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Abstract

Schizophrenia (SCZ) is a severe mental disorder with a lifetime risk of about 1%, characterized by

hallucinations, delusions and cognitive deficits with heritability estimated at up to 80%1,2. We

adopted two analytic approaches to determine the extent to which common genetic variation

underlies risk of SCZ using genome-wide association study (GWAS) data from 3,322 European

individuals with SCZ and 3,587 controls. First, we implicate the major histocompatibility complex

(MHC). Second, we provide molecular genetic evidence for a substantial polygenic component to

risk of SCZ involving thousands of common alleles of very small effect. We show that this

component also contributes to risk of bipolar disorder (BPD), but not to multiple non-psychiatric

diseases.

We genotyped the International Schizophrenia Consortium (ISC) case-control sample for up

to ~1 million single nucleotide polymorphisms (SNPs) augmented by imputed common

HapMap SNPs. In the GWAS (λGC=1.09; Table S1, Figure S1–S3), the most associated

genotyped SNP (P = 3.4×10−7) was located in the first intron of myosin XVIIIB (MYO18B)

on chromosome 22. The second strongest association comprised over 450 SNPs on

chromosome 6p spanning the MHC (Figure 1). There is some evidence for between-site

heterogeneity in both allele frequencies and odds ratios (Table 1). We observed associations

consistent with previous reports in the 22q11.2 deletion region and ZNF804A3 (Table S2,

Figure S2 and Section S5).

The best imputed SNP, which reached genome-wide significance (rs3130297, P =

4.79×10−8, T allele, OR=0.747, MAF=0.114, 32.3Mb), was also in the MHC, 7kb from

NOTCH4, a gene with previously reported associations with SCZ4. We imputed classical

human leukocyte antigen (HLA) alleles; 6 were significant at P < 10−3, found on the

ancestral European haplotype5 (Table 1, Table S3, Section S3). However, it was not possible

to ascribe the association to a specific HLA allele, haplotype or region (Table S3, Figure

S4).

We exchanged GWAS summary results with the Molecular Genetics of Schizophrenia

(MGS) and SGENE consortia for genotyped SNPs with P < 10−3. There were 8,014 cases

and 19,080 controls of European descent in the combined sample (see companion

manuscripts, Section S7). Our top genotyped MHC SNP (rs3130375) had P = 0.086 and P =

0.14 in MGS and SGENE. Considering combined results for genotyped and imputed SNPs

across the MHC region more broadly, rs13194053 had a genome-wide significant combined

P = 9.5×10−9 (ISC, MGS and SGENE P = 3×10−4, 1×10−2 and 1×10−4 respectively; C allele
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OR = 0.82, 0.88 and 0.78) and was in LD with rs3130375 (r2=0.35 in HapMap). Across the

region 11 other SNPs had P < 10−7 at 27.1 – 27.3Mb and 32.7Mb (Table S5).

Our second approach was to evaluate whether common variants play an important role en
masse, directly testing the classic theory of polygenic inheritance6, applied to SCZ by

Gottesman & Shields7. While our GWAS analysis did not identify a large number of

strongly associated loci, there could still be many – potentially thousands – of very small

individual effects that collectively account for a substantial proportion of variation in risk.

We summarized variation across many nominally-associated loci into quantitative scores

and related the scores to disease state in independent samples8. Although variants of small

effect (e.g. genotypic relative risk, GRR=1.05) are unlikely to achieve even nominally

significant p-values, increasing proportions will be detected at increasingly liberal

significance thresholds (pT), for example pT < 0.1 or pT < 0.5. Using such thresholds, we

defined large sets of “score alleles” in a discovery sample, in order to generate aggregate

risk scores for individuals in independent target samples. We use the term score, instead of

risk, as we cannot differentiate the minority of true risk alleles from unassociated variants.

We performed the score analyses on a reduced set of SNPs to facilitate analysis and

interpretation. After filtering on MAF, genotyping rate and LD (independent of association

with SCZ) we obtained a subset of 74,062 autosomal SNPs in approximate linkage

equilibrium (Table S5, S6). In each discovery sample, we selected sets of score alleles at

different association test pT thresholds. For each individual in the target sample, we

calculated the number of score alleles they possessed, each weighted by the log odds ratios

from the discovery sample. To assess whether the aggregate scores reflect SCZ risk, we

tested for a higher mean score in target cases compared to controls (Sections S9–S11, Table

S7).

