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Abstract. Let X,Y be Banach spaces, A,D : X → Y and B,C : Y → X be
the bounded linear operators satisfying operator equation set{

ACD = DBD

DBA = ACA.
.

The concept of regularity was firstly introduced by Kordula and Müller. In
this paper, we investigate the common properties of AC and BD in viewpoint
of regularity when A,B,C and D all satisfy the operator equation set above.

1. Introduction and definitions

Throughout this paper, B(X, Y ) denotes the set of all bounded linear operators
from Banach space X to Banach space Y . It is well known that if A ∈ B(X, Y )
and C ∈ B(Y,X), then

AC − I is invertilbe ⇐⇒ CA− I is invertible, (1.1)

see [[1], [6], [9], [11]]. This result is now known as Jacobson′s lemma. In 2013,
Corach, Duggal and Harte [[4]] generalized (1.1) and many of its relatives from
AC − I to certain BA− I under the assumption

ABA = ACA, (1.2)

where A ∈ B(X, Y ) and B,C ∈ B(Y,X). They studied common properties of AC
and BA in algebraic viewpoint and also obtained some nice topological analogues.
In [[13]], Zeng and Zhong continued to investigate the common properties of AC
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and BA in the viewpoint of spectral theory. Recently, we gave a new extension
of Jacobson’s Lemma, in [[12]]: If A, D ∈ B(X, Y ) and B, C ∈ B(Y, X) satisfy{

ACD = DBD

DBA = ACA
, (1.3)

then

AC − I is invertible ⇐⇒ BD − I is invertible.

It is obviously that the case “A = D”, which will give the equation (1.2), while
the case {

A = D

B = C
,

which will give the Jacobson’s lemma. In this note, we continue to study this
situation and show that AC and BD share many common spectral properties.

We first fix some definitions in spectral theory. Throughout this paper, B(X) =
B(X,X). For an operator T ∈ B(X), letN (T ), R(T ) and σ(T ) denote the kernel,
range and spectrum of T , respectively. The hyper-range of T is the subspace
R(T∞) :=

⋂
R(T n), while the hyper-kernel of T is the subspace N∞(T ) :=⋃

N (T n). In [[8]], Kordula and Müller gave the concept of regularity as follows:

Definition 1.1. A non empty subset R ⊆ B(X) is called a regularity if it
satisfies the following two conditions:

(1) If A ∈ B(X) and n ≥ 1, then A ∈ R if and only if An ∈ R.
(2) If A,B,C,D ∈ B are mutually commuting operators satisfying AC+BD =

I, then AB ∈ R if and only if A,B ∈ R.

A regularity defines in a natural way the spectrum σR by σR(T ) = {λ ∈ C :
λI − T 6∈ R} for every T ∈ B(X). In [[8]], Kordula and Müller have proved that
the spectrum σR corresponding to a regularity R satisfies the spectral mapping
theorem - i.e., f(σR(T )) = σR(f(T )), for every T ∈ B(X) and every analytic
function f on a neighborhood of σ(T ) which is non-constant on each component
of its domain of definition.

For each n ∈ N := {0, 1, 2, · · · }, we set

cn(T ) = dimR(T n)/R(T n+1), c′n(T ) = dimN (T n+1)/N (T n).

It is well known that, for every n ∈ N, cn(T ) = dimX/(R(T ) +N(T n)), c′n(T ) =
dimN (T ) ∩ R(T n), see [[7], Lemma 3.2]. Hence, it is not hard to see that the
sequences {cn(T )}∞n=0 and {c′n(T )}∞n=0 are decreasing. For each n ∈ N, T induces
a linear transformation from R(T n)/R(T n+1) to R(T n+1)/R(T n+2). Let kn(T )

be the dimension of the null space of the induced map and let k(T ) =
∞∑
n=0

kn(T ).

From [[5], Lemma 2.3], it follows that

kn(T ) = dim(N (T ) ∩R(T n))/(N (T ) ∩R(T n+1))

= dim(R(T ) +N (T n+1))/(R(T ) +N (T n)).
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for every n ∈ N. We note that the sequence {kn(T )}∞n=0 is not always decreasing.
From [[5], Theorem 3.7], it follows that

k(T ) = dim(N (T )/(N (T ) ∩R(T∞))

= dim(R(T ) +N (T∞))/R(T ).

