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Abstract. Semi-formally represented knowledge, such as the use of 

standardized keywords, is a traditional and valuable mechanism for helping 

people to access information. Extending that mechanism to include formally 

represented knowledge (based on a shared ontology) presents a more effective 

way of sharing large bodies of knowledge between groups; reasoning systems 

that draw on that knowledge are the logical counterparts to tools that perform 

well on a single, rigidly defined task. The underlying philosophy of the Cyc 

Project is that software will never reach its full potential until it can react 

flexibly to a variety of challenges. Furthermore, systems should not only handle 

tasks automatically, but also actively anticipate the need to perform them. A 

system that rests on a large, general-purpose knowledge base can potentially 

manage tasks that require world knowledge, or “common sense” – the 

knowledge that every person assumes his neighbors also possess. Until that 

knowledge is fully represented and integrated, tools will continue to be, at best, 

idiots savants.  Accordingly, this paper will in part present progress made in the 

overall Cyc Project during its twenty-year lifespan – its vision, its achievements 

thus far, and the work that remains to be done. We will also describe how these 

capabilities can be brought together into a useful ambient assistant application. 

Ultimately, intelligent software assistants should dramatically reduce the 

time and cognitive effort spent on infrastructure tasks.  Software assistants 

should be ambient systems – a user works within an environment in which 

agents are actively trying to classify the user’s activities, predict useful subtasks 

and expected future tasks, and, proactively, perform those tasks or at least the 

sub-tasks that can be performed automatically.  This in turn requires a variety of 

necessary technologies (including script and plan recognition, abductive 

reasoning, integration of external knowledge sources, facilitating appropriate 

knowledge entry and hypothesis formation), which must be integrated into the 

Cyc reasoning system and Knowledge Base to be fully effective. 

1   The Evolution of Cyc 

1.1   Beginnings of the Cyc Project 

In the early 1970s, rule-based expert systems such as MYCIN [18] and DENDRAL 

[3] were AI’s major success story.  MYCIN acted as an assistant in the diagnosis of 
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blood infections, while DENDRAL’s expertise was in chemical analysis.  These 

applications used rules to solve problems within circumscribed domains.  Expert 

systems represented a major step forward in AI technology and are used today to 

address problems as diverse as camera lens design and cargo placement [5], but their 

limitations quickly became obvious.  Lenat and Guha [10] provide several examples 

of the brittleness displayed by expert systems.  Two will suffice here: 

An expert system authorizes a car loan to someone who stated, 

on his application, that he’d worked at the same job for twenty 

years.  A good risk?  Perhaps, but the individual also stated he was 

18 years old. 

A skin disease diagnosis program is told about  a “patient” that is 

a 1969 Chevrolet: 

Program: Are there spots on the body? 

User: Yes. 

Program: What color spots? 

User: Reddish-brown. 

Program: Are there more spots on the trunk than elsewhere? 

User: No. 

Program: The patient has measles. 

In the first example, the system failed to notice what was likely to have been a simple 

typo; perhaps the applicant meant that he had been at his current job for two years, or 

20 months.  Rules encoded in that system might nevertheless conclude that someone 

employed by the same company for 20 years is a very good credit risk, resulting in an 

easy loan approval.  The system breaks down because it cannot detect what, to 

humans, are very obvious contradictions.  These errors can have effects far more dire 

than in the car loan case.  For example, a medical transcriptionist accidentally 

transposing a patient’s weight and age in a patient record could lead to that patient 

being prescribed medications at dangerously incorrect dosage levels. 

The second example illustrates that expert systems work only within the domain 

for which they were explicitly engineered; this software cannot correctly diagnose 

rust spots on a car.  Furthermore, the system is unable to use its knowledge about skin 

infections to do things like recommend treatment or explain to users how long the 

disease might last and what other symptoms the patient may be experiencing.  In 

short, this software contains many handcrafted rules that encode useful information 

about skin diseases, but this knowledge is isolated and opaque: it is useless when 

applied to an object outside its domain, and cannot be reused across similar or related 

problems. 

