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Abstract. Mitochondrial abnormalities are primarily seen in 
morphology, structure and function. They can cause damage 
to organs, including the heart, brain and muscle, by various 
mechanisms, such as oxidative stress, abnormal energy 
metabolism, or genetic mutations. Identifying and detecting 
pathophysiological alterations in mitochondria is the principal 
means of studying mitochondrial abnormalities. The present 
study reviewed methods in mitochondrial research and focused 
on three aspects: Mitochondrial extraction and purification, 
morphology and structure and function. In addition to clas‑
sical methods, such as electron microscopy and mitochondrial 
membrane potential monitoring, newly developed methods, 
such as mitochondrial ultrastructural determination, mtdNA 
mutation assays, metabolomics and analyses of regulatory 
mechanisms, have also been utilized in recent years. These 
approaches enable the accurate detection of mitochondrial 
abnormalities and provide guidance for the diagnosis and 
treatment of related diseases.
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1. Introduction

Mitochondria are semi‑autonomous organelles found in most 
eukaryotic cells with a bilayered structure consisting of an outer 
membrane, an intermembrane space and an inner membrane. 
They serve key roles in a variety of cellular processes, including 
cell metabolism, signal transduction and the regulation of cell 
death. Mitochondria have numerous biological functions, 
including the production of ATP for cellular energy, regula‑
tion of the dynamic balance of intracellular ca2+, production 
of reactive oxygen species (ROS), the release of cytochrome c 
and regulation of intracellular environmental homeostasis. As 
an important signaling hub in cells, the mitochondrion serves 
a key role in diseases such as aging and obesity. Mitochondrial 
biogenesis and mitochondrial homeostasis require the expres‑
sion of nuclear genes and mitochondria‑nuclear signaling 
pathways to be regulated (1). On the one hand, it depends on 
the regulatory pathways of nuclear gene transcription and 
anterograde signaling. Mitochondria, on the other hand, pass 
intracellular signaling molecules, such as ca2+, mitochondrial 
dNA (mtdNA), reactive oxygen species (ROS), adenosine 
triphosphate (ATP), coenzyme Q (coQ) and nicotinamide 
adenine dinucleotide (NAd) and then present mitochondrial 
abnormalities and cellular metabolic change signals to the 
nucleus (retrograde signaling). This triggers the nucleus to 
activate important signaling pathways by mobilizing a series of 
nuclear transcription factors (2‑5), mitochondrial transcription 
and mitochondrial biosynthesis. Among them, the activation 
of signaling pathways is closely related to inflammation and 
tumorigenesis (6). during cellular stress and virus infection, 
mtdNA and ROS are released from abnormal mitochondria 
and retrogradely presented to the nucleus as danger signals. The 
nucleus can promote the expression of PTEN‑induced kinase 1 
(PINK1) and then upregulate mitophagy to clear abnormal 
mitochondria and maintain a stable intracellular environment. 
When too many abnormal mitochondria cannot be completely 
removed, mtdNA can activate Toll‑like receptor 9 (TLR9) and 
its downstream inflammatory pathways and lead to inflam‑
mation. Excessive ROS can cause dNA damage by oxidizing 
nucleic acid bases, which is closely related to tumorigenesis. 
Abnormalities in mitochondrial structure and function can lead 
to a variety of intracellular signaling cascades, oxidative stress 
and the initiation of programmed cell death, thereby contrib‑
uting to the development and progression of nearly all diseases. 
Therefore, the detection of mitochondrial abnormalities is 
crucial and various mitochondrial assays (Fig. 1) developed 
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in the last century have contributed substantially to the differ‑
ential diagnosis of mitochondrial diseases. The present study 
reviewed common experimental methods (Table I) in mito‑
chondrial research. In particular, it discussed a wide range of 
imaging and detection techniques for i) extraction and purifica‑
tion, ii) analyses of morphology and structure and iii) analyses 
of function, with a focus on the clinical implications for disease 
detection and treatment.

2. Extraction and purification of mitochondria

A suitable method is needed to extract purified mitochondria 
from various tissues and cells (7). The basic extraction method 
mainly relies on differential centrifugation, while purification 
mainly depends on density gradient centrifugation. The speci‑
ficity of tissue cells determines the details of the method (8‑10).

Extraction of mitochondria. When extracting mitochondria, 
because the homogenization process can heat the sample locally, 
resulting in protein denaturation and aggregation, the equipment 
must be pre‑cooled and the temperature kept low throughout 
the process (11). Tissue or cell homogenization is followed 
by continuous differential centrifugation. Unlysed cells, cell 
debris and nuclei are first removed by low‑speed centrifugation 
(600 x g or 1,000 x g) (12‑15). As mitochondria can remain in 
flaky precipitates generated by low‑speed centrifugation, resus‑
pending the pellet and centrifuging it again at low speed increases 
mitochondrial yield. The supernatant obtained by two low‑speed 
centrifugation steps is collected for high‑speed centrifugation 
(3,500 x g or 10,000 x g) (12‑15), resulting in a coarse‑lifted mito‑
chondria precipitate (16). The purity of these crudely extracted 
mitochondria can meet some applications, including the analysis 
of the activity of known mitochondrial proteins, the detection of 
mitochondrial morphology and mitochondrial apoptosis; however, 
they often contain a certain amount of peroxisomes, endoplasmic 
reticulum and microsomes. Mitochondrial purity is low; thus, 
mitochondrial purification and reduction of membrane fouling 
are required when analyzing proteins present in multiple cells 
or determining the localization of a protein (17). Furthermore, 
although the mitochondrial extraction method is suitable for most 
tissues and cells, the extraction efficiency and quantity of mito‑
chondria in different tissues and cells are significantly different. 
This is determined by the number of mitochondria in the tissue 
or cell and the energy consumption of muscles and liver; larger 
tissues contain more mitochondria, so these tissues and cells have 
higher mitochondrial extraction efficiency than other tissues, such 
as the lungs (18‑20).

Purification of mitochondria. Purified mitochondria are the 
prerequisites for mitochondrial proteomics research. density 
gradient centrifugation emerged in the 1950s and has become 
a common method for separating extracts owing to its ease of 
operation and low cost (21). For example, sucrose density gradient 
centrifugation suspends the cell or a homogeneous tissue slurry 
in a uniform suspension medium according to the density of 
each cell component and is separated by differential centrifuga‑
tion (22‑24). The buffered sucrose solution, the most commonly 
used suspension medium, is relatively close to the dispersion 
phase of the cytoplasm and can maintain the structure of various 
organelles and the activity of enzymes to a certain extent (25‑28).

