [37-38].

Here we further expand this approach while demonstrating that ultra-rare, rare, low frequency, as

well as common variants contribute to the likelihood of developing a severe form of COVID-19.

Furthermore, we included in our analyses a calibration of the relative weight of the variants

vis-a-vis their impact on disease severity: a single ultra-rare variant might well by itself cause a

severe phenotype of COVID-19, while this is less probable for a common polymorphism, one that

is likely to have a markedly less direct effect on protein functionality. We performed a first

modellization of COVID-19 genetics using both rare and common variants [20]. Because feature

selection methodologies are generally sensitive to allele frequency, the extraction was performed

separately for rare (MAF <1/100) and common (MAF >1/100) variants. However, the methodology

revealed the insight that low-frequency variants (MAF from 1% to 5%) were disadvantaged if

selected together with common ones. Furthermore, for extracting Mendelian-like genes a threshold

of MAF < 0.1% (ultra-rare variants) appeared more effective than MAF< 1% and all mutations in

the TLR7 gene that proved to have loss of function had indeed MAF< 1/1000 [12]. The model we

arrived at, now considers separately ultra-rare, rare, low-frequency, and common variants.

Similar to the classical PRS (Polygenic Risk Score), the proposed IPGS (Integrated

PolyGenic Score) may prove reliable for assessing the probability of severe COVID-19 following

infection by SARS-CoV-2 [21]. While PRS is based on common polymorphisms found at the

genomic level with the majority of loci potentially conferring risk being not easily interpretable due

to the uncertainty of linked genes, IPGS allows immediate biological interpretation because it only

includes coding variants. Furthermore, as opposed to PRS, IPGS relies on both polymorphisms and

rare variants is capable of differentially weighting features in an indirectly proportional way in

respect to frequency and therefore to protein impact. Each patient indeed is assigned both a number

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.03.21262611doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.03.21262611


and the list of her/his common and low-frequency polymorphisms relevant to COVID-19 supported

by medically actionable information and of rare and ultra-rare variants conferring either risk of

severity or protection from severe disease. Drawing on the entire picture presented through IPGS

analysis, personalized adjuvant therapy could be envisaged. At the time of writing, a platform trial

based on genetic markers is being discussed with the Italian Medicines Agency (EudraCT Number:

2021-002817-32).

Within 25 reported genomic SNPs demonstrably related to COVID-19 susceptibility/severity, 5

were reported to be in LD with coding variants [9,39]. The model presented here might provide

useful information for uncovering the identity of the gene/coding variants responsible for

COVID-19 susceptibility/severity linked to these genomic SNPs (Fig. 2D). For example, on

chromosome 12, the genes mapping to the locus tagged by rs10774671 [9] are both OAS1 and

OAS3. In OAS3 the coding variant is an Arginine to Lysine substitution (rs1859330) in high LD

(0.8) with the tag SNP. This polymorphism was already associated with viral infection [40] based

on the presence of Lysine having been shown to lead to a decreased INF-γ production. In OAS1 the

haplotype (including 4 missense variants: G162S, A352T, R361T, and G397R), the splicing variant

1039-G>A (the reported genomic polymorphism itself), and the truncating mutation T359fs*26 are

associated with severity and predicted to impair OAS1 function. Both OAS1 and OAS3 induce

RNASEL, which in turn exerts antiviral activity. Further support for the role of the OAS/RNASEL

axis is indicated by the presence of ultra-rare recessive variants.

This innovative approach allowed us to better select genes located on the X chromosome related

to COVID-19 that affect males and females in opposite ways (Fig. 2A and Supplementary Tables

3 and 6). Interestingly, many of these genes were previously confirmed or hypothesized to escape

the X chromosome inactivation. With respect to these genes, females produce twice the levels of

protein in comparison with males. Mutations in hemizygous state in males and heterozygous state

in females appear silent until SARS-CoV-2 infection occurs. For example, TLR7 and TLR8 are
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selected for ultra-rare and associated with severity in males and with protection from severe disease

in heterozygous females. We know that the activation of TLR7/8 induces the production of type 1

and type 2 IFN as well as pro-inflammatory cytokines, where the production defect in hemizygous

males leads to severe COVID-19. However, an excess of the sensor can also lead to damage from

hyperinflammation. Therefore, the condition of carrier females is the more favorable state and has

in fact been associated with mild COVID-19 [41] .