Expert systems have no understanding of what they are for, or the extent of their 

own knowledge.  But their brittleness is mainly due to a lack of common sense.  This 

is the general knowledge that allows us to get by in the real world, and to flexibly 

understand and react to novel situations.  We remember and use (though usually not 

consciously) heuristics such as “Water makes things wet”; “Wet metal may rust”; “No 

two objects can occupy the same space at the same time”; and “Inanimate objects 

don’t get diseases”. 
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The driving force behind the Cyc Project was the realization that almost all 

software programs would benefit from the application of common sense.  Expert 

systems would gain protection against user error or intentional fraud; the consistency 

of data in spreadsheets could be checked automatically; information-retrieval systems 

and word processors could exhibit more useful behaviors based on an understanding 

of the user’s goals at any given point.  The greatest impediment to the achievement of 

AI was the inability of programs to accumulate, apply, and reuse general knowledge. 

Lenat began the Cyc Project in 1984, at the Microelectronics and Computer 

Technology Corporation in Austin, Texas, with the goal of building a single 

intelligent agent.  This agent would be equipped not just with static facts, but also 

with heuristics and other problem-solving methods that would allow it to act as a 

substrate, an almost invisible performance-boosting layer, underlying a variety of 

software applications.  The Cyc Project was initially envisioned as a series of ten-

year, two-to-ten-person-century efforts, in (1) knowledge base and ontology building, 

or “pump priming”; (2) natural language understanding and interactive dialogue; and 

(3) automated discovery. 

1.2   Representing Knowledge 

Three preliminary research questions presented themselves: How much does a system 

need to know in order to be useful?  What kinds of knowledge are necessary?  How 

should this knowledge be represented?   

1.2.1   Amount of Knowledge 

The “annoying, inelegant, but apparently true” answer to the first question was that 

vast amounts of commonsense knowledge, representing human consensus reality, 

would need to be encoded to produce a general AI system (Lenat and Guha 1990) 

[10].  In order to mimic human reasoning, Cyc would require background knowledge 

regarding science, society and culture, climate and weather, money and financial 

systems, health care, history, politics, and many other domains of human experience.  

The Cyc Project team expected to encode at least a million facts spanning these and 

many other topic areas. 

1.2.2   Kinds of Knowledge 

Lenat and his team understood that the “pump priming” information was not specific 

facts (e.g. “President Lincoln was assassinated”), but rather the “white space” – the 

unstated knowledge which the writer of such sentences assumes the reader already 

knows, such as the fact that being President requires one to be alive. 

In order to truly comprehend a sentence such as “President Abraham Lincoln was 

assassinated”, and be able to make inferences about its likely consequences, a person 

must have already learned many facts about the world.  Someone unable to answer the 

following questions cannot be said to have fully understood the example sentence: 

What is a President? 

Was Lincoln President two months after he was assassinated? 

Was Lincoln alive 300 years before he was assassinated? 
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Fig. 1. Cyc KB Topic Map.  The information in the Cyc KB can by subdivided into loosely 

grouped, inter-related “blocks” of knowledge at various levels of generality. In this diagram, 

Cyc’s understanding of metaphysics is the most general block of knowledge, gradating down to 

the very specific knowledge in tightly defined domains. 

Can a chair be assassinated?  Can a cat?  An idea? 

Was Lincoln’s assassin on the same continent as Lincoln when 

the assassination occurred? 

The task, then, was transformed into one of entering not raw facts but rather a kind of 

pre-factual knowledge, the type of information humans learn effortlessly but rarely 

need to articulate.  

The question of how to get this knowledge into Cyc provoked much discussion.  

Many AI researchers were turning to techniques such as Natural Language 

Understanding (NLU) or Machine Learning, in an attempt to glean knowledge from 

textual sources or from a seedling knowledge base.  After having worked in these 

areas in the 1970s, however, Lenat became convinced that there was no “free lunch” 

in building a real intelligence.  There was the chicken-and-egg problem: in order to 

translate text into a useful semantic representation, an NLU system needs common 

sense.  Imagine a system with absolutely no knowledge of the world trying to 

determine what the ambiguous word “bank” means in the sentence, “The bank is 



 Common Sense Reasoning – From Cyc to Intelligent Assistant 5 

closed on Sundays”, or deciding to whom the pronoun “they” refers in the following 

sentences: 

The police arrested the protestors because they feared violence. 