Similar to the definition of k(T ), we give the definitions of stable nullity and
stable defect.
For an operator T ∈ B(X), the stable nullity c′(T ) of T is defined as

c′(T ) =
∞∑
n=0

c′n(T ),

while the stable defect c(T ) of T is defined as

c(T ) =
∞∑
n=0

cn(T ).

It is easy to see that c(T ) =dimX/R(T∞) and c′(T ) =dimN (T∞).
Now, we give the definitions of some concrete subsets of regularity Ri ⊆ B(X),

1 ≤ i ≤ 15, which were introduced in [[10]], but in a different form.

Definition 1.2. R1 = {T ∈ B(X) : c(T ) = 0},
R2 = {T ∈ B(X) : c(T ) <∞},
R3 = {T ∈ B(X) : there exists d ∈ N such that cd(T ) = 0 and R(T d+1) is

closed},
R4 = {T ∈ B(X) : cn(T ) <∞ for every n ∈ N},
R5 = {T ∈ B(X) : there exists d ∈ N such that cd(T ) < ∞ and R(T d+1) is

closed},
R6 = {T ∈ B(X) : c′(T ) = 0 and R(T ) is closed},
R7 = {T ∈ B(X) : c′(T ) <∞ and R(T ) is closed},
R8 = {T ∈ B(X) : there exists d ∈ N such that c′d(T ) = 0 and R(T d+1) is

closed},
R9 = {T ∈ B(X) : c′n(T ) <∞ for every n ∈ N and R(T ) is closed},
R10 = {T ∈ B(X) : there exists d ∈ N such that c′d(T ) < ∞ and R(T d+1) is

closed},
R11 = {T ∈ B(X) : k(T ) = 0 and R(T ) is closed},
R12 = {T ∈ B(X) : k(T ) <∞ and R(T ) is closed},
R13 = {T ∈ B(X) : there exists d ∈ N such that kn(T ) = 0 for every n ≥ d

and R(T d+1) is closed},
R14 = {T ∈ B(X) : kn(T ) <∞ for every n ∈ N and R(T ) is closed},
R15 = {T ∈ B(X) : there exists d ∈ N such that kn(T ) < ∞ for every n ≥ d

and R(T d+1) is closed}.

Note that R1 ⊆ R2 = R3∩R4 ⊆ R3∪R4 ⊆ R5 ⊆ R13, R6 ⊆ R7 = R8∩R9 ⊆
R3 ∪R4 ⊆ R10 ⊆ R13, R11 ⊆ R12 = R13 ∩R14 ⊆ R13 ∪R14 ⊆ R15. Recently,
Zeng and Zhong introduced several new regularities in [[14]]. We now give their
definitions.
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Definition 1.3. R16 = {T ∈ B(X) : there exists d ∈ N such that cd(T ) = 0 and
R(T ) +N (T d) is closed},

R17 = {T ∈ B(X) : there exists d ∈ N such that cd(T ) <∞ and R(T )+N (T d)
is closed},

R18 = {T ∈ B(X) : there exists d ∈ N such that kn(T ) = 0 for every n ≥ d
and R(T ) +N (T d) is closed},

R19 = {T ∈ B(X) : there exists d ∈ N such that kn(T ) < ∞ for every n ≥ d
and R(T ) +N (T d) is closed}.

The operators of R1, R2, R3, R4 and R5 are surjective, lower semi-Browder,
right Drazin invertible, lower semi-Fredholm and right essentially Drazin invert-
ible, respectively, while the operators of R6, R7, R8, R9 and R10 are bounded
below, upper semi-Browder, left Drazin invertible, upper semi-Fredholm and left
essentially Drazin invertible operators, respectively. The operators of R11, R12

and R13 are semi-regular, essentially semi-regular and quasi-Fredholm operators,
respectively. The operators of R18 are called the operators with eventual topo-
logical uniform descent. We refer readers to [[5], [10]] for more definitions and
details.

In this note, we establish that if A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy{
ACD = DBD

DBA = ACA
,

then

BD − I ∈ Ri ⇐⇒ AC − I ∈ Ri, 1 ≤ i ≤ 19.

It extends the main result (Theorem 2.8) of [[13]] from the special case “A = D”
to the general case. Thus, many results in [[14]] become the very special case of
our results. Moreover, it perfects the spectral results in part 2 of [[12]].