Pathway analysis pointed to the relevance of obvious actors in COVID-19 pathology, such

as immune cells and interferon signaling, but also to the important role of specific organs (brain,

digestive tract, kidney, reproductive system) and functions (metabolism of lipids and steroids). The

pathways identified through GSEA analyses reflected the multi-organ nature of the disease. In

addition, our analyses reveal new candidate determinants of disease variability. The four pathways

linked to cilium motility suggest a role for ciliated cells of the respiratory tract (and possibly others)

in antiviral defense. The functionality of the clathrin-mediated endocytosis pathway may likely

affect viral entry [42]. Likewise, endoplasmic reticulum associated protein degradation (ERAD),

which is linked to autophagy and SARS-CoV-2 life-cycle [43], may also be relevant. Other

pathways with a less obvious but potentially interesting role in the disease include cell adhesion and

mechanical stimulus signaling.

The strong link between the involved human biological pathways and COVID-19

pathogenicity support the hypothesis that the proposed IPGS equation may contribute significantly

to predicting the disease severity of COVID-19. Indeed, an overall significant increase of

performance was obtained in comparison with the model based on solely on age and sex.

Furthermore, the IPGS is significantly associated with severity, showing an OR of 2.46 after

adjustment for age, sex, and comorbidities. This indicates that IPGS is a novel prognostic factor that

should be considered in the management of COVID-19 patients.
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Modelling precisely the role of the entire range of host genomics affecting disease

susceptibility and severity in COVID-19 is critical to obtaining a complete biological understanding

of the aetiology and pathogenicity of COVID-19 as well as other severe complex diseases. The

application of IPGS based on Machine Learning principles within a post-Mendelian model allows

us to more precisely identify the gene variants at play in COVID-19 as well as their specific roles,

individually and in combination. This deep dive into the genetic architecture that allows for,

contributes to, or even helps prevent diseases while increasing or decreasing their impact is critical

for, and directly translatable into, (personalized) medicines development as well as prevention and

treatment protocols. An integrated modelling of genetic variants based on a limited patient cohort,

even limited in its geographical spread, may be sufficient for the development of diagnosis, and

therapeutics across a wider range of populations. The advantage of this IPGS post-Mendelian model

is that it learns and continues to learn as well as being a model from which we can obtain insights

on the fundamental architecture of human genomics when confronted with severe and complex

diseases.
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Figure Legends

Figure 1. Feature selection and gene discovery.

A) Whole Exome Sequencing (WES) data stored in the Genetic Data Repository of the
GEN-COVID Multicenter Study (GCGDR) and coming from biospecimens of 1,780 SARS-CoV-2
PCR positive subjects of European ancestry of different severity were used as the training set. B)
Clinical severity classification into severe and mild cases was performed by Ordered Logistic
Regression (OLR) starting from the WHO grading and patient age classifications. C) WES data
were binarized into 0 or 1 depending on the absence (0) or the presence (1) of variants (or the
combination of two or more variants only for common polymorphisms) in each gene. D) LASSO
logistic regression feature selection methodology on multiple train-test splits of the cohort leads to
the identification of the final set of features contributing to the clinical variability of COVID-19
(E). From the initial 163,099 cumulative features (divided into 36,540 ultra rare, 23,470 rare,
13,056 low frequency and 90,033 common features) in 12 Boolean representations, the selected
features contributing to COVID-19 clinical variability are 7,249 and they are reported in the
Supplementary Tables 3-6. The total number of genes contributing to COVID-19 clinical
variability was 4,260 in males and 4,360 in females, 75% of which were in common.