The police arrested the protestors because they advocated violence. 

It became apparent by 1983 (Lenat et al. 1983) [9] that the kind of knowledge an 

intelligent system must have – pre-factual consensus knowledge – was not likely to be 

found in any textbook, almanac or manual.  Cyc could not directly learn facts such as 

“Once people die, they stay dead” from text sources, even if an NLU system that 

could handle such input were available.  Cyc’s developers realized that NLU and 

Machine Learning would be worthwhile approaches to building the Cyc knowledge 

base (KB) only after a broad foundation of common sense knowledge already existed.  

An intelligent system (like a person) learns at the fringes of what it already knows.  It 

follows, therefore, that the more a system knows, the more (and more easily) it can 

learn new facts related to its existing knowledge.  It was determined that common 

sense must come first, and that initially it would have to be codified and entered 

manually into Cyc. This was the basis for the creation of the Cyc Project at MCC in 

Austin, in 1984. 

1.2.3   Knowledge Representation Formalism 

Now that the question of what to teach Cyc had been addressed, the next step was to 

find an adequate formalism – a representation language – in which to encode that 

knowledge.  The earliest approach adopted was the now-familiar frame-and-slot 

language, in which terms are related by binary predicates: 

GeorgeWBush 

likesAsFriend: VladimirPutin 

 

“George Bush considers Vladimir Putin a friend.” 

 

Mercury 

genls: UnalloyedMetal 

 

“Mercury is an unalloyed metal.” 

However, limitations of the frame-and-slot method quickly became apparent.  

First, it was impossible to make quantified statements such as “All mammals have 

legs.”  Second, modal operators such as “believes” and “desires”, which require 

embedded clauses, could not be expressed; nor could other (often implicit) aspects of 

context such as time, space, and number be captured (e.g., “In modern Western 

cultures, adults are generally permitted to have only one spouse at a time.”). 

Clearly, more expressivity was needed. Other desiderata for a representation 

language fell out from the requirement that Cyc be able to perform useful types of 

reasoning over its knowledge.  In summary, Cyc’s representation formalism needed to: 

• Have a clear, simple, declarative semantics; 

• Include conjunctions, disjunctions, quantifiers, equality, and inequality 

operators; 
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• Allow for meta-level assertions, or statements about statements (e.g., “This rule 

was entered by Doug Lenat on March 2, 1986”); 

• Support inference mechanisms such as verifying conjectures, finding 

appropriate bindings for variables, and planning; 

• Allow nested expressions, such as those found in statements of propositional 

attitudes (e.g., “Joe believes that Tom’s birthday is tomorrow.”). 

1.3   CycL: Cyc’s Representation Language 

Cyc’s representation language is known as CycL. It is essentially an augmented 

version of first-order predicate calculus (FOPC).  All of the FOPC connectives, such 

as and, or, and implies, are present, as are the quantifiers.  One crucial extension was 

the ability to handle default reasoning; aside from intrinsically definitional 

information (e.g., “All dogs are mammals”), there are few general statements one can 

make about the world that cannot have exceptions.  Some examples: 

You can see other peoples’ noses, but not their hearts. 

Given two professions, either one is a specialization of the other, or 

else they are likely to be practiced independently. 

Dogs have four legs. 

These statements are usually true, but three-legged dogs do exist; thoracic surgeons 

routinely see their patients’ hearts; and there are some people who practice two 

separate professions simultaneously. Therefore, standard truth-conditional logic, in 

which statements are only either true or false, would not suffice. Currently, every 

assertion in the KB carries a truth value that indicates its degree of truth. CycL 

contains five possible truth values: monotonically false, default false, unknown, 

default true, and monotonically true.  Most assertions in the KB are either default true 

or monotonically true.  Default assertions can be overridden by new knowledge, 

whether it comes from a person using Cyc or is derived by Cyc’s own inference 

engine.  Instead of using only a single support or line of reasoning to determine if an 

assertion is true or false, Cyc’s inference engine uses argumentation.  This is the 

process of weighing various arguments, pro and con, to arrive at a truth value for the 

assertion.  Cyc employs a number of heuristics during argumentation.  One simple 

example is to prefer monotonic rules: if two rules conclude P but with different truth 

values (i.e., one concludes that P is monotonically true but the other concludes that P 

is default false), then, all else being equal, Cyc sets the truth value of P to the one 

suggested by the monotonic rule. 

