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Abstract

Given sensors to detect object use, commonsense
priors of object usage in activities can reduce the
need for labeled data in learning activity models. It
is often useful, however, to understand how an ob-
ject is being used, i.e., the action performed on it.
We show how to add personal sensor data (e.g., ac-
celerometers) to obtain this detail, with little label-
ing and feature selection overhead. By synchroniz-
ing the personal sensor data with object-use data,
it is possible to use easily specified commonsense
models to minimize labeling overhead. Further,
combining a generative common sense model of
activity with a discriminative model of actions can
automate feature selection. On observed activity
data, automatically trained action classifiers give
40/85% precision/recall on 10 actions. Adding ac-
tions to pure object-use improves precision/recall
from 76/85% to 81/90% over 12 activities.

1 Introduction

Systems capable of recognizing a range of human activity in
useful detail have a variety of applications. Key problems
in building such systems include identifying a small set of
sensors that capture sufficient data for reasoning about many
activities, identifying the features of the sensor data relevant
to the classification task and minimizing the human overhead
in building models relating these feature values to activities.
The traditional approach, using vision as the generic sensor
[Moore et al., 1999; Duong et al., 2005], has proved chal-
lenging because of the difficulty of identifying robust, infor-
mative video features sufficient for activity recognition under
diverse real-world conditions and the considerable overhead
of providing enough labeled footage to learn models.

A promising recent alternative [Philipose et al., 2004;
Tapia et al., 2004] is the use of dense sensing, where indi-
vidual objects used in activities are tagged with tiny wireless
sensors which report when each object is in use. Activities
are represented as probabilistic distributions over sequences
of object use, e.g., as Hidden Markov Models. These simple
models perform surprisingly well across a variety of activ-
ities and contexts, primarily because the systems are able to
detect consistently the objects in use. Further, because objects

used in day-to-day activities are common across deployment
conditions (e.g., most people use kettles, cups and teabags in
making tea), it is possible to specify broadly applicable prior
models for the activities simply as lists of objects used in per-
forming them. These priors may either be specified by hand
or mined automatically off the web [Perkowitz et al., 2004].
Given these simple models as priors and unlabeled traces of
objects used in end-user activities, a technique for learning
with sparse labels (e.g., EM) may be used to produce cus-
tomized models with no per-activity labeling [Wyatt et al.,
2005].

Object use is a promising ingredient for general, low-
overhead indoor activity recognition. However, the approach
has limitations. For instance, it may be important to discern
aspects of activities (e.g., whether a door is being opened or
closed) indistinguishable by object identity, it is not always
practical to tag objects (e.g., microwaveable objects) with
sensors, and multiple activities may use similar objects (e.g.,
clearing a table and eating dinner). One way to overcome
these limitations is to augment object-use with complemen-
tary sensors.

Wearable personal sensors (especially accelerometers and
audio), which provide data on body motion and surround-
ings, are a particularly interesting complement. These sensors
are unobtrusive, relatively insensitive to environmental condi-
tions (especially accelerometers), and previous work [Lester
et al., 2005; Bao and Intille, 2004; Ravi et al., 2005] has
shown that they can detect accurately a variety of simple ac-
tivities, such as walking, running and climbing stairs. We
focus on how to use these sensors to detect fine-grained arm
actions using objects (such as “scoop with a spoon”, “chop
with a knife”, “shave with a razor” and “drink with a glass”;
note that the physical motion depends on the kind of action
and the object used), and also how to combine these actions
with object-use data from dense sensors to get more accurate
activity recognition.

We present a joint probabilistic model of object-use, phys-
ical actions and activities that improves activity detection rel-
ative to models that reason separately about these quantities,
and learns action models with much less labeling overhead
than conventional approaches. We show how to use the joint
prior model, which can be specified declaratively with a little
“common sense” knowledge per activity (and could in prin-
ciple be mined from the web), to automatically infer distri-
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Figure 1: Sensors: iBracelet and MSP (left), RFID tagged
toothbrush & paste (right), tags circled.

butions over the labels based on object-use data alone: e.g.,
given that object “knife” is in use as part of activity “making
salad”, action “chop with a knife” is quite likely. We there-
fore call our technique common sense based joint training.
Given class labels, Viola and Jones (2001) have shown how
to automatically and effectively select relevant features using
boosting. We adapt this scheme to work over the distributions
over labels, so that our joint model is able to perform both
parameter estimation and feature selection with little human
involvement.

