
Common Poisson Shock Models:
Applications to Insurance and Credit Risk Modelling

Filip Lindskog∗

Risklab
Federal Institute of Technology

ETH Zentrum
CH-8092 Zurich

Tel: +41 1 632 67 41
Fax: +41 1 632 10 85
lindskog@math.ethz.ch

Alexander J. McNeil∗

Department of Mathematics
Federal Institute of Technology

ETH Zentrum
CH-8092 Zurich

Tel: +41 1 632 61 62
Fax: +41 1 632 15 23
mcneil@math.ethz.ch

September 13, 2001

Abstract

The idea of using common Poisson shock processes to model dependent event fre-
quencies is well known in the reliability literature. In this paper we examine these
models in the context of insurance loss modelling and credit risk modelling. To do
this we set up a very general common shock framework for losses of a number of
different types that allows for both dependence in loss frequencies across types and
dependence in loss severities. Our aims are threefold: to demonstrate that the com-
mon shock model is a very natural way of approaching the modelling of dependent
losses in an insurance or risk management context; to provide a number of analytical
results concerning the nature of the dependence implied by the common shock spec-
ification; to examine the aggregate loss distribution that results from the model and
the sensitivity of its tail to the specification of the model parameters.

1 Introduction

Suppose we are interested in losses of several different types and in the numbers of these
losses that may occur over a given time horizon. More concretely, we might be inter-
ested in insurance losses occurring in several different lines of business or several different
countries. In credit risk modelling we might be interested in losses related to the default
of various types of counterparty. Further suppose that there are strong a priori reasons
for believing that the frequencies of losses of different types are dependent. A natural
approach to modelling this dependence is to assume that all losses can be related to a
series of underlying and independent shock processes. In insurance these shocks might be
natural catastrophes; in credit risk modelling they might be a variety of economic events
such as local or global recessions; in operational risk modelling they might be the failure

∗Research of the first author was supported by Credit Suisse Group, Swiss Re and UBS AG through
RiskLab, Switzerland. We thank in particular Nicole Bäuerle for commenting on an earlier version of this
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of various IT systems. When a shock occurs this may cause losses of several different
types; the common shock causes the numbers of losses of each type to be dependent.

This kind of construction is very familiar in the reliability literature where the failure
of different kinds of system components is modelled as being contingent on independent
shocks that may affect one or more components. It is commonly assumed that the different
varieties of shocks arrive as independent Poisson processes, in which case the counting
processes for the different loss types are also Poisson and can be easily handled analytically.
In reliability such models are known as fatal shock models, when the shock always destroys
the component, and non-fatal shock models, or not-necessarily-fatal shock models, when
components have a chance of surviving the shock. A good basic reference on such models
is Barlow and Proschan (1975) and the ideas go back to Marshall and Olkin (1967).
Undoubtedly, one of the practical attractions of such models is the simplicity of simulating
from them in Monte Carlo procedures.

In this paper we set up a very general Poisson shock model; the dimension is arbitrary
and shocks may be fatal or not-necessarily-fatal. We review and generalise results for
the multivariate Poisson process counting numbers of failures of different types. We also
consider the modelling of dependent severities. When a loss occurs, whether in insurance
or credit risk modelling, a loss size may be assigned to it. It is often natural to assume
that losses of different types caused by the same underlying shock also have dependent
severities. We set up general multivariate compound Poisson processes to model the losses
of each type.

In analysing these multivariate Poisson and compound Poisson processes we address
two main issues:

• What can we say about the dependence structure of the multivariate distribution of
the cumulative losses of different types at some fixed point in time?

• What can we say about the overall univariate aggregate loss distribution, in par-
ticular its tail and the sensitivity of this tail to the exact specification of the shock
model?

The paper is structured as follows. In Section 2 we describe the general not-necessarily-
fatal-shock model with dependent loss frequencies and dependent loss severities. In Sec-
tion 3 we ignore loss severities and examine the multivariate distribution of loss frequencies
and the consequences for the aggregate loss frequency distribution of specifying the shock
structure in different ways. An important key to analysing the model is to see that it may
be written in terms of an equivalent fatal shock model. This facilitates the approximation
of the aggregate loss frequency distribution using the Panjer recursion approach and also
makes it very easy to analyse the multivariate exponential distribution of the times to the
first losses of each type. In section 4 the analysis is generalised by including dependent
loss severities. The dependence in severities is created using copula techniques and the
object of interest is now the tail of the overall aggregate loss distribution. Sections 3
and 4 are illustrated with a stylized insurance example; Section 5 consists of an extended
example of how the model might be applied to the modelling of portfolio credit risk.
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2 The Model

2.1 Loss Frequencies

Suppose there are m different types of shock or event and, for e = 1, . . . ,m, let

{N (e)(t), t ≥ 0}
be a Poisson process with intensity λ(e) recording the number of events of type e occurring
in (0, t]. Assume further that these shock counting processes are independent. Consider
losses of n different types and, for j = 1, . . . , n, let

{Nj(t), t ≥ 0}
be a counting process that records the frequency of losses of the jth type occurring in
(0, t].

At the rth occurrence of an event of type e the Bernoulli variable I
(e)
j,r indicates whether

a loss of type j occurs. The vectors

I(e)
r = (I(e)

1,r , . . . , I(e)
n,r)

′

for r = 1, . . . , N (e)(t) are considered to be independent and identically distributed with
a multivariate Bernoulli distribution. In other words, each new event represents a new
independent opportunity to incur a loss but, for a fixed event, the loss trigger variables for
losses of different types may be dependent. The form of the dependence depends on the
specification of the multivariate Bernoulli distribution and independence is a special case.
We use the following notation for p-dimensional marginal probabilities of this distribution
(where the subscript r is dropped for simplicity).

P (I(e)
j1

= ij1, . . . , I
(e)
jp

= ijp) = p
(e)
j1,...,jp

(ij1 , . . . , ijp), ij1 , . . . , ijp ∈ {0, 1}.

We also write p
(e)
j (1) = p

(e)
j for one-dimensional marginal probabilities, so that in the

special case of conditional independence we have

p
(e)
j1,...,jp

(1, . . . , 1) =
p∏

k=1

p
(e)
jk

.