We selected males (2176 cases, 1642 controls) and females (1146 cases, 1945 controls) to

form arbitrary discovery and target samples (Table S8). Score alleles designated in the

discovery sample were significantly enriched among target cases and the effect was larger

for increasingly liberal pT thresholds. The score based on all SNPs with male discovery pT <

0.5 (N=37,655 SNPs) was highly correlated with SCZ in target females (P=9.4×10−19),

explaining ~3% of the variance (Nagelkerke’s pseudo R2 from logistic regression), with

higher scores in cases. The results were not driven by only a few highly associated regions

(Section S12).

We eliminated several possible confounders, with emphasis on subtle population

stratification (Table S9–S15). Defining score alleles in British Isles samples and testing in

samples from Sweden, Portugal and Bulgaria, and vice versa, we observed a similar pattern

of results. It is unlikely that the same substructure is overrepresented in the corresponding

phenotype class when discovery and target samples are from distinct populations. The effect

is also stronger for SNPs within annotated genes (Table S16).

We used independent GWAS samples a) to replicate the polygenic component, b) to

examine whether this component is shared with BPD9 and c) to demonstrate specificity by

considering non-psychiatric diseases. We used the entire ISC for the discovery sample,

considering the five most informative pT thresholds from the intra-ISC analyses. The

independent target samples were the MGS European-American (MGS-EA), the MGS

African-American (MGS-AA) and the UK sample described by O’Donovan et al3. The ISC-

derived score was highly associated with disease in both European SCZ samples (Figure 2,

Figure S6 and Table S17). The MGS-EA had a significantly higher mean pT < 0.5 score in

cases (P = 2×10−28; R2 = 3.2%), as did the smaller O’Donovan sample (P = 5×10−11; R2 =

2.3%). Aggregate differences in allele frequencies and patterns of LD between Europeans
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and African-Americans are expected to lead to an attenuated effect. Still, MGS-AA cases

carried more of the European-derived score alleles than MGS-AA controls (P = 0.008; R2 =

0.4%).

The ISC-derived score alleles were also associated with BPD in two independent samples.

Both STEP-BD10 and WTCCC11 had higher mean pT < 0.5 scores in cases (P = 7×10−9, R2

= 1.9%; and P = 1×10−12, R2 = 1.4% respectively) indicating a substantial, shared genetic

component.

To test disease specificity, we selected all six non-psychiatric WTCCC samples (coronary

artery disease, Crohn’s disease, hypertension, rheumatoid arthritis, type I diabetes and type

II diabetes). Controls are shared among the WTCCC case samples, including BPD. In

contrast to SCZ and BPD, there was no association (p>0.05) between the ISC-derived SCZ

scores and these non-psychiatric diseases, for any pT threshold.

We next investigated the genetic models consistent with our data. The total additive genetic

variance (VA) reflects the number of causal alleles as well as their frequency and effect size

distributions. However, the variance explained by the markers that tag these causal alleles

(VM) will be attenuated, reflecting the average extent of LD between marker and causal

allele. In our target samples, the variance explained by the observed score alleles, VS, will

be further attenuated by sampling variation and pT threshold, such that VS ≤ VM ≤ VA.

We used simulation to estimate possible values for VM and VA, by identifying models that

produced profiles of VS across pT threshold that were similar to those observed in ISC data,

as indexed by the target sample R2. Under a variety of genetic models, we simulated

discovery and target datasets of comparable sample size to the ISC. Based on the empirical

allele frequency distribution, we simulated marker SNPs, varying the proportion that were in

LD with causal variants, for which we varied allele frequency (uniform, U-shaped) and

effect size distributions (fixed GRRs, exponential GRRs or fixed variance explained) as well

as the extent of LD (Section S16).

From a broad range of models, a subset produced results consistent with the ISC data

(Figures 3 and S7). Among these, all led to similar estimates of VM (mean 34%, range 32 to

36%). In models in which the causal alleles were imperfectly tagged (r2<1) estimates of VA

can be considerably larger. Therefore, our estimate that common polygenic variation

accounts for one third of the total variation in SCZ risk is a lower bound for the true value,

which could be much higher. Figure 3b shows seven examples from the range of consistent

models, detailed in Table S18.