Arguments consist of justification chains showing which proofs (ground facts, rules, 

and inference methods) were used to arrive at a conclusion. Figure 2 shows a partial 

inference chain constructed in response to the query, “Can the Earth run a marathon?” 

1.4   Structure of the Cyc KB 

The Cyc KB consists of terms representing individuals (e.g., CityOfParisFrance, 

BillClinton) and natural kinds (Platinum, PineTree).  Cyc predicates can 
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have as many arguments as are appropriate, though one-, two-, and three-place 

predicates are most common.  Functions that can be applied to existing terms in order 

to construct new ones – e.g., LiquidFn and BorderBetweenFn – permit the 

compositional reification of an unlimited number of new “non-atomic” collections 

and individuals, such as (LiquidFn Nitrogen) and (BorderBetweenFn 

Sweden Norway).  

Early on, it became clear that a very large knowledge base would eventually run 

into the problem of internal inconsistency: statements would begin to contradict one 

another. Such contradictions do not necessarily indicate a fault in the formulation of 

the assertions themselves; humans encounter this phenomenon on a regular basis.  

Imagine the following conversation: 

CHILD: Who is Dracula, Dad? 

FATHER: A vampire. 

CHILD: Are there really vampires? 

FATHER: No, vampires don’t exist. 

This exchange is contradictory at first blush, but does not remain so when we consider 

that the truth of each statement depends on some implicit context of reference.  In 

answering the child’s first question, the father frames his response within the context 

of mythology and fiction.  His second answer, however, is framed in a real-world 

context.  In the fictional world of vampires, it is true that they exist, tend to be pale, 

and have sharp canine teeth used for puncturing necks.  In the actual world, there are 

no vampires (though there are vampire stories). 

Since it is impossible to maintain global consistency in a knowledge base containing 

millions of assertions, the Cyc Project’s approach was to aim for local consistency 

instead; this approach was later extended in the thesis work of R.V. Guha [10].  This is 

achieved by situating each assertion in a particular microtheory (essentially, an 

explicitly represented logical context).  Assertions within a microtheory must be 

consistent with one another, but need not be consistent with those in other 

microtheories. Additionally, bundles of assertions in a microtheory tend to share many 

background assumptions.  The microtheory mechanism allows these assumptions 

to be stated once, at the level of the microtheory, instead of having to be 

repeated for each affected assertion. For example, the microtheory named 

NormalPhysicalConditionsMt contains assertions such as “Fluorine is a gas” 

and “Glass has a high amount of shear strength”.  These assertions share the domain 

assumptions that temperature, pressure, etc. are in the normal range for Earth’s surface. 

Cyc’s microtheory mechanism also allows for more efficient inference, in many 

cases. When solving certain types of problems, Cyc knows, or is told, that some 

microtheories must be consulted, while others are irrelevant. This reduces the search 

space, speeding up the inference process. 

1.5   Addressing Structured External Knowledge in Cyc 

In the Cyc KB, it is useful to make the distinction between knowledge (the underlying 

heuristics that allow us to reason) and data (facts or statements about specific items in 
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Fig. 2. Partial Inference Tree for a proof that the planet Earth is not capable of running a 

marathon, supported by a proof that, more generally, inanimate objects can’t run marathons 

the world). Knowledge must be hand-crafted and entered into Cyc; it is knowledge 

that allows Cyc to even begin to understand data. Over the past few years, Cycorp has 

developed components, jointly referred to as SKSI (Semantic Knowledge Source 

Integration), which allow knowledge and data to each be stored and accessed in an 

appropriate way (Masters and Güngördü 2003) [11]. 