We evaluate our techniques on data generated by two peo-
ple performing 12 activities involving 10 actions on 30 ob-
jects. We defined simple commonsense models for the activi-
ties using an average of 4 English words per activity. Combin-
ing action data with object-use in this manner increases pre-
cision/recall of activity recognition from 76/85% to 81/90%;
the automated action-learning techniques yielded 40/85%
precision/recall over 10 possible object/action classes. To our
knowledge this work is the first to demonstrate that simple
commonsense knowledge can be used to learn classifiers for
activity recognizers based on continuous sensors, with no hu-
man labeling of sensor data.

2 Sensors

Figure 1 shows the sensors we use. We wear two bracelets
on the dominant wrist. One is a Radio Frequency Identifica-
tion (RFID) reader, called the iBracelet [Fishkin et al., 2005],
for detecting object use, and the other is a personal sensing
reader, called the Mobile Sensing Platform (MSP) [Lester et
al., 2005], for detecting arm movement and ambient condi-
tions.

The iBracelet works as follows. RFID tags are attached to
objects (e.g., the toothbrush and tube of toothpaste in Fig-
ure 1) whose use is to be detected. These tags are small,
40-cent battery-free stickers with an embedded processor and
antenna. The bracelet issues queries for tags at 1Hz or faster.
When queried by a reader up to 30cm away, each tag responds
(using energy scavenged from the reader signal) with a unique
identifier; the identifier can be matched in a separate database
to determine the kind of object. The bracelet either stores
timestamped tag IDs on-board or transmits read tags wire-
lessly to an ambient base station, and lasts 12 to 150 hours
between charges. If a bracelet detects a tagged object, the
object is deemed to be in use, i.e., hand proximity to objects
implies object use.

The MSP includes eight sensors: a six-degree-of-freedom
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Figure 2: Joint models for activity and action recognition. (a)
Full joint DBN (above), and (b) a derived layered model used
in this paper (below). Dotted arrows represent the assignment
of the MAP estimate of a variable in one layer as its observed
value in the next.

accelerometer, microphones sampling 8-bit audio at 16kHz,
IR/visible light, high-frequency light, barometric pressure,
humidity, temperature and compass. The data (roughly
18,000 samples per second) is shipped in real time to an
off-board device, such as a cellphone which currently stores
it for later processing. In the near future, we hope to per-
form the processing (inference, in particular), in real-time on
the cellphone. To compact and focus the data, we extract
F = 651 features from it, including mean, variance, energy,
spectral entropy, FFT coefficients, cepstral coefficients and
band-pass filter coefficients; the end-result is a stream of 651-
dimensional feature vectors, generated at 4Hz. We will write
SN = s1, . . . , sN for the stream of sensor readings, where
each si is a paired object name and a vector of MSP features.

3 Techniques

3.1 Problem Statement

Let A = {ai} be a set of activity names (e.g., “making tea”),
B = {bi} be a set of action names (e.g., “pour”), O = {oi}
be a set of object names (e.g., “teabag”) and M = {mi} be
the set of all possible MSP feature vectors.

We assume coarse “commonsense” information linking
objects, activities and actions. Let OA = {(a, Oa)|a ∈
A, Oa = {o1, . . . , ona

} s.t. oi is often used in a} (e.g.,
(a, Oa) = (make tea, {kettle, milk, sugar, teabag})). Let
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BOA = {(a, o, Ba,o = {b1, . . . , bma,o
})|a ∈ A, o ∈

Oa s.t. bi is performed when using object o as part of a}
(e.g., (make tea, milk, {pour, pick up})).

In monitoring peoples’ day-to-day activities, it is relatively
easy to get large quantities of unlabeled sensor data SN . Get-
ting labeled data is much harder. In what follows, we assume
no labeling at all of the data. Finally, although training data
will consist of synchronized object-use and personal sensor
data, the test data may contain just the latter: we expect end-
users to transition between areas with and without RFID in-
strumentation.

Given the above domain information and observed data, we
wish to build a classifier over MSP data that:

• Infers the current action being performed and the object
on which it is being performed.

• Combines with object-use data O (when available) to
produce better estimates of current activity A.

• For efficiency reasons, uses F ′ � F features of M .

3.2 A Joint Model

The Dynamic Bayesian Network (DBN) of Figure 2(a) cap-
tures the relationship between the state variables of interest .
The dashed line in the figure separates the variables represent-
ing the state of the system in two adjacent time slices. Each
node in a time slice of the graph represents a random variable
capturing part of the state in that time slice: the activity (A)
and action (B) currently in progress, and the MSP data (M )
and the object (O) currently observed. The directed edges are
inserted such that each random variable node in the induced
graph is independent of its non-descendants given its parents.
Each node Xi is parameterized by a conditional probability
distribution (CPD) P (Xi|Parents(Xi)); the joint distribution
P (X1, . . . , Xn) = Πi=1...nP (Xi|Parents(Xi)).