Figure 2. Biological impact of ultra-rare, rare, low-frequency, and common features

Examples of ultra-rare (A), rare (B), low-frequency (C), and common (D) features are illustrated in
panel A-D. The complete list of features is presented in Supplementary table 3-6. =contributing
to COVID-19 severity; = contributing to COVID-19 mildness. Pink faces= contributing to
females only; Blue faces = contributing to males only; Pink/Blue faces = contribution in both sexes.
In parentheses: AD=autosomal dominant inheritance; AR=autosomal recessive inheritance;
XL=X-linked recessive inheritance. A) ultra-rare mutations in the RNA sensor TLR7, TLR3, and
TICAM1 (encoding TRIF protein), already reported associated with XL, AR and AD inheritance
[10-13] impair interferon (IFNs) production in innate immune system cells. Mutations in TLR8, as
well as of the signal transducer IRAK1 also impair interferon production. The specific location of
TLR7/8 and IRAK1 (on the X chromosome) as well as X-inactivation escaping are responsible for
opposite effects in males and females. Mutation in RNASEL impair the antiviral effect of the gene.
In lung epithelial cells, ACE2 ultra-rare variants (on the X chromosome) exert protective effects
(probably) due to lowering virus entrance, while ultra-rare variants in ADAM17 (might) reduce the
shedding of ACE2 and induce a severe outcome. The same is true for CFTR and SCNN1A
(encoding ENaCA protein and involved in a CFTR-related physiological pathway), and the lipid
transporter ABCA3[44]. Mutations of ADAMTS13 in vessels reduce the cleavage of the multimeric
von Willebrand Factor (VWF), leading to thrombosis; B) Rare variants of the estrogen regulated
TLR5 are associated with severity in females. Rare variants of the CFTR-related SLC26A9 are
associated with severity in both sexes. This ion transporter has three discrete physiological modes:
nCl(-)-HCO(3)(-) exchanger, Cl(-) channel, and Na(+)-anion cotransporter. Other examples of rare
mutations associated with severity are the NK and T cell receptor FCRL6, IFN signal transducer
IRAK2, and the actin depolymerization MICAL2; C) low-frequency variants in another
CFTR-related gene, SCNN1D (encoding for ENaCD protein) are associated with mildness, while
rare variants in the following genes are associated with severity: cargo protein SPMA6, vesicle
formation PEX1, inflammatory protein NOD2 (CARD15); D) A number of coding polymorphisms,
indicated with an asterisk, are in LD with genomic SNPs already associated with COVID-19 (The
complete list is presented in Supplementary Table 11) [8, 37]. In some cases, such as the case of
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SFTDP, the genomic SNP is the coding polymorphism itself. Of note are the genes of surfactant
proteins associated with severe disease: SFTDP gene encoding for SP-D protein and SFTPA1 gene
encoding for SP-A protein; the signal transducer, PPP1R15A gene encoding for GADD34 protein.
OAS1 and OAS3 related to RNA clearance of RNASEL (reported in panel A as having ultra-rare
mutations; included here should also be the already reported TLR3412 [17]; the already reported
SELP603 related to thrombosis [18]. Note: OAS1 haplotype A= c.1039-1G>A, (p.(Gly162Ser)),
(p.(Ala352Thr)), (p.(Arg361Thr)), (p.(Gly397Arg)), (p.(Thr358Profs*26)). OAS1 haplotype B =
haplotype without the variant combination in haplotype A.

Figure 3. Integrated PolyGenic Score Definition

A) The model is based on the comparison of Boolean features of severity versus Boolean features
of mildness. B) Graphic representation of the IPGS formula used for this model. C) Principle for
the calibration of different weighting factors based on the separation of severe and mild cases. D)
The obtained value for low-frequency, rare, and ultra-rare, being F=1 for common variants.
Common variants are indicated as common haplotypes since they are intended as combinations of
coding variants within a single gene (see Fig. 1C and the Material and Methods section).