Just as a human researcher would not bother to memorize certain facts, many kinds 

of data are best kept out of the KB proper. Storage constraints are one reason: 

although memory is progressively less expensive and more available, a true common-

sense system will require an amount of information that is vast even by modern 

standards. Why use up precious memory to reify every brand-name product sold in 

the world? As well, many types of data are unstable or ephemeral, varying 

significantly over time. One simple example is stock prices. Telling Cyc about the 

stock price of each company on the New York Stock Exchange would be essentially 

pointless, since that information would rapidly become stale. Rather than continually 

updating that data within the KB, it would be much more appropriate to consult that 

data at the source, in real time, so Cyc can always use the most up-to-date figures. 

These concerns were the motivation for SKSI, which allows Cyc to access data in 

structured sources, such as databases, and reason with the facts it finds in exactly the 

same way it reasons with its own native knowledge. 
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Cyc’s SKSI technology allows the meanings of database columns (for example, 

“This column represents a person’s office phone number”) to be described in CycL. 

Only the interpretation of database information is represented within Cyc; all the 

actual data remains in its native format, in the original database. Cyc, in effect, knows 

how to generate SQL queries to access any particular field in any particular row, and 

how to interpret what it finds there. These mappings allow Cyc to combine 

information from multiple databases, or from a combination of databases plus the Cyc 

KB itself, to answer user queries. Many current Cyc applications assume the need to 

consult a variety of sources, such as the KB itself; structured data in databases; and 

unstructured data, such as news articles and Web pages. 

 

Fig. 3. Overview of Cyc. The complete Cyc system has users who retrieve knowledge in a 

variety of ways, and authors who generate knowledge (and who overlap with users). The 

possible interfaces to the Cyc KB and reasoning capabilities – both those based on NL and 

more programmatic interfaces to other applications and data sources – are shown on the right 

and bottom. 

2   The Case for an Ambient Research Assistant 

Performing scientific research is a knowledge-intensive task. Locating, maintaining, 

and organizing the knowledge required for effective investigation, without interfering 

with the creative process, catalyzes successful research. Lacking truly intelligent 

support, researchers must spend a significant portion of their professional time 

performing infrastructure tasks, all of which are crucial to the overall process. 

Researchers must manage their personal information flow, locate related work and 

sources of related expertise, stay abreast of work going on in the field they are 
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working in, ensure that critical laboratory and computing infrastructure is in place, 

perform task tracking, write proposals, write and submit publications, and a score of 

other functions only tangentially related to the actual cycle of hypothesizing, testing, 

and revising scientific knowledge. In a broader sense, this is true in every field of 

human endeavor. Providing better tools and interfaces can reduce the time and effort 

involved in any given task. Project management software simplifies task tracking, and 

good word processors make writing papers easier. However, some duties do not lend 

themselves to the creation of specialized tools – arranging for laboratory 

infrastructure is a time-consuming role that varies enormously across workplaces. 

Furthermore, such tools do not eliminate the need to perform the tasks, or the 

attention absorbed by task switching. 

Historically, the only agents capable of reducing that load are fairly highly trained 

human assistants. The range of tasks such an assistant may be called upon to perform 

is broad, whereas the capabilities built into even the most useful tools are deep – that 

is, focused on a particular task; while Google Scholar, Cora (McCallum et al. 1999) 

[14], and CiteSeer (Bollacker et al. 1998) [1] reduce the time spent researching related 

work, they cannot handle arbitrary queries that draw on real-world knowledge, e.g., 

when was a particular piece of research performed, what is the relationship among 

research groups in a particular field – concepts that a competent assistant possessed of 

common sense and a relatively small amount of domain expertise can handle readily. 

Semi-formally represented knowledge, such as the use of standardized keywords and 

publication formats, is a traditional and valuable mechanism for helping scientists 

access information. Extending that to formally represented knowledge (based on a 

shared ontology) is an effective way of sharing large bodies of knowledge between 

groups, and reasoning systems that draw on that knowledge are the logical counterpart 

to tools that perform well on a single, rigidly defined task. A system that rests on a 

large, non-domain-specific knowledge base can potentially manage tasks that require 

world knowledge, or common sense – the knowledge that every person can 

reasonably assume every other person possesses. Until that knowledge is fully 

represented and integrated, tools will continue to be, at best, idiots savants. 