The counting processes for events and losses are thus linked by

Nj(t) =
m∑

e=1

N(e)(t)∑
r=1

I
(e)
j,r . (1)

Under the Poisson assumption for the event processes and the Bernoulli assumption for
the loss indicators, the loss processes {Nj(t), t ≥ 0} are clearly Poisson themselves, since
they are obtained by superpositioning m independent (possibly thinned) Poisson processes
generated by the m underlying event processes. (N1(t), . . . , Nn(t))′ can be thought of as
having a multivariate Poisson distribution.

However the total number of losses N(t) =
∑n

j=1 Nj(t) is not Poisson but rather
compound Poisson. It is the sum of m independent compound Poisson distributed random
variables as can be seen by writing

N(t) =
m∑

e=1

N(e)(t)∑
r=1

n∑
j=1

I
(e)
j,r . (2)
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The compounding distribution of the eth compound Poisson process is the distribution of∑n
j=1 I

(e)
j , which in general is a sum of dependent Bernoulli variables. We return to the

compound Poisson nature of the process {N(t), t ≥ 0} after generalising it in the next
section.

2.2 Adding Dependent Severities

We can easily add severities to our multivariate Poisson model. Suppose that when the
rth event of type e occurs a potential loss of type j with severity X

(e)
j,r can occur. Whether

the loss occurs or not is of course determined by the value of the indicator I
(e)
j,r , which

we assume is independent of X
(e)
j,r . The potential losses {X(e)

j,r , r = 1, . . . , N (e)(t), e =
1, . . . ,m} are considered to be iid with distribution Fj . Potential losses of different types
caused by the same event may however be dependent. We consider that they have a joint
distribution function F . That is, for a vector X(e)

r of potential losses generated by the
same event we assume

X(e)
r = (X(e)

1,r , . . . ,X(e)
n,r)

′ ∼ F.

In a more general model it would be possible to make the multivariate distribution of
losses caused by the same event depend on the nature of the underlying event e. However,
in practice it may make sense to assume that there is a single underlying multivariate
severity distribution which generates the severities for all event types. This reflects the
fact that it is often standard practice in insurance to model losses of the same type type
as having an identical claim size distribution, without necessarily differentiating carefully
between the events that caused them.

The aggregate loss process for losses of type j is a compound Poisson process given by

Zj(t) =
m∑

e=1

N(e)(t)∑
r=1

I
(e)
j,r X

(e)
j,r . (3)

The aggregate loss caused by losses of all types can be written as

Z(t) =
m∑

e=1

N(e)(t)∑
r=1

n∑
j=1

I
(e)
j,r X

(e)
j,r =

m∑
e=1

N(e)(t)∑
r=1

I(e)
r

′
X(e)

r , (4)

and is again seen to be a sum of m independent compound Poisson distributed random
variables, and therefore itself compound Poisson distributed. Clearly (2) is a special case
of (4) and (1) is a special case of (3). Thus we can understand all of these processes by
focusing on (4). The compound Poisson nature of Z(t) can be clarified by rewriting this
process as

Z(t) =
S(t)∑
s=1

Ys, (5)

where {S(t), t ≥ 0} is a Poisson process with intensity λ =
∑m

e=1 λ(e), counting all shocks

s generated by all event types, and where the random variables Y1, . . . , YS(t) (d= Y ) are
iid and independent of S(t). Y has the stochastic representation

Y
d= I′X,
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where I is a random vector satisfying P (I = I(e)) = λ(e)/λ for e = 1, . . . ,m, I(e) is a
generic random vector of indicators for shocks of event type e, and X is a generic random
vector of severities caused by the same shock, which is independent of I(1), . . . , I(m).

We consider two examples that fit into the framework of the model we have set up.
The first one, an insurance application of the model, we continue to develop throughout
the paper. The second one, a credit risk application, is presented separately in Section 5.

2.3 Insurance example: natural catastrophe modelling

Fix n = 2, m = 3. Let N1(t) and N2(t) count windstorm losses in France and Germany
respectively. Suppose these are generated by three different kinds of windstorm that occur
independently. N (1)(t) counts west European windstorms; these are likely to cause French
losses but no German losses. N (2)(t) counts central European windstorms; these are likely
to cause German losses but no French losses. N (3)(t) counts pan-European windstorms,
which are likely to cause both French and German losses.

3 The Effect of Dependent Loss Frequencies

To begin with we look at the distribution of the random vector (N1(t), . . . , Nn(t))′, par-
ticularly with regard to its univariate and bivariate margins as well as the correlation
structure.

Proposition 1. 1. {(N1(t), . . . , Nn(t))′, t ≥ 0} is a multivariate Poisson process with

E(Nj(t)) = t
m∑

e=1

λ(e)p
(e)
j . (6)

2. The two-dimensional marginals are given by

P (Nj(t) = nj, Nk(t) = nk) = e−λt(pj,k(1,1)+pj,k(1,0)+pj,k(0,1))× (7)
min{nj ,nk}∑

i=0

(λtpj,k(1, 1))
i (λtpj,k(1, 0))

nj−i (λtpj,k(0, 1))
nk−i

i!(nj − i)!(nk − i)!
,

where λ =
∑m

e=1 λ(e) and

pj,k(ij , ik) = λ−1
m∑

e=1

λ(e)p
(e)
j,k(ij , ik), ij , ik ∈ {0, 1}.

3. The covariance and correlation structure is given by

cov (Nj(t), Nk(t)) = t

m∑
e=1

λ(e)p
(e)
j,k(1, 1) (8)

and

ρ(Nj(t), Nk(t)) =

∑m
e=1 λ(e)p

(e)
j,k(1, 1)√(∑m

e=1 λ(e)p
(e)
j

)(∑m
e=1 λ(e)p

(e)
k

) .
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Proof. 1. obvious using thinning and superposition arguments for independent Poisson
processes.

2. is found in Barlow and Proschan (1975).

3. is a special case of Proposition 7 (part 2).

Clearly, from Proposition 1 part 3, a necessary condition for Nj(t) and Nk(t) to be
independent is that p

(e)
j,k(1, 1) = 0 for all e; i.e. it must be impossible for losses of types

j and k to be caused by the same event. If for at least one event it is possible that
both loss types occur, then we have positive correlation between loss numbers. However
Proposition 1, part 2 allows us to make a stronger statement.

Corollary 2. Nj(t) and Nk(t) are independent if and only if p
(e)
j,k(1, 1) = 0 for all e.