Sucrose density gradient centrifugation is a classic method 
for extracting mitochondria by separating cellular fractions 
of different densities (29). It involves three main processes: 
Tissue homogenization, fractionation and analysis (30‑32). 
Homogenization refers to the disruption of cells or tissues in 
a homogenizer by adding sucrose at a low temperature to 
form a homogenate containing various organelles and other 
substances (33). Fractionation is the sequential settling of 
particles of different densities and sizes in the sample by 
centrifugation at different speeds. Analysis refers to the use of 
biochemical methods to identify the morphological function 
of the separated components; it is conducted using the Janus 
green live dyeing method, which is easy to operate and stable 
in performance. However, at high concentrations, sucrose has 
a high viscosity and high osmotic pressure, which can easily 
cause repeated shrinkage and mitochondrial expansion. 
compared with sucrose, the price of commonly used density 
gradient media (including Percoll, Nycodenz and OptiPrep) 
is generally higher, but the morphology of the extracted mito‑
chondria is generally complete. Percoll has a low diffusion 
constant, the gradient formed is very stable and it does not 
penetrate the biofilm; as such, it minimizes organelle rupture 
and is often used to isolate platelet mitochondria (12,34,35). 
Nycodenz is increasingly widely used owing to its high density, 
low viscosity and lack of effect on osmotic pressure (36‑38). The 
yield of intact mitochondria is significantly higher in Nycodenz 
gradients containing sorbitol as an osmotic stabilizer instead 
of sucrose (37,38). As a dimer of Nycodenz, OptiPrep has the 
advantage of forming automatic gradients in a short period of 
time (39‑42). Additionally, some researchers use streptavidin 
magnetic beads to separate Arabidopsis mitochondria. After the 
tissues are lysed, they are mixed with anti‑mitochondrial outer 
membrane protein 22 (TOM22) magnetic beads and the mixed 
samples placed in the sorting column. Only mitochondria 
remain on the sorting column after washing, followed by elution, 
isolating the complete mitochondria in less than 30 min with a 
success rate, purity and integrity significantly higher than the 
density gradient centrifugation (43‑47). Therefore, the magnetic 
bead method can be used to extract mitochondria in tissues 
with fewer mitochondria. As such, this approach will probably 
become increasingly common in mitochondrial extraction and 
purification (48‑50). In conclusion, among the current mito‑
chondrial extraction and purification methods, the magnetic 
bead method has the best effect on eliminating impurities such 
as microsomes and peroxisomes and the mitochondrial purity 
obtained by the differential centrifugation method is the lowest 
and the effect on eliminating these impurities is the worst.

3. Determination of mitochondrial morphology and 
structure

Mitochondria are organelles with a complex bi‑membrane 
structure that regulate the entry and output of proteins, lipids, 
solutes and metabolite products and protect the cytoplasm 
from harmful mitochondrial products (51‑53). Mitochondria 
can engulf abnormal mitochondria and remove excess harmful 
mitochondrial products to protect the body. This process is 
called mitophagy (54‑56). Most mitochondria are spherical, 
rod‑shaped, or tubular; however, mitochondrial morphology 
varies widely among tissues and cells depending on the energy 
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requirements of cells and the location of mitochondria within 
the cell (53,57). For example, mitochondria are spherical at 
synaptic terminals, whereas they appear as highly elongated 
rods in axons. In senescent and functionally impaired cells, 
mitochondrial morphology is significantly different from that 
in normal cells and they can be irregularly shaped (53,58,59). 
Therefore, morphological changes can be used in the initial 
assessment of mitochondrial function.

After over 50 years since its development, electron micros‑
copy (EM) has become the central tool for observing organelles 
in eukaryotic cells and is the gold standard for observing mito‑
chondrial structure (60). It can reveal mitochondrial swelling, 
rupture and other abnormalities of damaged mitochondria. 
However, it cannot clearly distinguish mitochondria from 
other membranous structures and is occasionally confusing. In 
the 1980s, atomic force microscopy, as an emerging observa‑
tion method, could study the surface structure and properties 
of substances by detecting the extremely weak interatomic 
interaction between the surface of the sample to be tested 
and a miniature force‑sensitive element. due to the charac‑
teristics of resolution and real‑time imaging, changes such as 
the formation of mitochondrial swelling can also be observed 
under liquid conditions but are significantly affected by the 
probe; thus, the application range is small (61‑64)

The recently developed AiryScan microscope (Zeiss AG) 
can acquire images at high speed with high sensitivity to effec‑
tively observe the kinetic processes of mitochondrial fission, 
fusion and autophagy (65‑67). In addition, both wide‑field 
fluorescence microscopy and high‑resolution confocal laser 
scanning microscopy can be used for imaging analyses of 
morphological changes in mitochondria with higher specificity 

than that of EM, but the dynamic changes of the mitochondria 
cannot be observed (68‑76).

In most cases, microscopy can be used to observe and 
analyze two‑dimensional mitochondrial morphologies and 
quantities. However, although this method is suitable for 
analyzing adherent cells with flat morphology, it is not suit‑
able for thicker cells (77‑83). Three‑dimensional confocal 
microscopy can be used to observe mitochondrial morphology 
by observing specifically labeled mitochondrial proteins at 
the 3d level (84‑87). In addition, after labeling mitochondria 
with specific dyes, mitochondrial morphology can be visual‑
ized using a combination of immunofluorescent staining and 
computer images (58,88,89).

4. Determination of mitochondrial function

Determination of mitochondrial membrane potential. 
Mitochondrial membrane potential (MMP) refers to the 
negative potential difference between the two sides of the 
inner mitochondrial membrane. It is a sensitive indicator for 
evaluating mitochondrial function (90‑93). It is closely associ‑
ated with cellular homeostasis and is most commonly used to 
determine the metabolic state of mitochondria (93‑98).

Fluorescent dye probes used for flow cytometry are now 
commonly used in MMP assays. For example, rhodamine 123, 
a specific stain developed in the 1980s, is widely used in flow 
cytometry and MMP assays. In normal cells, rhodamine 123 
can selectively enter the mitochondrial matrix depending on 
MMP and can emit bright yellow‑green fluorescence; when cells 
undergo apoptosis or necrosis, the mitochondrial membrane 
permeability transition pore (mPTP) is abnormally opened and 

Figure 1. commonly used research methods for mitochondria.
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MMP is unbalanced. Rhodamine 123 is released from mito‑
chondria, resulting in a significant decrease in the yellow‑green 
fluorescence intensity in mitochondria, which reflects the 
changes in MMP (50,99‑102). 5,5',6,6'‑Tetrachloro‑1,1',3, 
3'‑tetraethylbenzimidazolylcarbocyanine iodide (Jc‑1) has 
higher sensitivity than that of rhodamine 123. At low MMP levels, 
JC‑1 exists as a monomer and produces green fluorescence; at 
high MMP levels, Jc‑1 aggregates in the mitochondrial matrix 
and forms polymeric Jc‑1. This can be used for qualitative and 
quantitative analyses of MMP by fluorescence microscopy or 
flow cytometry (50,96,101,103‑108). Tetramethyl rhodamine 
methyl ester (TMRM) and tetramethyl rhodamine ethyl ester 
(TMRE), like JC‑1, are specific dyes that have recently become 
common tools for measuring MMP (109‑112). TMRM can 
be excited at 488 nm, showing red‑orange fluorescence and 
its fluorescence intensity has a linear relationship with MMP. 
compared to rhodamine 123 and Jc‑1, these two dyes are very 
soluble, have short loading times (15‑20 min) and have extremely 
low cytotoxicity, requiring micromolar inhibition of mitochon‑
drial function. With staining concentrations in the range of 
0.5‑30 nM (the concentration of Jc‑1 needs to be >0.1 µM), 
the accumulation in mitochondria is limited to the change of 
membrane potential and the sensitivity is extremely high; this 
is markedly suitable for quantitative analysis of mitochondrial 
membrane potential and quantitative flow cytometry (113‑118). 
However, in quantitative flow cytometry studies, the data must 
be corrected for the signal of MitoTracker Green FM, a dye that 
is not dependent on mitochondrial membrane potential. It is 
worth noting that the above fluorescent probes for measuring 
MMP are applicable to most tissues and cells, including plant 
cells and bacteria.