Our DBN encodes the following independence assump-
tions within each time slice:

1. The MSP signal M is independent of the ongoing ac-
tivity A given the current object O and action B. For
instance, hammering a nail (action “hammer”, object
“nail”) will yield the same accelerometer and audio sig-
natures regardless of whether you’re fixing a window or
hanging a picture. On the other hand, M is directly
dependent both on O and B: the particular hand mo-
tion varies for action “pull” depending on whether object
“door” or object “laundry line” are being pulled. Simi-
larly, pulling a door entails a different motion from push-
ing it.

2. The action depends unconditionally both on current ac-
tivity and the object currently in use. For instance, if
the activity is “making pasta” the probability of action
“shake” will depend on whether you are using object
“salt shaker” or “pot”. Similarly, if the object is “pot”
the probability of action “scrub” will depend on whether
the activity is “making pasta” or “washing dishes”.

3. The object used is directly dependent on the activity. In
particular, even if the action is a generic one such as
“lift”, the use of the object “iron” significantly increases
the probability of activity “ironing”.

Given initial guesses (derivable from OA and BOA)
for the conditional probabilities, the problem of jointly re-
estimating the parameters, estimating P (M |O, B) and se-
lecting a small discriminatory subset of features of M based
on partially labeled data can be viewed as a semi-supervised
structure learning problem, traditionally solved by structural
variants of EM [Friedman, 1998]. However, structural EM is
known to be difficult to apply tractably and effectively. We
therefore trade off the potential gain of learning a joint model
for the simplicity of a layered model.

3.3 A Layered Model

Figure 2(b) shows the layered model we use. The new struc-
ture is motivated by the fact that recent work [Viola and Jones,
2001; Lester et al., 2005] has shown that a tractable and effec-
tive way to automatically select features from a “sea of pos-
sible features” is to boost an ensemble of simple classifiers
sequentially over possible features. Our new model therefore
replaces the node M of the original DBN, with a separate dis-
criminative classifier smoothed by an HMM. Classification in
the layered structure proceeds as follows:

1. At each time slice, the F ′ features are fed into the
boosted classifier (described further below) to obtain the
most likely current action-object pair b∗ . The classifi-
cation so obtained is prone to transient glitches and is
passed up a level for smoothing.

2. The HMM is a simple temporal smoother over actions:
its hidden states are smoothed action estimates, and its
observations are the unsmoothed output b∗ of the en-
semble classifier. The MAP sequence of smoothed ac-
tion/object pairs, b∗s , is passed on to the next layer as ob-
servations. The HMM is set to have uniform observation
probability and uniform high self-transition probability
ts. If we just require action classification on MSP data,
we threshold the smoothed class by margin; if the mar-
gin exceeds threshold tsmooth (set once by hand for all
classes), we report the class, else we report “unknown”.

3. If we wish to combine the inferred action with object
data to predict activity, we pass the smoothed action
class up to the DBN. The DBN at the next level (a trun-
cated version of the one described previously) treats o
and (the action part of) b∗s as observations and finds the
most likely activity A.

Inference requires parameters of the DBN to be known.
The commonsense information OA and BOA can be con-
verted into a crude estimate of conditional probabilities for
the DBN as follows:

• P (o|a) = p
na

if o ∈ Oa, 1−p
|O|−na

otherwise. Essentially,

we divide up probability mass p (typically� 0.5) among
likely objects, and divide up the remainder among the
unlikely ones.

• P (bt|a, o) = p′

ma,o

if b ∈ Ba,o,
1−p′

|B|−ma,o

otherwise, as

above (note ma,o and na are defined in section 3.1).

• P (at|at−1) = ε
|A|−1

if at−1 �= at, and 1 − ε other-

wise. This temporal smoothing encourages activities to
continue into adjacent time slices.
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Initialize weights wi = 1/N, i = 1, . . . , N
Iterate for m = 1, . . . , M :
1. Tfm(s) ← fit(W, f) for all features f
2. Efm ←

∑
i,c wiPicI(c �= Tfm(si))

3. f∗ ← arg minfEfm

4. αm ← log (1 − Ef∗m/Ef∗m)
5. wi ←

∑
c Picwi exp(αmI(c �= Tf∗m(si)))

6. Re-normalize wi to 1
Output

T (s) = arg maxc

∑M

m=1
αmI(c = Tf∗m(s))

where fit(W, f) =
t+ ←

∑
i wiPi+si[f ]/

∑
i wiPi+

t− ←
∑

i wiPi−si[f ]/
∑

i wiPi−

t ← (t+ + t−)/2
return λs. + if sgn(s − t) = sgn(t+ − t),− else

Table 1: The VirtualBoost Algorithm

Hyperparameters p, p′ and ε are currently selected once by
hand and do not change with activities to be classified or ob-
served data. If these crude estimates are treated as priors, the
parameters of the DBN may be re-estimated with unlabeled
data SN using EM or other semi-supervised parameter learn-
ing schemes.