2. Common properties for AC and BD

In this section, we consider the elementary components of regularities Ri (1 ≤
i ≤ 19). Let us begin with the following lemma, which will give the basic relations
between kernel, or range, of AC and that of BD.

Lemma 2.1. If A,D ∈ B(X, Y ), B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
and f

is a polynomial, then we have
(1) DR(f(BD − I)) ⊆ R(f(AC − I));
(2) DN (f(BD − I)) ⊆ N (f(AC − I));
(3) BACR(f(AC − I)) ⊆ R(f(BD − I));
(4) BACN (f(AC − I)) ⊆ N (f(BD − I)).

Proof. (1) Let x ∈ R(f(BD − I)) - i.e., there exists x0 ∈ X such that x =
f(BD − I)x0. Thus, by ACD = DBD, we have

Dx = D(f(BD − I)x0) = f(AC − I)Dx0 ∈ R(f(AC − I)).

This implies DR(f(BD − I)) ⊆ R(f(AC − I)).
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(2) Let x ∈ N (f(BD − I)). Then, by ACD = DBD, we have

f(AC − I)Dx = Df(BD − I)x = 0.

This implies DN (f(BD − I)) ⊆ N (f(AC − I)).
(3) Let y ∈ R(f(AC−I)) - i.e., there exists y0 ∈ Y such that y = f(AC−I)y0.

Thus, by DBA = ACA, we have

BACy = BACf(AC − I)y0 = f(BD − I)BACy0 ∈ R(f(BD − I)).

This implies BACN (f(AC − I)) ⊆ N (f(BD − I)).
(4) Let y ∈ N (f(AC − I)). Then, by DBA = ACA, we have

f(BD − I)BACy = BACf(AC − I)y = 0.

This implies BACN (f(AC − I)) ⊆ N (f(BD − I)). �

We observe the following lemma by the symmetry immediately.

Lemma 2.2. If A,D ∈ B(X, Y ), B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
and f

is a polynomial, then we have
(1) AR(f(CA− I)) ⊆ R(f(DB − I));
(2) AN (f(CA− I)) ⊆ N (f(DB − I));
(3) CDBR(f(DB − I)) ⊆ R(f(CA− I));
(4) CDBN (f(DB − I)) ⊆ N (f(CA− I));

The Lemma 2.1 is crucial for the following Lemmas 2.3-2.5, while in the proofs
of Lemmas 2.3-2.5, we only use the polynomial f(x) = (x − 1)n or f(x) =
(x − 1)n+1. The proof of the following Lemmas 2.3-2.5 are inspired by the very
special case {

A = D

B = C
,

which have been proved recently in [[14]] by Zeng and Zhong.

Lemma 2.3. If A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
,

then c′n(AC − I) = c′n(BD − I) for all n ∈ N. Consequently, c′(AC − I) =
c′(BD − I).

Proof. In order to prove the dimension of N ((BD−I)n+1)/N ((BD−I)n) is equal

to that of N ((AC− I)n+1)/N ((AC− I)n), we define a linear map D̂(c′n) induced
by D from

N ((BD − I)n+1)/N ((BD − I)n)

to

N ((AC − I)n+1)/N ((AC − I)n).

Since (2) of Lemma 2.1 implies DN ((BD − I)n) ⊆ N ((AC − I)n), we have that

D̂(c′n) is well defined.
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Now, we claim that D̂(c′n) is injective. Indeed, let x ∈ N ((BD − I)n+1) and
Dx ∈ N ((AC − I)n). Thus, we have BACDx ∈ N ((BD− I)n) by (4) of Lemma
2.3. Therefore,

x = BDx− (BD − I)x

= BDx−BACDx+BACDx− (BD − I)x

= BDx−BDBDx+BACDx− (BD − I)x

= BACDx− (BD + I)(BD − I)x

∈ N ((BD − I)n).

This implies D̂(c′n) is injective, as desire.
Thus,

c′n(BD − I) ≤ c′n(AC − I)

= c′n(CA− I) by [[14], Lemma 3.10]

≤ c′n(DB − I) by the symmetry

= c′n(BD − I) by [[14], Lemma 3.10].

So c′n(AC − I) = c′n(BD − I) for all n ∈ N. �

Lemma 2.4. If A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
,

then cn(AC − I) = cn(BD − I) for all n ∈ N. Consequently, c(AC − I) =
c(BD − I).