Fluorescence resonance energy transfer (FRET) is a 
non‑radiative energy transition that transfers energy from the 
excited state of the donor to the excited state of the acceptor 
through intermolecular electric dipole interactions (119,120). 
This process does not involve photons, so it is non‑radiative. 
This analytical method has the advantages of rapidity, sensi‑
tivity and simplicity. Fluorescence resonance energy transfer 
molecular pairs (FRET Pairs) have been designed and synthe‑
sized to monitor MMPs (121). The FRET donor molecule 
(Fixd) is constructed by attaching a benzyl chloride group to 
a fluorophore with green fluorescence emission. FixD can be 
attached to and fixed in mitochondria by sulfhydryl groups of 
mitochondrial proteins. The FRET acceptor (LA) is a mito‑
chondrial membrane potential‑dependent probe with green 
absorption and deep red fluorescence emission. When MMP 
is at a normal level, both Fixd and LA target mitochondria. 
When Fixd has an excitation wavelength of 405 nm, FRET 
occurs between FixD and LA, allowing green fluorescence to 
be detected but not deep red LA fluorescence emissions. When 
MMP is gradually reduced, LA will gradually fall off from 
mitochondria. While FixD is still fixed in mitochondria, the 
distance between the molecules gradually blocks the occur‑
rence of FRET between Fixd and LA molecules, allowing 
deep red fluorescence emission to be detected gradually. 
The decrease and the gradual increase of green fluorescence 
emission can be used to monitor the dynamic changes of 
MMPs (122), providing new ideas for the development of 
novel MMP fluorescent probes and real‑time in situ studies of 
MMPs in living organisms, tissues and cells (123,124).
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MMP varies greatly among sites on the mitochondrial 
membrane; therefore, accurate measurement of MMP requires 
further study (125). In recent years, low concentrations of a 
hemicyanine derivative (TPP‑cY) have been used to monitor 
trace changes in MMP at the subcellular level during apoptosis 
with very high sensitivity (125). This approach is a potentially 
useful tool for evaluating cell health.

Determination of mitochondrial oxygen consumption. Among 
organelles, mitochondria consume the most oxygen in cells and 
this oxygen consumption often reflects mitochondrial func‑
tion (126‑128). In the heart, mitochondrial oxygen consumption 
can be measured to determine cardiac mitochondrial func‑
tion, providing an indicator of cardiac function (129‑131). In 
children, mitochondrial dysfunction causes mitochondrial 
heart disease with hypertrophic myocardial infarction as the 
primary symptom; however, the exact mechanism and etiology 
remain to be investigated (129,132).

Oxygen electrode polarography is a common method for 
determining mitochondrial oxygen consumption and refers 
to the incubation of mitochondria in an oxygen‑consuming 
medium in a magnetically stirred incubator at 30˚C. Briefly, 
rotenone is used to inhibit complex I in the electron trans‑
port chain, followed by the addition of succinate to measure 
mitochondrial state IV respiration (non‑phosphorylating 
respiration). State III respiration is measured by incubating 
mitochondria in the presence of succinate and adenosine 
diphosphate. The respiratory control ratio (RcR) is the ratio of 
the state III respiration rate to state IV respiration rate, with a 
normal value of 3‑10 (133‑135). A low RcR indicates impaired 
mitochondrial ATP synthesis and mitochondrial dysfunction 
and a high RcR indicates vigorous cellular activity and accel‑
erated metabolism (127,136,137).

In addition, the hippocampal analyzer can measure the 
changes in oxygen and pH levels through sensors and then 
automatically calculate the rate and detect the cellular oxygen 
consumption rate (OcR) and extracellular phosphorylation 
rate (EcAR) in real time to characterize the metabolic status 
of cells. Where OcR is caused by mitochondrial electron 
transfer, EcAR is derived from lactic acid fermentation 
(glycolytic acidification) and carbon dioxide produced by 
mitochondria (mitochondrial acidification) (138‑140).

OcR is used to study mitochondrial oxidative phos‑
phorylation function, with pMoles/min as the readout 
type (141). Generally, basal respiration in a normal state is 
measured first and then oligomycin is added to inhibit ATP 
synthase. This is a significant decrease in OCR, leaving 
only proton leakage (142). The oxygen consumption rate 
is caused by proton leakage and the reduced section is the 
oxygen consumption rate (ATP production) of oxidative 
phosphorylation. With the addition of the uncoupling agent 
FccP, electron transport loses the constraints of the proton 
gradient and proceeds at a maximum rate (143). Therefore, 
the OcR increases sharply, reaching the maximum oxygen 
consumption (maximal respiration); the difference between 
this value and the basal respiration is termed the spare 
respiratory capacity. Finally, adding an electron transport 
inhibitor, such as antimycin A, completely inhibits electron 
transport and reduces the oxygen consumption rate to a 
minimum (144).

EcAR is often used to study metabolic conditions such as 
glycolysis, with mpH/min as the readout type (139,140,142). 
The basal value before adding glucose is non‑catalytic acid 
production, such as mitochondrial acidification caused by 
carbon dioxide produced by mitochondrial respiration. Glucose 
is then added and the elevated value represents glycolysis. After 
the addition of oligomycin, the production of acid increases 
because oxidative phosphorylation is inhibited and the cells 
are forced to use lactic acid fermentation for energy. The value 
at this time is called glycolytic capacity and the difference 
from glycolysis is termed glycolytic reserve (140,142,143). Last 
added is 2‑deoxyglucose, a competitive hexokinase inhibitor 
that can block glycolysis, so the curve should return to the 
basic value following its addition (144‑146).

However, the direct measurement of glycolysis by EcAR 
is somewhat biased since the addition of glucose enhances 
glycolysis and oxidative phosphorylation. This will lead to 
increased mitochondrial acidification, causing the calculated 
amount of glycolysis to be high (147‑149).

It is worth noting that during the measurement process 
of the hippocampal analyzer, the interference of phenol red 
should be avoided because it causes errors in the measure‑
ment results (141,150,151), but the specific reasons remain to 
be elucidated. In conclusion, the hippocampal analyzer can 
monitor OcR and EcAR to obtain multiple other parameters 
in a single analysis, including basal respiration, ATP‑related 
respiration, maximal respiration, spare respiratory capacity 
and non‑mitochondrial oxygen consumption, all of which 
can provide information on the mechanism of mitochondrial 
dysfunction (152,153).

Determination of mitochondrial Ca2+. Intracellular ca2+ 
is primarily stored in organelles, such as the mitochondria 
and endoplasmic reticulum, and serves an important role 
in biological processes such as signal transduction, blood 
coagulation, transmembrane ion transport and cell divi‑
sion (154‑156). Mitochondrial ca2+ is a central regulator 
of oxidative phosphorylation and serves a key role in the 
control of ATP synthesis (157). A ca2+ imbalance can cause 
abnormal mitochondrial function and even cell damage and 
death, leading to pathological changes and affecting organ‑
ismal health (158,159). The accumulation of mitochondrial 
ca2+ promotes ATP synthesis in mitochondria; conversely, 
decreased mitochondrial ca2+ leads to a decrease in mito‑
chondrial ATP. Impaired ATP synthesis further leads to a ca2+ 
imbalance (157,159), which in turn leads to endocrine dysfunc‑
tion and numerous diseases, such as mitochondrial diabetes 
mellitus (160‑165).