The simulated models consistent with our observed results all implied a substantial number

of common variants, whereas models that invoked only a few common variants of large

effect or only rare variants were not able to account for our findings. For example, if VM ≈
34% arose from only 100 common causal alleles, with GRRs at the tagging marker between

~1.2–1.5, the majority would be detected at pT<0.01, and so the variance explained would

decline, not increase, as more SNPs were added (Figure 3c, Table S19). It is possible that an

observed GRR of ~1.05 could represent a large effect of a weakly tagged rare variant, e.g. a

10-fold effect of a 1/10,000 variant in complete LD (D’ = 1, but low r2) with a genotyped

SNP. However, as this would only hold for low frequency markers (MAF < ~0.1), we

stratified our analysis by score allele frequency (Figure 4a). For simulated models in which

all causal variants were of low frequency (<0.05), a stratified analysis revealed the expected,

skewed distribution (Figure 4c, Section S17), which was more pronounced for rarer causal

alleles, e.g. 1/1,000 (data not shown). In contrast, models in which causal alleles followed a

uniform frequency distribution provided a closer fit to our data (Figure 4b; although note
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some enrichment in the 2nd quintile, of ~13–30% score alleles). Moreover, rare variants are

likely to be population specific and if recurrent, in LD with different common alleles within

and between populations. As such, they could not account for the observation of disease

variation that is largely shared across our different populations.

Decreased reproductive fitness in SCZ12 suggests that risk alleles of large to moderate effect

will be under negative selection and therefore very rare13,14. This is not inconsistent with

our results, since the common variants indexed by our polygenic score will not be subjected

to strong selection, by virtue of their very small individual effect sizes. Our results do not

exclude important contributions of rare variants for SCZ13, since rare variants are expected

as part of the allele frequency/effect size spectrum of a polygenic model. We and others

recently reported higher genome-wide rates of rare copy number variants in SCZ15,16,17.

However, our results imply that medical sequencing and studies of structural variation to

identify rare, highly penetrant variants will not alone fully characterize the genetic risk

factors.

In conclusion, our molecular genetic data strongly support a polygenic basis to SCZ that a)

involves common SNPs, b) explains at least a third of the total variation in liability, c) is

substantially shared with BPD, and d) is largely not shared with several non-psychiatric

diseases. We also identified variants in the MHC region that received support in two

independent studies, although the population specificity and extensive LD will make follow-

up challenging.

A highly polygenic model suggests that genetically influenced individual differences across

domains of brain development and function may form a diathesis for major psychiatric

illness, perhaps as multiple growth and metabolic pathways influence human height18. Our

results may also reflect heterogeneity, such that some patients have aetiologically distinct

diseases. The shared genetic liability between SCZ and BPD, previously suggested by

clinical and genetic epidemiology9,19, opens up the possibility of genetically-based

refinements in diagnosis. However, the scores derived here have little value for individual

risk prediction, meaning that application to clinical genetic testing for SCZ would be

unwarranted. In the future, measures of polygenic burden, along with known risk loci and

non-genetic factors such as season of birth, life stress, obstetrical complications, viral

infections and epigenetics, could open new avenues for studying gene-gene and gene-

environment interplay.

Increasing the discovery sample size should substantially refine the polygenic scores derived

here. The variance explained by the observed score increases from ~3% to over 20% in

extended simulations of 20,000 case/control pair, as will soon be available via international

meta-analytic efforts such as the Psychiatric GWAS Consortium20–22 (Section S18, Figure

S8). In addition, analyses that focus on gene pathways, clinical features and non-additivity

may increase the variance captured by the score and identify genes or biological systems,

that are either shared by, or unique to, SCZ and BPD.

We identified fewer unambiguously associated variants than studies of some non-psychiatric

diseases of comparable size23. Nonetheless, for other diseases replicated variants typically

account for only a modest fraction of risk. The nature of this “missing heritability” is a

general problem now faced by complex disease geneticists24. For SCZ, our data point to a

genetic architecture that includes many common variants of small effect. The extent to

which similar models characterize genetic variation within and across other complex

diseases remains to be investigated.
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METHODS SUMMARY

Cases satisfied criteria for SCZ. Clinical characteristics and copy number variation have

been described previously15. DNA was extracted from whole blood, with approval from

institutional review boards. Genotypes were called using the Birdseed/Birdsuite algorithm25

and analyses were performed with PLINK v1.0526. Association analyses used a Cochran-