Note that if p
(e)
j,k(1, 1) = 0 for all j, k with j �= k, then P (I(e)

r = 0) = 1−∑n
j=1 p

(e)
j . Hence

Corollary 3. If
∑n

j=1 p
(e)
j > 1 for some e, then N1(t), . . . , Nn(t) are not independent.

Thus if we begin by specifying univariate conditional loss probabilities p
(e)
j it is not always

true that a shock model can be constructed which gives independent loss frequencies.
We have already noted that the process of total loss numbers N(t) =

∑n
j=1 Nj(t) is

not Poisson (but rather a sum of independent compound Poissons). If there is positive
correlation between components Nj(t) then {N(t), t ≥ 0} itself cannot be a Poisson pro-
cess since it is overdispersed with respect to Poisson. It can easily be calculated (see
Proposition 8 later) that

var (N(t)) =
n∑

j=1

n∑
k=1

cov (Nj(t), Nk(t)) > E(N(t)) (9)

Suppose we define a new vector of mutually independent Poisson distributed loss counters

N̂j(t) such that N̂j(t)
d= Nj(t). Clearly N̂(t) =

∑n
j=1 N̂j(t) is Poisson distributed and

var(N̂ (t)) = E(N̂(t)) = E(N(t)).

The case where the components Nj(t) are dependent is clearly more dangerous than case
with independent components. Although the expected number of total losses is the same
in both cases the variance is higher in the dependent case and, using (9) and (8), we can
calculate the inflation of the variance that results from dependence.

3.1 Insurance example (continued)

Consider a 5 year period and suppose French losses occur on average 5 times per year and
German losses on average 6 times per year; in other words we assume λ1 = 5 and λ2 = 6.
We consider three models for the dependence between these loss frequencies.

• Case 1: No common shocks. If there are no common shocks, then N(5) =
N1(5) + N2(5) has a Poisson distribution with intensity λ = λ1 + λ2 = 5 + 6 = 11.
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In reality we believe that there are common shocks, in our case particularly the pan-
European windstorms. Suppose west, central and pan-European windstorms occur on
average 4, 3 and 3 times per year respectively. In terms of event intensities we have

λ(1) = 4, λ(2) = 3 and λ(3) = 3.

In terms of the indicator probabilities we assume that empirical evidence and expert
judgement has been used to estimate

p
(1)
1 = 1/2, p

(1)
2 = 1/4, p

(2)
1 = 1/6, p

(2)
2 = 5/6, p

(3)
1 = 5/6 and p

(3)
2 = 5/6

which means that, although unlikely, west European windstorms can cause German losses
and central European windstorms can cause French losses. Note that these choices provide
an example where the assumption of no common shocks is not only unrealistic but also
impossible. To see this consider Corollary 3 and note that p

(3)
1 + p

(3)
2 > 1.

To make sure that our estimates of event frequencies and indicator probabilities tally
with our assessment of loss frequencies we must have that

λj = λ(1)p
(1)
j + λ(2)p

(2)
j + λ(3)p

(3)
j , j = 1, 2.

However the specification of the univariate indicator probabilities is insufficient to com-
pletely specify the model. We need to fix the dependence structure of the bivariate
indicators (I(e)

1 , I
(e)
2 )′ for e = 1, 2, 3. For simplicity we will consider two possibilities.

• Case 2: Independent indicators.

p
(e)
1,2(1, 1) = p

(e)
1 p

(e)
2 for e = 1, 2, 3.

• Case 3: Positive dependent indicators.

p
(e)
1,2(1, 1) ≥ p

(e)
1 p

(e)
2 for e = 1, 2, 3.

To be specific in Case 3 we will consider p
(e)
1,2(1, 1) = min(p(e)

1 , p
(e)
2 ), which is the strongest

possible dependence between the indicators, sometimes known as comonotonicity. See Joe
(1997) for some discussion of dependence bounds in multivariate Bernoulli models. In
terms of interpretation in our application this means:

• if a west European windstorm causes a German loss, then with certainty it also
causes a French loss;

• if a central European windstorm causes a French loss, then with certainty it also
causes a German loss;

• if a pan-European windstorm causes one kind of loss, then with certainty it causes
the other kind of loss.

For cases 1, 2 and 3 we get var(N(5)) = 55, 85 and 95 respectively. Of more interest
than the variance as a measure of the riskiness of N(5) are the tail probabilities P (N(5) >
k). In this example these probabilities can be calculated analytically using formula (7) for
the bivariate frequency function. The left plot in Figure 1 shows exceedence probabilities
P (N(5) > k), for k = 70, 71, . . . , 90, for the three cases. The right plot shows by which
factor such an exceedence probability is underestimated by case 1 if the correct model
would be given by case 2 or 3. Clearly, both the presence of common shocks and then
the subsequent addition of dependent indicators have a profound effect on the aggregate
frequency distribution of N(5).
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3.2 The Equivalent Fatal Shock Model

The not-necessarily-fatal shock model set up in the previous section has the nice property
of being easily interpreted. As we will now show this model has an equivalent represen-
tation as a fatal shock model. Basically, instead of counting all shocks, we only count
loss-causing shocks. From this representation we can draw a number of non-trivial con-
clusions about our original model.

Let S be the set of non-empty subsets of {1, . . . , n}. For s ∈ S we introduce a new
counting process Ñs(t), which counts shocks in (0, t] resulting in losses of all types in s
only. Thus if s = {1, 2, 3}, then Ñs(t) counts shocks which cause simultaneous losses of
types 1, 2 and 3, but not of types 4 to n. We have

Ñs(t) =
m∑

e=1

N(e)(t)∑
r=1

∑
s′:s′⊇s

(−1)|s
′|−|s| ∏

k∈s′
I

(e)
k,r ,

where
∑

s′:s′⊇s(−1)|s′|−|s| ∏
k∈s′ I

(e)
k,r is an indicator random variable which takes the value

1 if the rth shock of type e causes losses of all type in s only, and the value 0 otherwise.
Furthermore let Ñ(t) count all shocks in (0, t] which result in losses of any kind. Clearly
we have

Ñ(t) =
∑
s∈S

Ñs(t).

The key to a fatal shock representation is the following result.

Proposition 4. {Ñs(t), t ≥ 0} for s ∈ S are independent Poisson processes.