It remains to learn the boosted classifier. We take the ap-
proach of Viola and Jones (2001). Their scheme (as any con-
ventional boosting-based scheme) requires labeled examples.
Given that we only have unlabeled MSP data SN , we need to
augment the usual scheme. A simple way (which we call
MAP-Label) to do so would be to use the object-use data
o1, . . . , oN from SN and the DBN to derive the most likely
sequence b1, . . . , bN of actions, and to treat the pair (bi, oi)
as the label in each time step. This approach has the potential
problem that even if many action/object pairs have compara-
ble likelihood in a step, it only considers the top-rated pair
as the label and ignores the others. We therefore explore an
alternate form of the feature selection algorithm, called Vir-
tualBoost, that works on data labeled with label distributions,
rather than individual labels: we use the DBN and object-use
data to generate the marginal distribution of B at each time
slice (we refer to this technique as Marginal-Label). When
a boosted classifier is trained using this “virtual evidence”
[Pearl, 1988], VirtualBoost allows the trainer to consider all
possible labels in proportion to their weight.

Table 1 specifies VirtualBoost. For simplicity we assume
two classes, although the algorithm generalizes to multiple
classes. The standard algorithm can be recovered from this
one by setting Pic to 1 and removing all sums over classes c.
The goal of both algorithms is to identify ≤ M features, and
corresponding single-feature multiple-class classifiers Tf∗m

and weights αm, the weighted combination of the classifiers
is maximally discriminative.

The standard algorithm works by, for each iteration m, fit-
ting classifiers Tfm for each feature f to the labeled data
weighted to focus on previously misclassified examples, iden-
tifying as Tf∗m the classifier that minimizes the weighted er-

1 make tea (6,1)
2 eat cereal (2,1)
3 make sandwich (3,1)
4 make salad (2,1)
5 dust (1,1)
6 brush teeth (2,1)
7 tend plants (2,1)
8 set table (9,1)
9 clean windows (2,1)

10 take medication (2,1)
11 shave (3,1)
12 shower (2,1)

a lift to mouth
b scoop
c chop
d spread
e dust
f brush
g wipe horizontally
h wipe vertically
i drink
j shave

Table 2: Activities (l) and actions (r) performed
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Figure 3: Overall precision/recall

ror, attributing a weight αm to this classifier such that high
errors result in low weights, and re-weighting the examples
again to focus on newly problematic examples. VirtualBoost
simply replaces all computations in the standard algorithm
that expect individual class labels ci with the expectation
over the distribution Pic of the label. It is straightforward to
show that this new variant is sound, in the sense that if D =
(s1, P1c), . . . , (si, Pic), . . . , (sN , PNc) is a sequence that
when input to VirtualBoost yields classifier T , then the “sam-
ple sequence” D′ = . . . , (si, ci1), (si, ci2), . . . , (si, ciK), . . .
where the cij are samples from Pic, when fed to the conven-
tional algorithm, will produce the classifier T for large K .

4 Evaluation Methodology

Our evaluation focuses on the following questions:

1. How good are the learned models? In particular, how
much better are the models of activity with action infor-
mation combined, and how good are the action models
themselves? Why?

2. How does classifier performance vary with our design
choices? With hyperparameters?

3. How necessary were the more sophisticated aspects of
our design? Do simple techniques do as well?

To answer these questions, we collected iBracelet and MSP
data from two researchers performing 12 activities containing
10 distinct actions of interest using 30 objects in an instru-
mented apartment. The activities are derived from a state-
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mandated Activities of Daily Living (ADL) list; monitoring
these activities is of interest to elder care professionals. Four
to ten executions of each activity were recorded over a pe-
riod of two weeks. Ground truth was recorded using video,
and each sensor data frame was annotated in a post-pass with
the actual activity and action (if any) during that frame, and
designated “other” if not.

Table 2 lists the activities and actions performed. Each ac-
tivity is followed by the number of tagged objects, and the
number of actions labeled, in that activity; e.g., for making
tea, we tagged 6 objects (spoon, kettle, tea, milk, sugar and
saucer) and tracked one action (scoop with a spoon). We
restricted ourselves to one action of interest per activity, al-
though our system should work with multiple actions. We
tag multiple objects per activity; 6 of the activities (make tea,
eat cereal, make salad, make sandwich, set table, clean win-
dow) share at least one object with another activity. Note that
for our system to work, we do not have to list or track ex-
haustively either the objects or the actions in an activity, an
important consideration for a practical system.