Methods for the determination of mitochondrial ca2+ 
include precipitation, electrochemical analysis, EdTA chela‑
tion titration, flame photometry and atomic absorption 
spectroscopy, among which electrochemical analysis is the 
most convenient (87,88,156,166‑168). First developed in the 
19th century, the electrochemical analysis applies electro‑
chemical principles and techniques to a class of analytical 
methods that take advantage of the electrochemical properties 
of chemical cells in solution and their changes. It can be used 
for the detection of both organic and inorganic substances 
and is simple in operation. It can be both qualitative and 
quantitative, but is susceptible to interference by sodium, 
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potassium, phosphate and sulfate. It is suitable for real‑time 
detection and experiments with low optical sensitivity require‑
ments (132,169). In addition, FRET can also detect ca2+; cyan 
fluorescent protein (CFP) and yellow fluorescent protein (YFP) 
are the most widely used FRET pairs in protein‑protein inter‑
action studies. The emission spectrum of cFP is similar to that 
of YFP. The absorption spectra of cFP overlap and when the 
distance between the two proteins is in the range of 5‑10 nm, 
the fluorescence emitted by CFP can be absorbed by YFP and 
YFP is excited to emit yellow fluorescence. Whether the two 
proteins interact was determined by measuring the loss of 
CFP fluorescence intensity. The closer the two proteins are, 
the more fluorescence emitted by cFP is received by YFP 
and the less fluorescence is received by the detector. CFP and 
YFP are fused to calmodulin and calmodulin‑binding peptide, 
respectively and expressed in the same cell (170‑175). When 
the intracellular ca2+ concentration is high, the combination 
of calmodulin and the calmodulin‑binding peptide can induce 
FRET and the receptor protein YFP emits yellow fluores‑
cence, so the cells appear yellow. When the intracellular ca2+ 
concentration is low, FRET hardly occurs, so cFP is excited 
and emits green fluorescence during detection and the cells 
appear green (170,171,175). FRET can detect intracellular ca2+, 
but cannot specifically detect mitochondrial Ca2+. A number of 
fluorescent probes have recently been used for the measurement 
of ca2+ levels, including Quin‑2AM, fluo‑3AM, indo‑1AM, 
Rhod‑2, Fluo‑4, Mag‑fluo‑4 and calcium‑rhodamine 123 
(rhodamine 123) (158,176‑178). Quin‑2AM, fluo‑3AM, 
indo‑1AM, Fluo‑4 are cytosolic ca2+ indicators. Mag‑fluo‑4 
is an ER ca2+ indicator. The rhodamine 123 complex assay is 
suitable for the determination of mitochondrial ca2+ concen‑
trations in various living cells owing to its simple operation 
and stable performance. It can be quantified by fluorescence 
spectrophotometry to detect aggregation in mitochondria and 
thereby to measure the ca2+ content (179‑184). At present, 
Fluo‑3 is a widely used typical single‑wavelength fluorescent 
indicator with an excitation wavelength in the visible light 
range (185,186). The maximum absorption peak and maximum 
emission wavelength are located at 506 and 526 nm, respec‑
tively. The fluorescence intensity of Fluo‑3 combined with Ca2+ 
is ~40 times higher than that of free cells, thus avoiding the 
fluorescence interference of the cells themselves (185,187). As 
a long‑wavelength indicator, Fluo‑3 can be used in confocal 
laser imaging studies that can analyze the distribution of ca2+ 
in individual intact living cells and distinguish mitochon‑
drial ca2+ from ca2+ in other organelles within the cell; this 
method is suitable for mitochondrial ca2+ in various living 
cells and is easy to operate, stable in performance and highly 
specific (155,187). However, the current mitochondrial Ca2+ 
fluorescent probes cannot distinguish mitochondrial Ca2+ from 
different cells.

Detection of mitochondrial permeability transition pores. 
mPTP is a class of protein complexes between the inner and 
outer mitochondrial membranes that permit the passage of 
substances with a molecular weight of <1.5 kda and serve as 
the structural basis for transitions in mitochondrial perme‑
ability (188‑191). Additionally, mPTP is very sensitive to 
changes in intracellular and extracellular ion concentrations 
and serves an important role in signal transduction systems. 

It is currently hypothesized that the abnormal opening of 
mPTP is closely associated with abnormal changes in ca2+ 
concentrations, oxidative stress and mitochondrial dNA 
(mtDNA) mutations (154,188,189,192,193). By contrast, 
MMP and mitochondrial ca2+ concentrations are the prin‑
cipal drivers of mPTP opening, resulting in the release of 
cytochrome c and other substances associated with cell death 
into the cytosol (191,192,194‑197). This leads to mitochon‑
drial swelling and reduced mitochondrial respiratory chain 
activity, which can cause various diseases, such as neurode‑
generative diseases and cancers (190,198‑200). Furthermore, 
studies have shown that PINK1 can inhibit mPTP opening 
by downregulating intracellular ROS levels, suggesting that 
mitochondrial autophagy serves a regulatory role in mPTP 
opening (191‑193). Various methods have been developed for 
detecting mPTP, such as the patch‑clamp, spectrophotometric 
and active substance labeling methods. The patch‑clamp 
method is the earliest, originating in 1976 and can reflect ion 
channel activity by recording ion channel currents to evaluate 
mitochondrial function (188,189,201). As the magnification 
of AFM is as high as 1 billion times, the opening of mPTP 
can be directly observed, which can serve a guiding role in 
the abnormal opening of mPTP (202‑205). Fully automated 
patch‑clamp techniques have recently emerged; these are 
simple in operation and have greatly improved efficiency but 
are only applicable to the detection of cells in suspension. 
compared to the active substance labeling and patch‑clamp 
methods, spectrophotometry is simpler and more commonly 
used.

The calcein‑cobalt fluorescent probe technique is an 
emerging technique for the detection of mPTP and is simple in 
operation and highly sensitive (Fig. 2). calcein‑AM (190,194, 
198,206,207), in which the acetylmethoxy methyl ester (AM) 
group enhances the hydrophobicity of the stain for easy penetra‑
tion of the living cell membrane, is used to fluorescently label 
living cells. Next, calcein‑AM is cleaved by intracellular ester‑
ases to yield highly fluorescent and polar calcein (208‑210). 
When cells are incubated with calcein and co2+, both enter the 
cytoplasm; however, calcein is further captured by mitochon‑
dria (211,212). calcein that accumulates in the mitochondria 
exhibits fluorescent staining, whereas calcein remaining in the 
cytoplasm or released from the mitochondria into the cyto‑
plasm is rapidly quenched by co2+ (213‑219). Under normal 
physiological conditions, mPTP opens transiently and calcein 
that enters the cytoplasm from the mitochondria is rapidly 
quenched. In pathological states, such as calcium overload and 
oxidative stress, mPTP can appear to be continuously open and 
co2+ in the cytoplasm can enter the mitochondria to quench 
the calcein fluorescence, resulting in a gradual decrease in 
fluorescence intensity in the mitochondria, thus indicating the 
degree of mPTP opening (195,196,220‑222).

Determination of mitochondrial ATP. ATP is often considered 
the primary energy currency of cells and is primarily derived 
from the mitochondria (137,223‑228). It serves major roles 
in material transport, energy conversion and information 
transfer. Mitochondria are sensitive to external environmental 
stimuli, such as hypoxia, oxidative stress, toxic substances and 
high glucose. Once mitochondria are damaged, ATP produc‑
tion decreases and free radical production increases, which 
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affects a number of cellular processes and contributes to the 
development of a number of diseases, such as Parkinson's 
disease, cancer, cardiovascular disease and endocrine dysfunc‑
tion (224‑227). Therefore, ATP levels are a key indicator of 
the status of cellular energy metabolism and mitochondrial 
function.