Proof. Let J
(e)
s,r =

∑
s′:s′⊇s(−1)|s′|−|s| ∏

k∈s′ I
(e)
k,r . First note that the random variable J

(e)
s,r

takes values in {0, 1}, and that P (J (e)
s,r = 1) =

∑
s′:s′⊇s(−1)|s′|−|s|p(e)

s′ , where p
(e)
s′ =

P (
∏

k∈s′ I
(e)
k,r = 1), does not depend on r. Hence {∑N(e)(t)

r=1 J
(e)
s,r , t ≥ 0} is obtained

by thinning the Poisson process {N (e)(t), t ≥ 0}, and is therefore a Poisson process
with intensity λ(e)

∑
s′:s′⊇s(−1)|s′|−|s|p(e)

s′ . {Ñs(t), t ≥ 0} is obtained by superposition-

ing the independent Poisson processes {∑N(e)(t)
r=1 J

(e)
s,r , t ≥ 0} for e = 1, . . . ,m, and is

therefore a Poisson process with intensity λs =
∑m

e=1 λ(e)
∑

s′:s′⊇s(−1)|s′|−|s|p(e)
s′ . Since

P (
∑

s∈S
∑

s′:s′⊇s(−1)|s′|−|s| ∏
k∈s′ I

(e)
k,r = 1) = P (1 − ∏n

k=1(1 − I
(e)
k,r) = 1) does not de-

pend on r, thinning and superpositioning arguments give that {Ñ(t), t ≥ 0} is a Poisson
process with intensity λ̃ =

∑
s∈S λs =

∑m
e=1 λ(e)(1 − P (I(e)

1,r = 0, . . . , I(e)
1,r = 0)). Each

jump in the process {Ñ (t), t ≥ 0} corresponds to a jump in exactly one of the processes
{Ñs(t), t ≥ 0} for s ∈ S. Given a jump in {Ñ(t), t ≥ 0}, the probability of the jump being
in {Ñs(t), t ≥ 0} is given by qs = λs/λ̃ for s ∈ S. Order the l = |S| = 2n − 1 non-empty
subsets of {1, . . . , n} in some arbitrary way. Then

P (Ñs1(t) = n1, . . . , Ñsl
(t) = nl|Ñ(t) = ñ) =

{
ñ!

∏l
j=1(q

nj
sj /nj !) , ñ =

∑l
j=1 nj

0 , ñ �= ∑l
j=1 nj

8



and hence

P (Ñs1(t) = n1, . . . , Ñsl
(t) = nl) = P

(
Ñ(t) =

l∑
j=1

nj

)( l∑
j=1

nj

)
!

l∏
j=1

q
nj
sj

nj!

=
l∏

j=1

e−λsj t (λsj t)
nj

nj!
=

l∏
j=1

P (Ñsj(t) = nj)

It follows that the processes {Ñs(t), t ≥ 0} for s ∈ S are independent Poisson processes.

Since the Poisson processes {Ñs(t), t ≥ 0} for s ∈ S are independent and since the loss
counting processes may be written as

Nj(t) =
∑
s:j∈s

Ñs(t),

it also follows that we have obtained a fatal shock model representation for the original
not-necessarily-fatal set-up.

Furthermore, since λs = 0 for all s with |s| ≥ 2 if and only if p
(e)
j,k(1, 1) = 0 for all e

and all j, k with j �= k, Corollary 2 can be strengthened.

Corollary 5. N1(t), . . . , Nn(t) are mutually independent if and only if p
(e)
j,k(1, 1) = 0 for

all e and all j, k with j �= k.

Further consequences of this construction are contained in the following sections.

3.3 Panjer Recursion

If there are common shocks, then N(t) =
∑n

j=1 Nj(t) does not have a Poisson distribution.
In our insurance example we have considered only two loss types and it is thus easy to
calculate the distribution of N(t) directly using convolution and the bivariate frequency
function in (7).

A more general method of calculating the probability distribution function of N(t),
which will also work in higher dimensional examples, is Panjer recursion. We use the no-
tation of the preceding section. In addition, let Wi denote the number of losses due to the
ith loss-causing shock. The total number of losses, N(t), has the stochastic representation

N(t) d=
Ñ(t)∑
i=1

Wi,

where W1, . . . ,WÑ(t)
(d= W ) are iid and independent of Ñ(t). The probability P (N(t) = r)

can now easily be calculated using Panjer recursion:

P (N(t) = r) =
r∑

i=1

λ̃ti

r
P (W = i)P (N(t) = r − i), r ≥ 1,

where P (N(t) = 0) = exp(−λ̃t). Since P (W = k) = 0 for k > n, the above equation
simplifies to

P (N(t) = r) =
min(r,n)∑

i=1

λ̃ti

r
P (W = i)P (N(t) = r − i), r ≥ 1.

9



The probability distribution of W and a discussion of under which model assumptions
the Panjer recursion scheme is computationally most efficient is given in Appendix A. It
should be noted that other techniques for calculating the probability distribution of N(t)
might prove even more efficient.

3.4 Multivariate times to first losses

Let Tj = inf{t : Nj(t) > 0} denote the time to the first loss of type j. We now consider
briefly the distribution of (T1, . . . , Tn)′ whose dependence structure is well understood.

Proposition 6. Let Tj = inf{t : Nj(t) > 0} for j = 1, . . . , n. Then (T1, . . . , Tn)′ has a
multivariate exponential distribution whose survival copula is a Marshall-Olkin copula.

Proof. Let Zs = inf{t : Ñs(t) > 0}. Zs, for s ∈ S, are independent exponential distributed
random variables with parameters λs.

Tj = inf{t : Nj(t) > 0} = inf{t :
∑
s:j∈s

Ñs(t) > 0} = min
s:j∈s

Zs.

Hence Tj is exponentially distributed. Furthermore the survival copula of

(T1, . . . , Tn)′ = (min
s:1∈s

Zs, . . . , min
s:n∈s

Zs)′

is by construction an n-dimensional Marshall-Olkin copula. See Marshall and Olkin
(1967) or Joe (1997) for details.