In our experiments, we trained and classified the unseg-
mented sensor data using leave-one-out cross-validation over
activities: we trained over all but one of the instances for each
activity and tested on the last one, rotated the one that was left
out, and report aggregate statistics. Since many time slices
were labeled “other” for actions, activities or both, we use
both precision (fraction of slices when our claim was correct)
and recall (fraction of slices when we detected a non-”other”
class correctly). In some cases, we report the F -measure
= 2PR/(P + R) a standard aggregate goodness measure,
where P and R are precision and recall.

5 Results

Figure 3 displays overall activity/action detection preci-
sion/recall (P/R) for four configurations of interest. Each con-
figuration has the form (N = 5|12/O[+a]). N = 5 attempts
to detect activities 1-5 of Table 2, whereas N = 12 detects
them all. In the N = i|O configuration, we assume just RFID
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Figure 5: Precision/recall vs. margin threshold

observations, whereas N = i|O + a assumes MSP observa-
tions for the action classifier in addition. For each configu-
ration, we report P/R of activity and action detection. The
N = 5 configuration yields similar results to N = 12, so we
focus on N = 12 below.

Three points are key. First, comparing corresponding O
and A bars for activity, we see that adding MSP data does
improve overall P/R from 76/85% to 81/90%. Second, our
action classifier based on MSP data has 41/85% P/R; given
that we have 10 underlying action/object classes all fairly
evenly represented in the data, this is far better than any naive
guesser. The low precision reflects the automatically-trained
classifier’s inability to identify when no action of interest is
happening: 56% of our false positives are mis-labeled “other”
slots. Third, the relatively high action P/R (32/80%) with just
objects (N = 12/O) reveals a limitation of our dataset: if
object-use data is available, it is possible to predict the cur-
rent action almost as well as with additional MSP data. In
our dataset, each activity/object combination has one action
associated with it, so guessing the action given activity/object
is fairly easy.

Figure 4 breaks down P/R in the N = 12 case over activ-
ities 1-12 and actions 1-10. The main point of interest here
(unfortunately not apparent in the figure) is the interaction
between object and MSP-based sensing: combining the two
sensors yields a jump in recall of 8, 15, 39 and 41% respec-
tively in detecting activities 4, 8, 9 and 2 respectively, with no
activity deteriorating. In all these cases the activities involved
shared objects with others, so that actions were helpful. Ac-
tivity 4, making salad, is particularly hard hit because both
objects used (knife and bowl) are used in other activities. Re-
solving this ambiguity improves P/R for the sole action asso-
ciated with making salad by 62/41%.

Figure 5 shows how P/R of action detection changes when
margin threshold tsmooth of section 3.3 varies from -0.8 to 0.2.
We use tsmooth = −0.25 in this section. We also varied boost-
ing iterations M to 5, 10, 20, 40 and 60; the best matching
P/R rates were 36/61, 41/77, 40/85, 36/88 and 35/86%. We
use N = 20.

Figure 6 compares VirtualBoost to simpler approaches.
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The first bar shows the effect on action detection (on F-
measure) of MAP-Label combined with regular boosting-
based feature selection; the second shows Marginal-Label
with VirtualBoost. The third shows Marginal-Label with the
single class with highest probability chosen as label (if proba-
bility is higher than a fixed threshold), combined with regular
boosting. The fourth uses Marginal-Label, picks the most-
likely class as label if above threshold, and feeds it along with
its probability to a variant of VirtualBoost. Given that all our
actions are associated with a single object, it is not surpris-
ing that using the most likely action performs quite well. In
some cases, because of overlap in object-use, Marginal-Label
sprinkles in incorrect labels with correct ones. In these cases,
the third approach ascribes too much weight (i.e., 1.0) to the
(possibly incorrect) answer, whereas the fourth approach mit-
igates the label choice via its weight. Complete VirtualBoost
seems to get distracted by needing to analyze all 10 actions
every time.

6 Conclusions
Feature selection and labeling are known bottlenecks in learn-
ing sensor-based models of human activity. We have demon-
strated that it is possible to use data from dense object-use
sensors and very simple commonsense models of object use,
actions and activities to automatically interpret and learn
models for other sensors, a technique we call common sense
based joint training. Validation of this technique on much
larger datasets and on other sensors (vision in particular) is in
progress.
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