Proof. In order to prove the dimension of R((BD−I)n)/R((BD−I)n+1) is equal

to that of R((AC − I)n)/R((AC − I)n+1), we define a linear map D̂(cn) induced
by D from

R((BD − I)n)/R((BD − I)n+1)

to
R((AC − I)n)/R((AC − I)n+1).

Since (1) of Lemma 2.1 implies that

D(R((BD − I)n+1)) ⊆ R((AC − I)n+1),

we obtain that D̂(cn) is well defined.

Now, we claim that D̂(cn) is injective. Indeed, let x ∈ R((BD − I)n) and
Dx ∈ R((AC − I)n+1). Thus, we have BACDx ∈ R((BD − I)n+1) by (3) of
Lemma 2.1. Therefore, by the similar computation in the proof of lemma 2.3, we
have

x = BDx− (BD − I)x

= BDx−BACDx+BACDx− (BD − I)x

= BDx−BDBDx+BACDx− (BD − I)x

= BACDx− (BD + I)(BD − I)x

∈ R((BD − I)n+1).



66 K. YAN, X.C. FANG

This implies D̂(cn) is injective, as desire.
Therefore,

cn(BD − I) ≤ cn(AC − I)

= cn(CA− I) by [[14], Lemma 3.9]

≤ cn(DB − I) by the symmetry

= c′n(BD − I) by [[14], Lemma 3.9].

So cn(AC − I) = cn(BD − I) for all n ∈ N. �

Lemma 2.5. If A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
,

then kn(AC − I) = kn(BD − I) for all n ∈ N. Consequently, k(AC − I) =
k(BD − I).

Proof. In order to prove the dimension of (R(BD−I)+N ((BD−I)n+1))/(R(BD−
I)+N ((BD− I)n)) is equal to that of (R(AC− I)+N ((AC− I)n+1))/(R(AC−
I) +N ((AC − I)n)), we define a linear map D̂(kn) induced by D from

(R(BD − I) +N ((BD − I)n+1))/(R(BD − I) +N ((BD − I)n))

to

(R(AC − I) +N ((AC − I)n+1))/(R(AC − I) +N ((AC − I)n)).

Since (1) and (2) of Lemma 2.1 implies that

D(R(BD − I) +N ((BD − I)n+1)) ⊆ R(AC − I) +N ((AC − I)n+1),

we obtain that D̂(kn) is well defined.

Now, we claim that D̂(kn) is injective. Indeed, let x ∈ R(BD− I) +N ((BD−
I)n+1) and Dx ∈ R(AC − I) + N ((AC − I)n). Then, there exist y ∈ Y and
z ∈ N ((AC− I)n) such that Dx = (AC− I)y+ z. and hence y = ACy+ z−Dx.
Thus, by {

ACD = DBD

DBA = ACA
,

we have

x = BDx− (BD − I)x

= B[(AC − I)y + z]− (BD − I)x

= B(AC − I)(ACy + z −Dx) +Bz − (BD − I)x

= BACACy −BACy +BACz −Bz −BACDx+BDx+Bz − (BD − I)x

= BDBACy −BACy +BACz −BDBDx+BDx− (BD − I)x

= (BD − I)(BACy −BDx− x) +BACz.

Since z ∈ N ((AC − I)n), we obtain x ∈ R(BD − I) +N ((BD − I)n) by (4) of

Lemma 2.1. This implies that D̂(kn) is injective, as desire.
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Similar to Proposition 2.3 and Proposition 2.4, we have

kn(BD − I) ≤ kn(AC − I)

= kn(CA− I) by [[14], Lemma 3.8]

≤ kn(DB − I) by the symmetry

= k′n(BD − I) by [[14], Lemma 3.8].

So kn(AC − I) = kn(BD − I) for all n ∈ N. �

Lemma 2.6. If A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
,

then for all n ∈ N, R(AC − I) +N ((AC − I)n) is closed if and only if R(BD−
I) +R((BD − I)n) is closed.