The survival distributions of the bivariate margins of (T1, . . . , Tn)′ can be derived quite
easily. From the Marshall-Olkin construction it follows that

P (Ti > ti, Tj > tj) = P (min
s:i∈s

Zs > ti, min
s:j∈s

Zs > tj)

= P ( min
s:i∈s,j /∈s

Zs > ti)P ( min
s:j∈s,i/∈s

Zs > tj)P ( min
s:i,j∈s

Zs > max(ti, tj))

= exp
{ − ti

m∑
e=1

λ(e)(p(e)
i − p

(e)
i,j (1, 1)) − tj

m∑
e=1

λ(e)(p(e)
j − p

(e)
i,j (1, 1))

−max(ti, tj)
m∑

e=1

λ(e)p
(e)
i,j (1, 1)

}
= exp

{ − ti

m∑
e=1

λ(e)p
(e)
i − tj

m∑
e=1

λ(e)p
(e)
j + min(ti, tj)

m∑
e=1

λ(e)p
(e)
i,j (1, 1)

}
.

Since F k(t) = P (Tk > t) = exp
{ − t

∑m
e=1 λ(e)p

(e)
k

}
for k = i, j,

P (Ti > ti, Tj > tj) = F i(ti)F j(tj)min
(
exp

{
ti

m∑
e=1

λ(e)p
(e)
i,j (1, 1)

}
, exp

{
tj

m∑
e=1

λ(e)p
(e)
i,j (1, 1)

})
.

Let

αi =

∑m
e=1 λ(e)p

(e)
i,j (1, 1)∑m

e=1 λ(e)p
(e)
i

and αj =

∑m
e=1 λ(e)p

(e)
i,j (1, 1)∑m

e=1 λ(e)p
(e)
j

.
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Then

exp
{
ti

m∑
e=1

λ(e)p
(e)
i,j (1, 1)

}
= F i(ti)−αi , exp

{
tj

m∑
e=1

λ(e)p
(e)
i,j (1, 1)

}
= F j(tj)−αj

and hence
P (Ti > ti, Tj > tj) = Cαi,αj (F i(ti), F j(tj)),

where

Cαi,αj (u, v) = min(u1−αiv, uv1−αj ) =
{

u1−αiv, uαi ≥ vαj ,
uv1−αj , uαi ≤ vαj .

This is the bivariate Marshall-Olkin copula.

3.5 Time to kth loss

Recall that for a Poisson process with intensity µ, the time to the kth jump is Γ(k, 1/µ)-
distributed, where Γ(·, ·) denotes the Gamma distribution. Hence the time to the kth loss-
causing shock is Γ(k, 1/λ̃)-distributed, where λ̃ =

∑m
e=1 λ(e)(1−P (I(e)

1,r = 0, . . . , I(e)
n,r = 0)).

The time to the kth loss is inf{t : N(t) ≥ k}, where

N(t) =
n∑

i=1

i
∑

s:|s|=i

Ñs(t).

{N(t), t ≥ 0} is not a Poisson process but rather a compound Poisson process, the time
to the kth jump is still Γ(k, 1/λ̃)-distributed but there are non unit jump sizes. By noting
that the probability that the time to the kth loss is less than or equal to t can be expressed
as P (N(t) ≥ k), it is clear that the distribution of the time to the kth loss can be fully
understood from the distribution of N(t) for t ≥ 0, and this distribution can be evaluated
using Panjer recursion or other methods. See the appendix for a detailed discussion of
how Panjer recursion can be applied to our set-up.

4 The Effect of Dependent Severities

We now consider adding severities to our shock model and study the multivariate dis-
tribution of (Z1(t), . . . , Zn(t))′. Again we can calculate first and second moments of the
marginal distributions and correlations between the components.

Proposition 7. 1. {(Z1(t), . . . , Zn(t))′, t ≥ 0} is a multivariate compound Poisson
process. If E(|Xj |) < ∞, then

E(Zj(t)) = E(Xj)E(Nj(t)).

2. If E(|Xj |), E(|Xk |) < ∞, then the covariance and correlation structure is given by

cov (Zj(t), Zk(t)) = E(XjXk) cov (Nj(t), Nk(t))

and
ρ(Zj(t), Zk(t)) =

E(XjXk)√
E(X2

j )E(X2
k )

ρ(Nj(t), Nk(t)).

11



Proof. 1. is easily established from formula (3).

2. We observe that ∀j, k ∈ {1, . . . , n},

cov (Zj(t), Zk(t)) =
m∑

e=1

cov

N(e)(t)∑
r=1

I
(e)
j,r X

(e)
j,r ,

N(e)(t)∑
r=1

I
(e)
k,rX

(e)
k,r


+

m∑
e=1

∑
f �=e

cov

N(e)(t)∑
r=1

I
(e)
j,r X

(e)
j,r ,

N(f)(t)∑
r=1

I
(f)
k,r X

(f)
k,r


=

m∑
e=1

cov

N(e)(t)∑
r=1

I
(e)
j,r X

(e)
j,r ,

N(e)(t)∑
r=1

I
(e)
k,rX

(e)
k,r


= E(XjXk)

m∑
e=1

E
(
N (e)(t)

)
E

(
I

(e)
j I

(e)
k

)
= E(XjXk)t

m∑
e=1

λ(e)p
(e)
j,k(1, 1)

= E(XjXk) cov (Nj(t), Nk(t))

Now consider the distribution of the total loss Z(t) =
∑n

j=1 Zj(t). The expected total
loss is easily calculated to be

E(Z(t)) =
n∑

j=1

E(Xj)E(Nj(t)),

and higher moments of Z(t) can also be calculated, by exploiting the compound Poisson
nature of this process as shown in (5). Since Z(t) is the most general aggregate loss process
that we study in this paper we collect some useful moment results for this process.