Analyzing ATP levels requires freshly extracted mito‑
chondria, as mitochondria must remain intact and in a coupled 
state (229). Several techniques are available to measure 
mitochondrial ATP levels, including chromatography, electro‑
phoresis, high‑performance liquid chromatography (HPLc) 
and enzymatic analysis (225,227,229‑232). chromatography 
and electrophoresis are chemical methods that were developed 
in the 18 and 19th centuries and have gradually improved. 
classic liquid chromatography uses a large‑diameter glass tube 
column and a difference in liquid levels at room temperature 
and atmospheric pressure to force the mobile phase (231,232). 
However, this technique has low column efficiency and is very 
time‑consuming (often requiring several hours). HPLc was 
developed based on classic liquid chromatography following the 
introduction of gas chromatography theory in the late 1960s. 
The differences between HPLc and classic liquid chromatog‑
raphy include a faster analysis speed, smaller and more uniform 
particles as packing material and high column efficiency of 
the small particles. However, this causes high resistance and 
requires high pressure to force the mobile phase; therefore, 
this technique is also known as high‑speed liquid chromatog‑
raphy (233‑235). HPLc can be used to determine differences in 
cellular energy substances in different states, is easy to operate 
and has high sensitivity (233‑236). The enzymatic method is 
based on spectrophotometry, where AdP production is assessed 
by measuring the absorbance of NAd+ in phosphoenolpyru‑
vate (237‑240). Fluorescence analysis techniques have been 
improved in recent years and are commonly used to determine 
mitochondrial ATP synthesis activity (241‑244). For example, 

in the luciferin‑luciferase luminescence method, luciferin 
is rapidly oxidized under the action of luciferase, producing 
green fluorescence and the amount of luminescence is linearly 
correlated with the level of ATP (245,246). This is a fast and 
accurate method; however, fluorescein is an amphiphilic 
molecule whose carboxyl group is charged at physiological pH 
and thus does not easily cross the cell membrane (244‑246). A 
novel synthetic fluorescent probe called Mito‑Rh can specifi‑
cally identify ATP in mitochondria with high sensitivity and a 
detection range of 0.1‑10 mM. In another method, the level of 
ATP can be determined directly by measuring the amount of 
inorganic phosphate based on the principle that ATP gives rise 
to AdP and inorganic phosphate (225). In addition, FRET can 
also be used to detect the level of ATP synthesis after labeling 
the ATP synthase subunit. When cFP and YFP are labeled 
on ATP synthase subunits, when the ATP synthase activity is 
enhanced, the interaction between the subunits is enhanced, the 
shortened distance between the subunits brings cFP and YFP 
closer to each other and FRET occurs and cFP excites YFP 
to emit yellow fluorescence. The lower the green fluorescence 
intensity received by the detector, the higher the ATP synthase 
activity and the higher the ATP level. When ATP synthase 
activity is low, the interaction between subunits is weakened, 
FRET hardly occurs and cFP is excited at this time and the cell 
emits green light.

In addition, a multi‑color ATP indicator has appeared in 
recent years. different from the previous indicators that can 
only specifically detect intracellular ATP, the multi‑color ATP 
indicator is based on a single fluorescent protein indicator 
with red, green and blue colors (247‑249). Alternatively, it can 
simultaneously detect ATP in different organelles in the same 
cell and simultaneously detect ATP dynamics in the mito‑
chondria of mammalian, plant and even worm cells and will 
have an assured role in promoting energy metabolism research 
in the future (225,226).

Figure 2. The working mechanism of calcein‑AM probe when mPTP is abnormally opened: ① calcein‑AM and co2+ enter the cell, ② calcein‑AM is 
then cleaved by intracellular esterase, ③ calcein is quenched by co2+ and ④ co2+ quenches calcein through abnormally open mPTP. mPTP, mitochondrial 
membrane permeability transition pore.
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Detection of mitochondrial respiratory chain complexes. The 
mitochondrial respiratory chain, with functions in energy 
production, the regulation of cell death and calcium metabo‑
lism (183,250‑253), is located on the inner mitochondrial 
membrane and consists of five complexes. Mitochondrial 
respiratory chain complex I (NAdH oxidase) and mitochon‑
drial respiratory chain complex II (succinate dehydrogenase) 
are the major elements for electrons entering the mitochon‑
drial electron transport chain (ETc). complex I oxidizes 
NAdH and transfers electrons to coenzyme Q (254‑257). 
complex II transfers electrons from succinate to coenzyme Q, 
a process that does not involve proton transport (258‑260). 
Mitochondrial respiratory chain complex III (cytochrome 
c reductase) is an essential protein for mitochondrial oxida‑
tive phosphorylation, the gatekeeper of the mitochondrial 
respiratory chain and a major source of third reactive oxygen 
species. complex III transfers electrons from coenzyme Q to 
cytochrome c while using the released energy to pump protons 
into the intermembrane space. The mitochondrial respiratory 
chain complex IV (cytochrome c oxidase) is the terminal 
electron acceptor of the mitochondrial electron transport 
chain. complex IV transfers electrons from cytochrome c 
to oxygen, half the number of protons is synthesized into 
water and the other half is pumped into the intermembrane 
space. Mitochondrial respiratory chain complex V and the 
above four complexes complete oxidative phosphorylation 
to generate ATP, which is called ATP synthase, also known 
as F1F0‑ATPase (254,260‑265). The energy released by 
complex V through the electron transport chain during respira‑
tion or photosynthesis is first converted into a transmembrane 
proton (H+) gradient and the proton then flows along the 
proton gradient and passes through ATP synthase to enable 
AdP+Pi to synthesize ATP (266‑269). It is also hypothesized 
that abnormalities in mitochondrial complexes are closely 
associated with mitochondrial encephalopathy, mitochondrial 
liver disease and mitochondrial nephropathy (265). It should 
be noted that the mitochondrial respiratory chain complex 
is closely related to the occurrence of tumors (251,270‑272). 
Therefore, mitochondrial complex inhibitors may be used as 
a new treatment for tumors (252,253,260,273). Therefore, the 
accurate detection of mitochondrial complexes is essential 
and spectrophotometric assays remain the first‑line technique 
for detecting the activity of mitochondrial respiratory chain 
complexes I‑V (266,274,275).

Samples are generally selected from purified mitochondria 
and 4‑40 µg of mitochondrial protein is required per respi‑
ratory chain complex assay (257,269,276‑279). To compare 
the activity of mitochondrial respiratory chain complexes 
in different cells or tissues, the activity of citrate synthase 
in the Krebs cycle is measured simultaneously as a control 
and the reaction system is carried out at 30˚C in a volume of 
200 µl or 1 ml. The activity of complexes I and V is directly 
proportional to, and can be determined by measuring, the 
oxidation rate of NAdH, which is measured as the decrease in 
absorbance at 340 nm (280). In the oxidation of succinate cata‑
lyzed by complex II, 2,6‑dichlorophenolindophenol (dcPIP) 
is used as a dye and absorbance at 600 nm decreases as 
dcPIP decreases (259,281,282), which is used to measure the 
activity of complex II (283‑287). The activity of complexes III 
and IV can be determined by measuring cytochrome activity 