Proof. Suppose thatR(AC−I)+N ((AC−I)n) is closed. Let {xn}∞n=1 ⊆ R(BD−
I) + N ((BD − I)n) be a sequence such that xn → x. Then, for each positive
integer n, there exist yn ∈ R(BD − I) and zn ∈ N ((BD − I)n) such that xn =
yn + zn. Hence, Dx = limn→∞Dxn = limn→∞D(yn + zn). From (1) and (2)
of Lemma 2.1, we have Dyn ∈ R(AC − I) and Dzn ∈ N ((AC − I)n). Since
R(AC − I) +N ((AC − I)n) is closed, there exist y ∈ Y and z ∈ N ((AC − I)n)
such that Dx = (AC − I)y + z and hence y = ACy + z − Dx. Thus, by the
similar computation in the proof of lemma 2.5, we have

x = BDx− (BD − I)x

= B[(AC − I)y + z]− (BD − I)x

= B(AC − I)(ACy + z −Dx) +Bz − (BD − I)x

= BACACy −BACy +BACz −Bz −BACDx+BDx+Bz − (BD − I)x

= BDBACy −BACy +BACz −BDBDx+BDx− (BD − I)x

= (BD − I)(BACy −BDx− x) +BACz.

Since z ∈ N ((AC − I)n), we obtain x ∈ R(BD − I) +N ((BD − I)n) by (4) of
Lemma 2.1. This implies R(BD − I) +N ((BD − I)n) is closed.

To the opposite implication, suppose thatR(BD−I)+N ((BD−I)n) is closed.
Then we have

R(BD − I) +N ((BD − I)n) is closed

⇔ R(DB − I) +N ((DB − I)n) is closed ( by [[14], Lemma 3.11])

⇒ R(CA− I) +N ((CA− I)n) is closed ( by the symmetry)

⇔ R(AC − I) +N ((AC − I)n) is closed ( by [[14], Lemma 3.11]).

Therefore, the conclusion hold. �

Next, we obtain a corollary which is a special case “n = 0” of Lemma 2.6.

Corollary 2.7. If A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
, then R(AC − I) is closed if and only if R(BD − I) is closed.
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Corollary 2.8. If A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
, then, for all n ∈ N, R(AC − I)n is closed if and only if R(BD − I)n is closed.

Proof. For an arbitrary n ∈ N, take

Bn =
n∑

k=1

(
n
k

)
(−1)k(BD)k−1B

and

Cn =
n∑

k=1

(
n
k

)
(−1)kC(AC)k−1.

Then, it is not hard to check the following equations{
ACnD = DBnD

DBnA = ACnA,

(I −BD)n = I −BnD

and

(I − AC)n = I − ACn.

Thus, from Corollary 2.7, we obtain that R(AC − I)n is closed if and only if
R(BD − I)n is closed for all n ∈ N. �

3. Conclusion

Now, all the elementary components of regularities Ri (1 ≤ i ≤ 19) have been
considered in Lemma 2.3, 2.4, 2.5, 2.6 and Corollary 2.7, 2.8, then we obtain the
following result (Theorem 3.1), which extends the main result (Theorem 2.8) in
[[13]] from the special case “A = D” to the general case. Moreover, it is known
that R1 and R6 are the surjective and bounded below operators, respectively.
Hence, the Proposition 2.2 and 2.5 in [[12]] are contained in the following theorem.

Theorem 3.1. If A,D ∈ B(X, Y ) and B,C ∈ B(Y,X) satisfy

{
ACD = DBD

DBA = ACA
,

then

σRi
(AC) \ {0} = σRi

(BD) \ {0} for 1 ≤ i ≤ 19.

Proof. From the Lemma 2.3, 2.4, 2.5, 2.6 and the Corollary 2.7, 2.8, the conclusion
follows immediately. �

We conclude this note by an example to illustrate that the results obtained in
this note are proper generalizations of the corresponding ones in [[13]].

Example 3.2. For Banach spaces X and Y , let S1 ∈ B(X,X), S2, T1 ∈ B(Y,X)
and T2 ∈ B(X, Y ) be arbitrary nonzero operators satisfying S1 = S2T2 and
T2T1 6= I. We consider A,B,C ∈ B(X ⊕ Y ) as follows respectively:

A =

(
0 S2

0 0

)
, B =

(
S1 0
0 0

)
, C = D =

(
I T1
T2 I

)
.
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It is easy to check that

CAC − CBC =

(
0 S2(I − T2T1)
0 T2S2(I − T2T1)

)
6= 0,

but,

ACB = BCB =

(
S2
1 0

0 0

)
,

and

BCA = ACA =

(
0 S1S2

0 0

)
.

Hence, the common spectral properties, or regularity, of AC and CB can only be
deduced directly from the results obtained in this note, but not from the corre-
sponding ones in [[13]].
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