Proposition 8. 1. If they exist, the 2nd and 3rd order central moment of Z(t) are
given by

E (Z(t) − E(Z(t)))p = λtE (Y p) , p = 2, 3, (10)

where λ =
∑m

e=1 λ(e) and

E(Y p) =
1
λ

n∑
j1=1

· · ·
n∑

jp=1

E(Xj1 . . . Xjp)
m∑

e=1

λ(e)p
(e)
j1,...,jp

(1, . . . , 1). (11)

2. Whenever they exist, the non-central moments of Z(t) are given recursively by

E (Z(t)p) = λt

p−1∑
k=0

(
p − 1

k

)
E

(
Y k+1

)
E

(
Z(t)p−k−1

)
,

with E
(
Y k+1

)
given by (11).
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Proof. 1. For a compound Poisson process of the form (5) the formula (10) is well
known. We can calculate that for all p

E (Y p) =
m∑

e=1

λ(e)

λ
E

(
I(e)′X

)p

=
m∑

e=1

λ(e)

λ
E

 n∑
j1=1

· · ·
n∑

jp=1

I
(e)
j1

. . . I
(e)
jp

Xj1 . . . Xjp


= λ−1

m∑
e=1

λ(e)
n∑

j1=1

· · ·
n∑

jp=1

E(Xj1 . . . Xjp)p
(e)
j1,...,jp

(1, . . . , 1)

= λ−1
n∑

j1=1

· · ·
n∑

jp=1

E(Xj1 . . . Xjp)
m∑

e=1

λ(e)p
(e)
j1,...,jp

(1, . . . , 1).

2. It may be proved by induction that the pth derivative of the moment generating
function of Z(t) satisfies

M
(p)
Z(t)(x) = λt

p−1∑
k=0

(
p − 1

k

)
M

(k+1)
Y (x)M (p−k−1)

Z(t) (x), (12)

where MY (x) denotes the mgf of Y .

We are particularly interested in the effect of different levels of dependence between
both loss frequencies and loss severities on the tail of the distribution of Z(t), and on
higher quantiles of this distribution. The distribution of Z(t) is generally not available
analytically but, given the ease of simulating from our Poisson common shock model, it
is possible to estimate quantiles empirically to a high enough degree of accuracy that
differences between different dependence specifications become apparent.

It is also possible, given the ease of calculating moments of Z(t), to use a moment fitting
approach to approximate the distribution of Z(t) with various parametric distributions,
and we implement this approach in the following example.

4.1 Insurance example (continued)

Assume that French and German severities are Pareto(4, 3) distributed, i.e.

Fi(x) = P (Xi ≤ x) = 1 −
(

3
3 + x

)4

, E(Xi) = 1, E(X2
i ) = 3, E(X3

i ) = 27, i = 1, 2.

We have to fix the dependence structure of potential losses (X1,X2)′ at the same shock.
We do this using the copula approach. The copula C of (X1,X2)′ is the distribution
function of (F1(X1), F2(X2))′. The distribution function of (X1,X2)′ can be expressed in
terms of C as

F (x1, x2) = C(F1(x1), F2(x2)).

For more on copulas see Embrechts, McNeil, and Straumann (1999), Nelsen (1999) or Joe
(1997). We consider three cases.
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• Independent severities:
F (x1, x2) = F1(x1)F2(x2).

• Positively dependent severities with Gaussian dependence:

F (x1, x2) = CGa
ρ (F1(x1), F2(x2)),

where

CGa
ρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1
2π(1 − ρ2)1/2

exp
{−(s2 − 2ρst + t2)

2(1 − ρ2)

}
dsdt.

and ρ > 0.

• Positively dependent severities with Gumbel dependence:

F (x1, x2) = CGu
θ (F1(x1), F2(x2)),

where

CGu
θ (u, v) = exp

(
−

{
(− log u)θ + (− log v)θ

}1/θ
)

,

and θ > 1.

For both of the positive dependence models we will parameterize the copulas such that
Kendall’s rank correlation (τ) (see e.g. Embrechts, McNeil, and Straumann (1999) for
details) between X1 and X2 is 0.5. This is achieved by setting

ρ = sin
(π

2
τ
)

and θ =
1

1 − τ
.

As we have discussed there are several possibilities for modelling the tail of Z(5). One
approach is to fit a heavy-tailed generalised F-distribution (referred to as a generalised
Pareto distribution in Hogg and Klugman (1984)) to Z(5) using moment fitting with the
first three moments. The distribution function is given by

G
(
2k, 2α,

α

kλ
x
)

for α > 0, λ > 0, k > 0,

where G(ν1, ν2, ·) is the distribution function for the F-distribution with ν1 and ν2 degrees
of freedom. The nth moment exists if α > n and is then given by

λn
(n−1∏

i=0

(k + i)
)/( n∏

i=1

(α − i)
)
.

By calculating the first three moments of Z(5) for different frequency and severity de-
pendencies we fit generalised F-distributions and study the difference in tail behaviour.
Figure 2 shows quantiles of generalised F-distributions determined by fitting the first three
moments to Z(5) for case 1, 2 and 3 and for different dependence structures between the
severities. It clearly shows the effect of common shocks on the tail of Z(5) and perhaps
even more the drastic change in tail behaviour when adding moderate dependence between
the severities.

It should be noted that the quantile estimates of Z(5) given by moment fitted gener-
alised F-distributions are slight overestimates of the true quantiles for α ∈ [0.900, 0.995].
However the accuracy is sufficient to show the major differences between the quantile
curves of Z(5) for our different copula choices.
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5 Applying the Methology to Credit

The modelling of defaults (or more generally credit events such as downgrades) as jumps
in Poisson processes or other more general processes such as Cox-processes has received
much attention during recent years. See Duffie and Singleton (1999) for a discussion of
such approaches with a view towards efficient simulation. In this section we will use our
model to study the effect of different parameterizations on the tail of the distribution of
the total number of defaults.

Consider a loan portfolio consisting of n = 100000 obligors. Suppose the counterparties
can be divided into four sectors and two rating categories (e.g. A and B). The sectors
may be geographical, for example Europe, North America, South America and Japan, or
defined by the type of company, for example banking, manufacturing etc. Although it
would be possible to consider defaults in the four sectors as defining losses of four different
types, we consider a more general model where the default of each individual counterparty
defines a loss type; thus there are 100000 types of loss.

A variety of shocks are possible. We will consider a global shock which could be
thought of as a recession in the world economy and sector shocks which represent adverse
economic conditions for specific industries or geographical sectors. We also consider that
each counterparty is subject to its own idiosyncratic shock process; these might be termed
“bad management” shocks. In total their will be m = n + 5 shock event processes.

Suppose that the jth obligor belongs to sector k = k(j) and rating class l = l(j) where
k = 1, . . . , 4, l = 1, 2. From formula (6) we know that Nj(t), the number of defaults of
obligor j in (0, t] is Poisson with intensity given by

λj = λ(j) + p
(n+k(j))
j λ(n+k(j)) + p

(n+5)
j λ(n+5),

where the three terms represent the contributions to the default intensity of idiosyncratic,
sector and global events respectively. Note that in general this intensity will be set so low
that the probability of a firm defaulting more than once in the period of interest can be
considered negligible.