Mantel-Haenszel test and logistic regression with covariates for sample site and ancestry. In

the simulations, we generated datasets with pairs of unobserved variants and marker SNPs in

varying degrees of within-pair LD, based on the effective number of independent SNPs in

the ISC and assuming Hardy-Weinberg equilibrium and linkage equilibrium between

different pairs of SNPs. We considered a large grid of possible values for allele frequency

and effect size distributions, also varying the proportion of non-null variants and the LD

between causal allele and observed marker. We retained models that produced similar

profiles of target sample R2 compared to the original ISC analysis, for the same range of pT

thresholds, and calculated the implied total genetic variance under these models, assuming

additivity within and across loci. See Supplementary Information for details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results across the MHC region
Results are shown as –log10 (P-value) for genotyped SNPs. The most associated SNP is

shown as a blue diamond. The colour of the remaining markers reflects r2 with rs3130375,

light pink, r2 > 0.1, red, r2 > 0.8. The recombination rate from the CEU HapMap (second Y-

axis) is plotted in light blue.
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Figure 2. Replication of the ISC-derived polygenic component in independent SCZ and BPD
samples
Variance explained in the target samples based on scores derived in the entire ISC for five

significance thresholds (pT < 0.1, 0.2, 0.3, 0.4 and 0.5, plotted left to right in each study).

The y-axis indicates Nagelkerke’s pseudo-R2; the number above each set of bars is the P-

value for the pT < 0.5 target sample analysis. Numbers for cases/controls: MGS-EA 2687 /

2656; MGS-AA 1287 / 973; O’Donovan 479 / 2938; STEP-BD 955 / 1498; WTCCC 1829 /

2935; CAD 1926 / 2935; CD 1748 / 2935; HT 1952 / 2935; RA 1860 / 2935 ; T1D 1963 /

2935 ; T2D 1924 / 2935.

Page 10

Nature. Author manuscript; available in PMC 2014 February 04.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3. Observed and simulated profiles of target sample variance explained
Panel A shows the observed variance explained (R2, black line). Panel B shows a subset of

models that produced results consistent with the observed data. All yielded similar estimates

of the total variance explained by the SNPs that tag the causal variants, VM, with a mean

value of 34%. The seven models were: (% SNPs, Mean GRR/variance explained (V) per

causal allele, LD, frequency model) M1: 6.25%, GRR=1.05, r2 =1, empirical; M2: 25%,

GRR=1.025, r2 =1, empirical; M3: 12%, GRR=1.05, r2 <1, uniform; M4: 32%, GRR=1.04,

r2 <1, U-shaped; M5: 11%, V=0.00006, r2 =1, empirical; M6: 25%,

GRR(Exponential)=1.025, r2 <1, uniform; M7: 100%, GRR(Exponential)=1.012, r2 <1,

uniform. Panel C shows four inconsistent models with fewer variants of larger effect.
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Figure 4. Analysis stratified by score allele frequency
Panel A shows the observed data for the ISC/MGS-EA comparison. The y-axis is the target

sample pseudo R2, scaled within each figure as a proportion of the maximum value

observed. The two other plots show results for simulated data: the common variant model,

with a uniform frequency distribution for causal risk-increasing alleles (panel B) and a

multiple rare variant (MRV) model, in which the collective frequency of rare variants at a

locus that all reside on the same haplotypic background with respect to the genotyped SNP

was bounded at a maximum of 5% (panel C).
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Table 1

MHC association for a) rs3130375, the most significant genotyped SNP, stratified by sample b) imputed

classical HLA alleles

a)

Frequency (rs3130375, A allele)

Sample Cases Controls P value

Scottish (Aberdeen) 0.132 0.168 0.0060

Scottish (Edinburgh) 0.137 0.135 0.8930

British (UCL) * 0.132 0.143 0.4836

Irish (TCD) 0.110 0.170 0.0012

Bulgarian (Cardiff) 0.077 0.084 0.5602

Portuguese (PIC) 0.048 0.061 0.3510

Swedish (KI, 5.0) 0.043 0.119 0.0004

Swedish (KI, 6.0) 0.089 0.142 0.0040

b)

HLA Allele Frequency Odds ratio P value

HLA-A* 0101 0.10 0.79 4×10−5

HLA-C* 0701 0.11 0.78 5×10−5

HLA-B* 0801 0.07 0.76 3×10−5

HLA-DRB* 0301 0.12 0.77 3×10−6

HLA-DQB* 0201 0.21 0.86 4×10−4

HLA-DQA* 0501 0.21 0.80 6×10−7

Total sample CMH P = 4×10−7; Breslow-Day heterogeneity test P = 0.012 (df=6)

*
SNP failed QC in UCL sample-imputed results given

Frequency is estimated population frequency.
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