Figure 4. Pathway enrichment analysis of the genes associated with disease severity/mildness.

A) Workflow of the analysis. Genes corresponding to Boolean features found to be associated at
least once were ranked based on a composite score and subjected to Gene Set Enrichment Analysis.
Two separate ranked gene lists for females (7,317 genes, weight range 3x10-5-561) and males
(7,325 genes, weight range 7x10-5-452) were used. The list of significant pathways was analysed
and presented as a similarity network: B) Similarity network of the pathways with a significant
enrichment both in females and males (p<0.01). The size of the circles is proportional to the
pahway size. Significance above threshold is indicated by the red color. C) Similarity network of
the pathways with a significant enrichment either in females (red left half of the circles) or males
(red right half of the circles) (p<0.005). D) Heatmaps of the genes belonging to a selection of
pathways of interest. The color gradient represents the weight of each gene, calculated and
described in methods. Please note high ranking of TLR genes (TLR5, TLR8, TLR3 and TLR7) in the
pathway of Response to Mechanical Stimulus, CFTR gene in Recognition for Clathrin-mediated
endocytosis, RNASEL, TYK2, OAS1 and OAS3 genes in Interferon alpha-beta signaling. Note also
the presence of the relevant pathway of Exhaust vs Memory CD8 T cell Up that also includes TLR7
gene.

Figure 5. Model predictivity

A) The post-Mendelian model was trained using a sample of 466 patients from the GEN-COVID
cohort n.2 and Swedish cohort (having cases only) and tested with three additional European
cohorts from UK, Germany and Canada. B) A logistic regression model was used for severity
prediction. Severity was defined mainly on the basis of hospitalisation versus not hospitalisation.
Hospitalised cases without respiratory support were included in controls. TN=True Negative;
TP=True Positive; FN=False Negative; FP=False Positive. C) When the IPGS is added to age and
gender as a regressor, the performances of the model increase: accuracy +1%, precision +1%,
sensitivity +2%, specificity +1%. These increases are statistically significant (p-value <0.05 for
accuracy, precision, sensitivity and specificity) with respect to the null distribution obtained by
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randomizing the IPGS. The performances of the model built with IPGS alone are all above the
random guess. In addition, on the right we reported the distributions of the IPGS for severe and
non-severe patients. D) In the three tested cohorts, when the IPGS is added to age and sex as a
regressor, all the performances increase: the accuracy up to +2%, the precision up to +1%, the
sensitivity up to +3%, and the specificity up to +2%. We conclude that IPGS is able to improve
prediction of clinical outcome in addition to the well-established powerful factors of age and sex.
E) The univariate logistic regression models fitted on the cohort including both train and test,
confirmed that the IPGS is associated with severity with an odds-ratio (OR) of 2.32, while age
(continuous in decades) and sex have an OR of 1.89 and 2.99, respectively.