(absorbance at 550 nm) (268,288‑294). However, the spectro‑
photometric method is susceptible to external biochemical 
interference that can lead to changes in enzyme kinetics 
(chemicals in the liquid or gas phase react with the sample 
resulting in a change in the absorbance of the sample), which 
can have serious effects on the sensitivity and accuracy of the 
assay (255,258,280,295‑298). In addition, western blotting 
can directly reflect the expression level of respiratory chain 
complexes I‑V in the band by using the specific antibody 
reaction of the complex, which has been widely used in 
experiments related to mitochondrial research (274,296,297). 
However, the protein expression level and protein activity are 
occasionally not correlated and spectrophotometry is still 
the preferred method for detecting mitochondrial respiratory 
chain complexes. In recent years, great progress has been made 
in the non‑invasive measurement of mitochondrial complexes 
using near‑infrared spectroscopy. This method is similar 
to spectrophotometry in principle but is less affected by the 
external environment (265‑268). The fundamental reason why 
near‑infrared light can achieve non‑invasive optical measure‑
ment is that in the near‑infrared light region of 600‑900 nm, 
biological tissue is relatively transparent because the absorp‑
tion of water and hemoglobin in this wavelength region is 
very small. As an ‘optical window’, some studies have used 
it to detect the activity of complex IV to judge the severity 
of depression. Myoglobin is essential for oxygen metabolism 
in muscle tissue, including a group of blood cells similar to 
hemoglobin. The most important of which is complex IV, 
which has been used to detect the activity of complex IV to 
judge the severity of depression (299,300). However, due to the 
large amount of samples required for near‑infrared spectros‑
copy and different instrument models, it has severe limitations 
and has not been widely used (183,250‑253).

Mitochondrial respiratory chain function can also be 
determined by RcR, which reflects both mitochondrial 
integrity and mitochondrial oxidative respiratory chain 
function (256,265,267,301).

Measurement of ROS. As the central organelle for cellular 
oxidative phosphorylation, mitochondria are the principal 
site of ROS production (3,302‑305). Under physiological 
conditions, the intracellular antioxidant defense system is in 
equilibrium with oxygen radicals. The levels of intracellular 
ROS, including superoxide radicals, hydrogen peroxide and its 
downstream products (peroxides and hydroxyl radicals), are 
maintained at low physiological ranges. Under pathological 
conditions, the balance between the intracellular antioxidant 
system and oxygen radicals is disrupted. When intracellular 
ROS levels are too high, mitochondrial structure and function 
are impaired and cytochrome c is released through mPTP, 
resulting in damage to mitochondrial enzymes, lipids and 
nucleic acids as well as oxidative stress (303,306‑310). ROS 
can also attack mitochondrial dNA (mtdNA) to produce 
oxidative damage, resulting in reduced mitochondrial ATP 
synthesis and MMP damage. Therefore, the functional status 
of mitochondria can be determined by measuring ROS 
levels (311‑313).

common methods for detecting ROS include the chemical 
reaction method, selective electrode method, spectrophotom‑
etry and direct detection by kits. ROS shows high reactivity and 
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can react with different compounds to produce various prod‑
ucts, which can be analyzed quantitatively or qualitatively. The 
chemical reaction method is characterized by high sensitivity, 
low cost and simple operation; however, it has poor specificity 
and measurement results are easily affected by some redox 
reactions or enzyme‑catalyzed reactions. Tetranitromethane, 
nitrotetrazolium blue chloride (NBT), cytochrome c, 
epinephrine and reduced coenzyme I are commonly used 
for spectrophotometric methods; these react with superoxide 
anion radicals to produce ferrous cytochromes with a specific 
absorbance (detectable at a wavelength of 550 nm), which can 
be used to directly measure ROS levels (307,314‑317). The 
NBT assay is highly sensitive and is commonly used for the 
histochemical localization of oxygen radicals; however, it is 
difficult to measure dynamic changes in oxygen radicals in 
cells or aqueous systems. cytochrome c has oxidative activity 
and can be used to detect the production of oxygen radicals. 
However, cytochrome c is easily reduced by other reducing 
agents and is therefore limited for the accurate localization 
of oxygen radicals. In the last decade, a number of ROS kits 
have been developed to detect intracellular or mitochondrial 
ROS (mtROS) levels directly. Intracellular ROS are usually 
measured using the fluorescent probe dcHF‑dA, which 
is non‑fluorescent and can freely cross the cell membrane. 
After dcHF‑dA enters cells, it is hydrolyzed by intracellular 
esterases to generate dcHF, which cannot enter or exit the 
cell membrane, thus allowing the probe to easily label the 
cell. In the presence of ROS, dcHF is oxidized to produce 
the fluorescent substance DCF, whose fluorescence intensity 
is directly proportional to intracellular ROS levels. mtROS is 
usually measured using the fluorescent probe MitoSOX, which 
is highly specific to mitochondrial ROS and is characterized 
by simple operation, low background signals, wide linear 
range and high detection efficiency; however, it requires the 
immediate imaging of assay results and protection from light 
to prevent fluorescence quenching. Prior to the widespread 
use of kits, ROS levels were indirectly measured by detecting 
products of oxidative damage. Levels of malondialdehyde 
(MDA) reflect the degree of lipid peroxidation in the body and 
can be measured using the thiobarbituric acid (TBA) chemical 
colorimetric method. condensation under acidic conditions 
generates the MDA‑TBA complex, a red product with a 
maximum absorption peak at 535 nm, which can be used to 
indirectly determine the MdA content by spectrophotometry, 
indicating ROS levels. However, this technique has poor sensi‑
tivity and is prone to contamination. Fluorescent protein‑based 
ROS detection methods are designed by combining fluorescent 
proteins and prokaryotic redox‑sensitive proteins (318,319). 
The recombinant proteins are introduced into cells via 
plasmids or adenoviruses and target organelles to detect intra‑
cellular redox status (320,321). Redox‑dependent fluorescence 
spectral changes of recombinant proteins are achieved through 
structural changes of disulfide bonds and part of the backbone 
under oxidative conditions (319,321).

Electron spin resonance (ESR) technology has emerged in 
recent years. Also known as electron paramagnetic resonance 
(EPR), its principle is similar to nuclear magnetic reso‑
nance (322‑325). The sample is controlled in a fixed frequency 
microwave and the applied magnetic field is then changed so 
that the electron energy level difference is the same as the 

microwave energy (326,327). Unpaired electrons can move 
between the two energy levels and the net absorption energy of 
the microwave can be measured to obtain the ESR spectrum. 
due to the high reactivity and short lifespan of ROS, the ESR 
signal is not easy to detect directly. The combination of ESR 
and spin traps can make up for this defect. The spin‑electron 
trapping agent reacts with free radicals to generate relatively 
stable free radical addition products that are easily detected 
by ESR, which is then determined by ESR technology. This 
powerful and reliable technique can unambiguously measure 
the presence of free radicals in biological samples. ROS 
is the most direct and effective method for detecting free 
radicals and is widely used in physics, chemistry and biomedi‑
cine (328‑331).