We will reduce the number of parameters and simplify the notation in a number of
ways to create a model where all companies with the same rating l have the same overall
default intensity λl

total where
λj = λ

l(j)
total. (13)

This reflects the fact that it is common to base the assessment of default intensities for
individual companies on information about default intensities for similarly rated compa-
nies, where this information comes either from an internal rating system and database or
from an external rating agency.

To achieve (13) we first assume that the rate of occurrence of idiosyncratic shocks
depends only on the rating class of the company and we adopt the following more obvious
notation

λ(j) = λ
l(j)
idio, λ

(n+k(j))
j = λ

k(j)
sector, λ(n+5) = λglobal.

Thus we have a total of 7 shock intensities to set.
We assume that the conditional default probabilities given the occurrence of sector

shocks only depend on the rating class of the company and write

p
(n+k(j))
j = s

k(j)
l(j) .
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We assume moreover that the default indicators for several companies in the same sector
are conditionally independent given the occurrence of an event in that sector.

Analogously, we assume that the conditional default probabilities given the occurrence
of global shocks depend on both rating class and sector of the company and write

p
(n+5)
j = g

k(j)
l(j) .

We assume that the default indicators for any group of companies are conditionally inde-
pendent given the occurrence of a global event.

In total we have 16 conditional default probabilities to set and we have the system of
equations

λl
total = λl

idio + sk
l λ

k
sector + gk

l λglobal, k = 1, . . . , 4, l = 1, 2,

subject to the constraint, imposed by (13), that

sk
l λ

k
sector + gk

l λglobal = sk′
l λk′

sector + gk′
l λglobal, ∀k �= k′.

Again we are interested in N(t), the total number of defaults and its tail in particular.
Of course N(t) may differ slightly from the number of defaulting obligors since the Poisson
assumption allows obligors to default more than once. However, given realistic default
intensities the number of obligors that default more than once is an essentially negligible
portion of the total number of defaulting obligors.

In our examples we take t = 1 year, λ1
total = 0.005 and λ2

total = 0.02. Let nl,k denote
the number of companies in rating class l and sector k. We set

n1,1 = 10000, n1,2 = 20000, n1,3 = 15000, n1,4 = 5000,
n2,1 = 10000, n2,2 = 25000, n2,3 = 10000, n2,4 = 5000.

In the following two cases we will investigate by means of a simulation experiment the
sensitivity of the tail of N(1) to the finer details of the specification of model parameters.
In all cases our results are based on 10000 simulated realizations of N(1).

• Case 1
Suppose we attribute 40% of defaults for companies in both ratings classes to id-
iosyncratic shocks and 60% to common shocks. That is we assume

(λ1
idio, λ

2
idio) = (0.002, 0.008).

Suppose, for both rating classes, we attribute to sector specific causes, 20% of de-
faults of sector 1 companies, 50% of defaults of sector 2 companies, 10% of defaults of
sector 3 companies and 40% of defaults of sector 4 companies. Moreover we believe
that the frequencies of sector and global shocks are in the ratio

λ1
sector : λ2

sector : λ3
sector : λ4

sector : λglobal = 1 : 5 : 2 : 4 : 1

We have now specified the model up to a single factor f . For any f ≥ 0.05 the
following choices of model parameters would satisfy our requirements

(λ1
sector, λ

2
sector, λ

3
sector, λ

4
sector, λglobal) = f(0.2, 1.0, 0.4, 0.8, 0.2)

(s1
1, s

2
1, s

3
1, s

4
1, s

1
2, s

2
2, s

3
2, s

4
2) =

1
f

(0.5, 0.25, 0.125, 0.25, 2, 1, 0.5, 1)10−2

(g1
1 , g

2
1 , g

3
1 , g4

1 , g
1
2 , g2

2 , g
3
2 , g4

2) =
1
f

(1, 0.25, 1.25, 0.5, 4, 1, 5, 2)10−2 .
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Case 1 Case 2
f = 1 f = 2 f = 4 f = 8 f = 1 f = 2 f = 4 f = 8

α = 0.95 2742 2307 1957 1734 1308 1769 2106 2346
α = 0.99 3898 2889 2381 1972 1331 2180 2622 2948

Table 1: Empirical quantiles of N(1) corresponding to the samples of size 10000 shown in
Figures 3 and 4.

The condition f ≥ 0.05 is to ensure that s1
1, . . . , s

4
2, g

1
1 , . . . , g

4
2 ≤ 1. When f is

increased by a factor ∆f the intensities of the common shocks are increased by a
factor ∆f and the univariate conditional default probabilities are decreased by a
factor 1/∆f . The effect of increasing f on the distribution of N(1) is seen in figure
3, where histograms are plotted by row for f = 1, 2, 4, 8. The key message is that
low shock intensities and high conditional default probabilities are more “risky”
than the other way around. Values for the empirical 95th and 99th percentiles of
the distribution of N(1) are given in Table 1.

• Case 2
Now we study the effects of increasing the intensity of the common shocks and
decreasing the intensity of the idiosyncratic shocks when the univariate conditional
default probabilities are held constant.

Suppose we are able to quantify the probabilities with which sector or global shocks
cause the default of individual companies. We set the values

(s1
1, s

2
1, s

3
1, s

4
1, s

1
2, s

2
2, s

3
2, s

4
2) = (0.25, 0.08, 0.05, 0.1, 1, 0.3, 0.25, 0.25)10−2

(g1
1 , g2

1 , g
3
1 , g4

1 , g
1
2 , g2

2 , g
3
2 , g4

2) = (0.25, 0.1, 0.4, 0.1, 1, 0.5, 1.5, 1)10−2 .

We have some flexibility in choosing the intensities

(λ1
idio, λ

2
idio, λ

1
sector, λ

2
sector, λ

3
sector, λ

4
sector, λglobal)

and we vary them progressively in the following way

(0.005, 0.02, 0.0, 0.0, 0.0, 0.0, 0.0) → (0.004, 0.016, 0.2, 1.0, 0.4, 0.8, 0.2) →
(0.002, 0.008, 0.6, 3.0, 1.2, 2.4, 0.6) → (0.0, 0.0, 1.0, 5.0, 2.0, 4.0, 1.0).