Figure 6. Clinically interpretability of IPGS.
Panel A shows the GEN-COVID cohort dendrogram and heatmaps of the probabilities of severity
based on the 3 different models: sex-age alone, IPGS alone and combined model. In the extreme
ends of dendrogram (left and right) the probability of severity based on sex-age alone and IPGS
alone is highly discordant (different colours). Selected examples corresponding to the arrows are
illustrated in panels B-G. In each panel IPGS score, probabilities of severity and key features
useful for bedside clinical management are shown. B) Male patient, in the 46-50 age range, treated
with CPAP ventilation, tocilizumab, enoxaparin, hydroxychloroquine and lopinavir/ritonavir; no
comorbidities except for asthma have been reported. The patient presented a rare TLR7 mutation
that leads to an impaired production of interferon gamma [12]. C) Male patient, in the 51-55 age
range, treated with invasive mechanical ventilation, steroids and enoxaparin. He had among
comorbidities obesity, anxiety, hypertension and cerebral ischemia. He was found to be
homozygous for the SELP rs6127 (p.Asp603Asn). Homozygosity of Asparagine in position 603 of
Selectin P makes this endothelial proteine more prone to clot formation and male patients more
prone to COVID-19 thrombosis [18]. Hence the rationale for considering as putative adjuvant
therapy in the management of similar cases the anti Selectin P antibodies, a drug already approved
for vascular events of sickle cell anemia. D) Male patient, in the 51-55 age range, treated with
CPAP ventilation, tocilizumab, steroids, enoxaparin, hydroxychloroquine and lopinavir/ritonavir;
no comorbidities except for diabetes. He was found to have the androgen receptor polyQ repeats
>23. The regular function of the androgen receptor is correlated with a beneficial
immunomodulatory effect in those male patients in whom the increase in testosterone levels may
overcome the receptor resistance. The rationale is to consider giving testosterone to those male
subjects who cannot, on their own, raise the levels enough to overcome the receptor resistance due
to poly-glutamine stretch longer than 23 repeats [16]. E) Female patient, in the 31-35 age range,
treated with CPAP ventilation and steroids, enoxaparin and azithromycin; no comorbidities except
for hypothyroidism. She was a carrier of an ultra rare mutation in ADAMTS13. Impaired function of
ADAMTS13 leads to reduced cleavage of von Willebrand factor (vWF) and enhanced clot
formation. The effect is enhanced in females and responsible for SARS-CoV-2 related thrombosis.
Anti vWF immunoglobulines would be a putative therapeutic option to consider in similar cases.
F-G) examples of low IPGS and related key features. F) Male patient, in the 81-85 age range,
treated with low-flow oxygen. No information regarding pharmacological therapy during
hospitalization is present. Among comorbidities: diabetes mellitus, congestive heart failure and
bowel cancer and steroids. He presented an ultra rare mutation in ACE2. G) Male patient, in the
86-90 age range, treated with low-flow oxygen, steroid, enoxaparin and ceftriaxone plus
azithromycin. Among his comorbidities: colon diverticulosis with constipation?, benign prostatic
hyperplasia?, anxious-depressive syndrome, sideropenic anemia. He was a carrier of an ultra rare
mutation in AGTR2.
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Supplementary Materials

Supplementary Figure 1. Barplots for 0.01 both
Barplot of significance values (NOM p-values, -log10 transformation) from GSEA analysis for all
the pathways significant in both females (orange) and males (blue), p<0.01. Vertical dotted line
indicates the adopted significance threshold.
Supplementary Figure 2. Representative heatmaps for 0.01_both
Heatmaps of the genes belonging to representative pathways significant in both females and males,
p<0.01. The color gradient represents the weight of each gene, calculated as described in methods.
Supplementary Figure 3. Barplots for 0.005_any
Barplot of significance values (NOM p values, -log10 transformation) from GSEA analysis for all
the pathways significant in either females (orange) or males (blue), p<0.005. Vertical dotted line
indicates the adopted significance threshold.
Supplementary Figure 4. Representative heatmaps for 0.005_any
Heatmaps of the genes belonging to representative pathways significant in either females or males,
p<0.005. The color gradient represents the weight of each gene, calculated as described in methods.

Supplementary Table 1. Cohorts demography: information regarding studies contributing to this
study.
Supplementary Table 2. Post-Mendelian model: boolean representations
Supplementary Table 3a-b. Ultra-rare features extracted in males; Ultra-rare features extracted in
females
Supplementary Table 4a-b. Rare features extracted in males; rare features extracted in females
Supplementary Table 5a-b. Low-frequency features extracted in males; low-frequency features
extracted in females
Supplementary Table 6a-b. Common features extracted in males; Common features extracted in
females
Supplementary Table 7. List of genes and weights used for pathway analysis
Supplementary Table 8. List of genes belonging to the significant pathways and their weights in
Females and Males
Supplementary Table 9. Association study with multivariate logistic regression
Supplementary Table 10. Association study with multivariate logistic regression and
comorbidities
Supplementary Table 11. Common coding variants in LD with previously reported genomic SNPs
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