Detection of mtDNA. Human mitochondria carry a small 
circular double‑stranded genome of 16569 bp known as 
mtdNA, which encodes mitochondrial 16S and 12S ribosomal 
RNA, 22 mitochondrial tRNA molecules and 13 respiratory 
chain proteins. Each organism contains only one type of 
mtdNA and mutations such as the conversion, inversion, inser‑
tion, or deletion of one or several bases of mtdNA, resulting 
in more than one type of mtdNA within an individual, are 
referred to as mtdNA heterogeneity (332‑335). Owing to the 
lack of protective histones and effective dNA repair systems, 
the mutation frequency of mtdNA is ~10 times higher than 
that of nuclear dNA (336‑339). Moreover, mutated mtdNA 
gradually accumulates and can cause irreversible damage 
to the nervous, cardiovascular, respiratory and reproductive 
systems after reaching a certain threshold (60‑80%). In addi‑
tion to these diseases, studies have also shown that mtdNA 
mutations are closely associated with the development of 
infertility (308,339‑342). mtdNA dysfunction can be both 
quantitative (e.g., mtdNA copy number variation and dele‑
tions) and qualitative (e.g., strand breaks, point mutations and 
oxidative damage) (343‑345).

mtdNA can be released from the cell as circulating free 
mitochondrial dNA (ccF‑mtdNA) via extracellular vesicles 
(EVs) (346,347). ccF‑mtdNA can serve as a damage‑associ‑
ated molecular pattern leading to the activation of inflammatory 
pathways, a process closely associated with TLR9. Numerous 
reports have shown that elevated levels of ccF‑mtdNA are 
associated with various TLR9‑dependent pathologies, such as 
rheumatoid arthritis, atherosclerosis, hypertension, acute liver 
injury and nonalcoholic steatohepatitis (48,348).

mtDNA damage can be detected using PCR, fluorescence 
in situ hybridization (FISH), dNA sequencing technology 
and the probe method, among others. The principle of dNA 
sequencing is to use dNA polymerase to extend the primers 
bound to the template of the undetermined sequence until a 
chain‑terminating nucleotide is incorporated. Termination 
of replication and detection with isotopic labeling is the gold 
standard for detecting heterogeneity, but speed is limited when 
working on large‑scale projects. The speed of large‑scale proj‑
ects was not guaranteed until the advent of high‑throughput 
sequencing. PcR, as a molecular biology technology that 
emerged in the 1980s, is a method for enzymatically synthe‑
sizing and amplifying specific nucleic acid fragments in vitro 
based on the semi‑conservative replication mechanism of 
dNA. This can purposefully amplify target regions and 
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is especially suitable for enriching small‑scale genomes 
such as mtdNA (349‑353). However, mtdNA is present in 
primer‑binding regions, but accuracy is not sufficient due to 
heterogeneity. Over time, reverse transcription‑quantitative 
(RT‑q) PCR is able to monitor the number of amplified DNA 
molecules in real time, facilitating the determination of 
mtdNA in individual cells, along with the copy number and 
other impairments (deletions) (350‑352). As a contempora‑
neous product of PCR, FISH is also a classic specific detection 
method. It uses fluorescently labeled specific nucleic acid probes 
to hybridize with corresponding target dNA or RNA molecules 
in cells. Fluorescent signaling with relatively poor specificity 
and insufficient hybridization compared to PCR is not the 
method of choice for the detection of mtdNA (149,354‑362). 
Moreover, after the mitochondria are separated from cells or 
tissues, the dNA in the remaining material is extracted (kits 
can be used) and the dNA of the sample can be sequenced. 
qPcR or chromatin immunoprecipitation (chIP) experimental 
methods can be used to detect the level of ccF‑mtdNA, among 
which chIP is often used to verify the binding of mtdNA to 
downstream signaling pathways, such as TLR9 inflammatory 
pathway or cGAS signaling pathway (335,363‑371). As a dNA 
sensor in the cytoplasm, cGAS can recognize ccF‑mtdNA 
and then catalyze the formation of the second messenger 
cGAMP (2'3'‑cGAMP) to activate the interferon‑stimulated 
gene‑dependent signaling pathway. In addition, ccF‑mtdNA 
containing unmethylated dNA (cpG dNA) fragments can be 
recognized by TLR9, causing TLR9 dimerization and activa‑
tion of MyD88‑mediated inflammatory pathway.

Unrepaired depurinated/depyrimidinated sites (AP sites) in 
mtdNA lead to the misbinding of nucleotides, which can have 
serious downstream effects (372‑374). Therefore, the rapid and 
accurate quantification of AP sites in mtDNA is crucial for the 
real‑time assessment of mtdNA oxidative damage. Researchers 
have used a specific fluorescent probe (BTBM‑CN2) for the 
real‑time detection of mtdNA (375‑378). At ~20 sec after 
contact with AP sites, red fluorescence is detectable at 598 nm 
and after ~100 sec, green fluorescence is detectable at 480 nm. 
More AP sites result in green fluorescence with greater 
intensity and duration and the degree of mtdNA damage can 
be quantified based on the time of appearance and intensity 
of fluorescence at 480 nm. doxorubicin (dox), a common 
anticancer drug, not only causes damage to the nuclear dNA 
of cells but can also be rapidly inserted into the mtdNA of 
living cells, causing the aggregation of mtdNA nucleoids 
and changing the distribution of nuclear proteins (375‑382). 
Therefore, after dox induces mtdNA damage, morphological 
changes of mtdNA can be tracked in real time using the 
two‑photon fluorescent probe CNQ, which emits red fluores‑
cence and is localized to mtdNA. When incubated with dox, 
dynamic changes in mtdNA can be observed, providing a new 
method for studying mtdNA damage in real time (383,384).

5. Treatment of mitochondrial diseases

In addition to primary mitochondrial disease caused by mtdNA 
damage, mitochondrial dysfunction occurs in a number of 
infectious and non‑infectious diseases (262,385,386), such as 
inflammation, neurodegeneration, diabetes, obesity and cardio‑
vascular disease and several therapies targeting mitochondria 

have been developed (Table II). Mitochondrial transplantation 
and mitochondrial replacement can fundamentally address 
the inadequate energy supply in pathological states and have 
been applied in clinical settings for the treatment of pediatric 
congenital heart disease (385).

Leber hereditary optic neuropathy (LHON), the most 
common primary mitochondrial disease, is a maternally‑inher‑
ited bilateral‑blinding optic neuropathy mainly caused 
by mtdNA mutations, including m.3460G>A (MT‑Nd1), 
m.11778G>A (MT‑Nd4) and m.14484T>c (MT‑Nd6), of 
which m.11778G>A is the most common mutation (387,388). 
These mutations can affect the mitochondrial respiratory 
chain complex I of retinal ganglion cells, impair mitochon‑
drial function and increase the production of reactive oxygen 
species, leading to apoptosis and optic nerve degeneration 
and atrophy, which further leads to rapidly progressive loss 
of binocular vision (389‑391). Treatment of LHON is mostly 
based on ectopic expression, that is, intravitreal injection of 
adeno‑associated viral vectors with mitochondrial targeting 
sequences and then guiding the translated protein into mito‑
chondria to restore mitochondrial function, which has been 
successfully and safely applied to cell models. Transplant 
into an inducible LHON animal model that preserves retinal 
ganglion cells and visual function (392,393).

The mitochondrial diseases associated with mtdNA 
deletion mainly include chronic progressive external 
ophthalmoplegia (cPEO), Kearns‑Sayre syndrome (KSS) 
and Pearson syndrome. cPEO is mostly associated with 
m.3243A>G(MT‑TL1) deletion, which manifests as progressive 
paralysis of the ocular muscles, resulting in ocular movement 
disorders and ptosis, which usually appear in late childhood 
or early adulthood (394,395). KSS is a more severe syndrome 
than cPEO and is mostly associated with m.8993T>G (APT6) 
deletion. Its main clinical manifestations are progressive 
external ophthalmoplegia and retinitis pigmentosa, usually 
occurring before the age of 20 (396‑399). Other symptoms may 
include mild skeletal muscle weakness, hearing loss, cognitive 
impaired cognitive function and diabetes. Pearson's syndrome 
is a syndrome caused by sideroblastic anemia and pancreatic 
exocrine insufficiency. There are very few cases (~100 cases 
worldwide) that may be related to the deletion of ATPase 6 
and 8. Most patients die during infancy; however, a minority of 
patients who survive into adulthood tend to develop symptoms 
of KSS syndrome. due to the double‑membrane structure of 
mitochondria and the inability of foreign nucleic acids to recom‑
bine on endogenous mtdNA (168,400,401), there is currently 
no effective method to directly import nucleic acids into mito‑
chondria and the localization of proteins to mitochondria is a 
routine practice in the treatment of mitochondrial diseases. In 
principle, expression of mitochondrial‑targeted dNases that 
specifically recognize mutated sequences can remove mutated 
mtdNA, or at least reduce its abundance in a heterogeneous 
background. Restriction endonucleases, zinc finger nucleases 
and transcription activator‑like effector nucleases have been 
tested and proven effective; these specific enzymes can be 
used to eliminate aberrant mtdNA and thereby reduce the rate 
of aberrant mtdNA in cells (402‑406).