Hence we start with the special case of no common shocks and a situation where
the individual default processes Nj(t), for j = 1, . . . , n, are independent Poisson and
the total number of defaults N(t) is Poisson. In the second model we still attribute
80% of the default intensities λj to idiosyncratic shocks, but we now have 20% in
common shocks. In the third model we have 60% in common shocks and in the final
model we have only common shocks. The effect of the increasing portion of defaults
due to common shocks on the distribution of N(1) is seen in Figure 4 and quantiles
of N(1) are given in Table 1.

Clearly both these cases show that the exact specification of the common shock model
is critical to the nature of the tail of the aggregate loss distribution. In large loan portfolio
situations in credit risk management there is often a lack of relevant historical data to
allow the estimation of the parameters of a portfolio risk model; calibration using a large
element of judgement is inevitable. Our analyses give some insight into the model risk
and uncertainty implicit in such a calibration.
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A Panjer Recursion for the Distribution of N(t)

If there are common shocks, then N(t) =
∑n

j=1 Nj(t) does not have a Poisson distribution.
However, the probability distribution function of N(t) can still be calculated using Panjer
recursion. As before let Ñ(t) count the number of loss-causing shocks in (0, t]. In addition,
let Wi denote the number of losses due to the ith loss-causing shock. The total number
of losses, N(t), has the stochastic representation

N(t) d=
Ñ(t)∑
i=1

Wi,

where W1, . . . ,WÑ(t)
(d= W ) are iid and independent of Ñ(t). The probability that a

loss-causing shock causes exactly k losses is given by

P (W = k) =
1

λ̃

∑
s:|s|=k

λs,

for k ∈ {1, . . . , n}. Clearly

n∑
k=1

P (W = k) =
1

λ̃

n∑
k=1

∑
s:|s|=k

λs =
1

λ̃

∑
s∈S

λs = 1.

Recall that ∑
s:|s|=k

λs =
m∑

e=1

λ(e)
∑

s:|s|=k

∑
s′:s′⊇s

(−1)|s
′|−|s|p(e)

s′ .
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The expression of the probability that a loss-causing shock causes n losses can be simplified
to

P (W = n) =
1

λ̃

m∑
e=1

λ(e)p
(e)
{1,...,n} =

1

λ̃

m∑
e=1

λ(e)p
(e)
1,...,n(1, . . . , 1).

For k < n we note that there are
(n
k

)
sets s with |s| = k, and for each such s there are(

n−k
i

)
sets of size k + i (i ∈ {1, . . . , n − k}) which contains s as a proper subset. Hence∑

s:|s|=k

∑
s′:s′⊇s

(−1)|s
′|−|s|p(e)

s′ (14)

consists of
(
n
k

)(
n−k

i

)
terms (−1)|s′|−|s|p(e)

s′ for which |s′| = k + i and s ⊂ s′. Since there are( n
k+i

)
sets s′ with |s′| = k + i it follows that (14) is equal to

∑
s:|s|=k

p(e)
s +

n−k∑
i=1

(−1)i
(
n
k

)(
n−k

i

)( n
k+i

) ∑
s:|s|=k+i

p(e)
s

and hence

P (W = k) =
1

λ̃

m∑
e=1

λ(e)

 ∑
s:|s|=k

p(e)
s +

n−k∑
i=1

(−1)i
(n
k

)(n−k
i

)( n
k+i

) ∑
s:|s|=k+i

p(e)
s

 , k < n.

The probability P (N(t) = r) can now easily be calculated using Panjer recursion:

P (N(t) = r) =
r∑

i=1

λ̃ti

r
P (W = i)P (N(t) = r − i), r ≥ 1,

where P (N(t) = 0) = exp(−λ̃t). Since P (W = k) = 0 for k > n,

P (N(t) = r) =
min(r,n)∑

i=1

λ̃ti

r
P (W = i)P (N(t) = r − i), r ≥ 1.

For large n, say n > 100, the usefulness of the Panjer recursion scheme relies heavily on
the calculation of

∑
s:|s|=k p

(e)
s for k ∈ {1, . . . , n}. We now look at two specific assumptions

on the multivariate Bernoulli distribution of I(e) conditional on a shock of type e.
The assumption of conditional independence is attractive for computations since in

this case ∑
s:|s|=k

p(e)
s =

n∑
j1=1

∑
j2>j1

· · ·
∑

jk>jk−1

p
(e)
j1

p
(e)
j2

. . . p
(e)
jk

.

Under the assumption of conditional comonotonicity

∑
s:|s|=k

p(e)
s =

n∑
j1=1

∑
j2>j1

· · ·
∑

jk>jk−1

min(p(e)
j1

, p
(e)
j2

, . . . , p
(e)
jk

).

The latter assumption leads to very efficient computations of
∑

s:|s|=k p
(e)
s . Let

(p(e)
π1

, p(e)
π2

, . . . , p(e)
πn

)′
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denote the sorted vector of univariate conditional indicator probabilities, such that p
(e)
π1 ≤

p
(e)
π2 ≤ · · · ≤ p

(e)
πn . Then ∑

s:|s|=k

p(e)
s =

n∑
i=1

(
n − i

k − 1

)
p(e)

πi
,

where
(n−i
k−1

)
is the number of subsets of size k of {1, . . . , n} with i as smallest element.
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Figure 1: Left: Exceedence probabilities P (N(5) > k) for k = 70, 71, . . . , 90, for case 1,
2 and 3, from lower to upper (linear interpolation between the points). Right: Ratios
of such exceedence probabilities for cases 1 − 2 and 1 − 3 from lower to upper (linear
interpolation between the points).

Figure 2: The curves from lower to upper show the quantiles of moment fitted generalised
F-distributions for case 1, 2 and 3 and α ∈ [0.900, 0.995]. The first three moments coincide
with those of Z(5).
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Figure 3: Histograms of 10000 independent simulations of N(1) for f = 1, 2, 4 and 8.

Figure 4: Histograms of 10000 independent simulations of N(1) when increasing the
intensities of the common shocks and decreasing the intensities of the idiosyncratic shocks
while holding the univariate conditional default probabilities fixed.
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