In addition, mitochondrial neurogastrointestinal 
encephalomyopathy, a rare mitochondrial disease, is often 
associated with TYMP gene mutations, manifesting as 
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splanchnic neuropathy and marked motor impairment, often 
combined with cPEO, sensorimotor polyneuropathy and 
white matter encephalopathy (407‑409). With advances in 
gene editing technology, cRISPR/cas9 has been proposed for 
the treatment of mitochondrial diseases, aiming to eliminate 
abnormal mtdNA sequences through the principles of bacte‑
rial immunology (410,411).

To treat primary mitochondrial diseases, gene therapy 
based on ectopic expression is still the first choice; however, 
the application of viral vectors in live animals to correct any 
gene mutation still has the following significant problems: 
High cost (390,412‑415), carcinogenicity and immunogenicity. 
Non‑viral vector‑mediated in situ mitochondrial gene therapy 
may be a promising approach to overcome the bottleneck 
of existing gene therapy LHON, such as liposome‑based 
nanoparticles, which require further investigation (416‑421).

Mesenchymal stem cell‑derived EVs are a promising nano‑
therapeutic strategy to effectively attenuate mitochondrial 
damage and the inflammatory response by promoting mito‑
chondrial transcription factor A expression and preventing 
mtdNA damage and leakage from target cells (422).

Oxidative stress caused by mitochondrial dysfunction is 
one of the etiologies of metabolic disease and is a potential 
target for the treatment of metabolic and neurodegenerative 
disorders (55,168,423‑426). A number of antioxidants, such 
as vitamin E, ubiquinone, N‑acetylcysteine, glutathione and 
melatonin, can effectively scavenge mitochondrial ROS 
and regulate redox processes, thus alleviating or curing 
disease. Antibiotics (e.g., tetracyclines and actinomycins), 
drugs (e.g., creatine and ursodeoxycholic acid) and exer‑
cise can significantly improve oxidative stress and balance 
mitochondrial fission and fusion, thus increasing the 
number of mitochondria, contributing to the treatment of 
cancer (400‑406,426‑442). SS31 and mitoTEMPO are novel 
mitochondrial‑targeted antioxidants that have a scavenging 
effect on ROS (443‑446). In addition, SS31 accumulates 
in the mitochondrial membrane to protect and restore the 
mitochondrial structure without affecting healthy mito‑
chondria (162,447‑453). Thus, SS31 and mitoTEMPO have 
protective effects on a variety of diseases, including heart 
and kidney‑related diseases, as well as sepsis and diabetes, 
which have been demonstrated in a variety of animal 
models (454‑457). The use of nanomaterials for mitochon‑
drial targeting therapy has become a recent focus of research. 
Nanomaterials are materials with at least one of three spatial 
dimensions at the nanometer scale (1‑100 nm). They are a 
new generation of materials composed of nanoparticles with 
sizes between atoms, molecules and macroscopic systems 
and are widely used in the medical field owing to their 
large specific surface area and excellent biocompatibility. 
Ideally, medical nanomaterials should remain quiescent in 
normal tissues but accumulate precisely and act in mito‑
chondria under pathophysiological conditions (404,458,459). 
delocalized lipophilic cations (dLcs), such as triphe‑
nylphosphine (TPP) and mitochondria‑penetrating peptides 
(MPPs), serve a major role in mitochondria‑targeted thera‑
pies. DLCs can accumulate specifically in the mitochondria 
of tumor cells and increase their MMP, leading to altered 
mitochondrial membrane permeability and inducing apop‑
tosis (56,130,400,403,428,458‑470). Studies have shown that 
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graphene has a large specific surface area, good targeting and 
high biocompatibility, making it a promising nanodelivery 
system (441,471‑473). Mitochondrial biogenesis is driven by 
PcG‑1α, which can increase the number of mitochondria in 
the cell and thus meet the evolving energy demands of the 
cell, alleviating ATP deficiency in patients with mitochon‑
drial diseases. Promoting mitochondrial biogenesis is also 
an important component of mitochondrial therapeutics (474). 
Resveratrol, 5‑aminoimidazole‑4‑carboxamide riboside, 
epicatechin and RTA‑408 have significant pro‑mitochon‑
drial biogenesis effects; the treatment of mice with these 
drugs enhances the expression of mitochondrial electron 
transport chain proteins and mitochondrial transcription 
factors and increases the abundance of mitochondrial 
cristae (54,401,402,405,406,441, 471‑478).

6. Summary and outlook

As the powerhouses of the cell, mitochondria are at the 
center of cellular oxidative phosphorylation and are critical 
for growth and development as well as the development 
of a number of diseases. Mitochondrial abnormalities can 
cause disturbances in the intracellular environment and can 
lead to a variety of diseases, such as mitochondrial heart 
disease, mitochondrial encephalopathy, mitochondrial 
myopathy and even various pathologies of the reproductive 
and respiratory systems. Therefore, the accurate detection 
of mitochondrial abnormalities is essential for clinical 
guidance.

Since the beginning of the last century, a number of methods 
for mitochondrial research have been developed (Fig. 3), from the 
discovery of mitochondria as intracellular granular structures to 
the observation of mitochondrial microstructures via EM and 
the use of fluorescent probes to detect physiological indicators 
within mitochondria. The application of these methods has 
provided theoretical foundations for the detection and treat‑
ment of mitochondrial diseases. Accordingly, the treatment of 
mitochondrial diseases has gradually evolved from drug‑based 
therapy to multidisciplinary combination therapies, such as the 
use of nanomaterials to precisely transport therapeutic drugs 
into mitochondria for targeted drug delivery, substantially 
improving therapeutic efficiency. However, the methods by 
which therapeutic efficacy is achieved still warrant investiga‑
tion. The combined application of biomedicine and material 
science may be a promising means of detection and treatment. 
Notably, the specific molecular mechanism underlying the 
pathogenesis of the mitochondrial disease remains unclear. 
current monitoring and treatment strategies cannot completely 
cure mitochondrial disease but only alleviate symptoms or slow 
disease progression. Therefore, methods for detection and treat‑
ment that are specific to the molecular mechanisms are needed. 
Using multi‑omics and artificial intelligence, artificial mitochon‑
drial models can be established through molecular co‑assembly 
technology and mitochondria‑targeted drugs can be screened to 
conduct in‑depth discussions on abnormal mitochondria, which 
may elucidate the pathogenesis of mitochondrial diseases at the 
molecular level and provide new treatments for mitochondrial 
diseases.

Figure 3. The development of mitochondrial research methods. MPP, mitochondria‑penetrating peptides; mPTP, mitochondrial membrane permeability 
transition pore; ROS, reactive oxygen species.
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