The underlying philosophy of the Cyc Project is that software will never reach its 

full potential until it can react flexibly to a variety of challenges. Systems should not 

only handle tasks automatically, but also actively anticipate the need to perform them. 

This requires the development of a variety of technologies (script recognition, 

integration of external knowledge sources, facilitation of appropriate knowledge 

entry, hypothesis formation, and so on). These technologies must be integrated into a 

reasoning system that is possessed of a broad base of pre-existing knowledge, such as 

the Cyc knowledge base (KB), which provides the system with enough information to 

understand the context in which each task is being performed. 

2.1   The Role of Assistance 

Flexibility is key to creating a truly useful assistant. A good assistant is capable of 

handling arbitrary problems in arbitrary domains with a minimum of instruction. 

People are particularly well suited to this because they possess a store of real-world 

knowledge and skills that allows them to rapidly switch from one type of task to 

another; even a comparatively lightly trained human can find a submission address 
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and fax a paper to it, schedule a meeting among several people, and respond to 

external queries about availability. While different duties may demand different levels 

of expertise in the scientific domain, almost all require some background knowledge 

as well. Meanwhile, existing computational “assistants” are deep rather than broad; 

each focuses on solving a particular problem, and is brittle when faced with anything 

outside that limited area. 

Another key characteristic of a useful assistant is ease of communication. If 

describing or spawning off a task is too expensive, in terms of time or cognition, it 

becomes impractical to hand those tasks off rather than simply performing them. 

While a particular formal representation might work best when describing a particular 

type of task (e.g. how to compute variance for an experiment), the best way of 

communicating information about a variety of different tasks with minimal cognitive 

load to the researcher is natural language.  

Finally, even if the description and training process is initially complex, an assistant 

must be capable of learning. Generally, tasks do not need to be described each time they 

must be performed; capable assistants can learn from tasks performed successfully, task 

failures, and analogous functions they already know how to perform. This idea of 

learning actually describes a wide variety of functions and capabilities: 

1. Deciding what facts to learn. An assistant system must reason about what 

knowledge gaps would be most cost-effective to fill in any given context. If a 

researcher is considering submitting a paper to an upcoming conference, finding 

submission dates and contact information is likely to be more useful than 

organizing older work, and should be a higher priority task. 

2. Learning those facts. The factual gaps should be filled, from available 

documentation, online sources, and/or communication with the scientist being 

assisted. In the aforementioned example, the system should set out to learn any 

missing facts by appropriately querying all its available sources, both online ones 

and people, starting with the conference web site or call-for-papers and 

progressing to information that requires some knowledge of the research in 

question. The submission information may depend on the track to which the paper 

is being submitted, which requires knowledge of the research topic. 

3. Learning of rules. Once knowledge is acquired, it is possible to hypothesize 

general rules. If several conferences have been identified, an assistant might 

correlate information about each of them and conclude that conferences in some 

broad field (e.g. machine learning) are often of interest, or that knowing 

submission dates is often useful. Such a rule can then guide the selection and 

prioritization of tasks. 

4. Generalizing rules. Carrying this example through, an effective assistant might 

learn from one or more identified rules that, for some particular user or researcher, 

learning and then tracking dates by which some particular action must occur is 

valuable.  

5. Testing and revision. The rules, especially the generalized rules, will need to be 

tested independently of how they were produced. For example, when a general 

rule about tracking dates is hypothesized, a system might discover after 

experimentation that it is less helpful to track and remind a user of recurring dates, 

such as a weekly report that must be made to an overview body. This discovery 

would force revision (tightening) of the generalized rule. 
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2.2   The Limitations of Human Assistance 

Ultimately, the goal of a personal assistant is to reduce the time and cognitive effort 

spent on infrastructure tasks. In some ways, computational systems have the potential 

to assist researchers at a level that a human assistant could never match. Some tasks 

are pervasive – it makes little sense to have a human assistant file each piece of email 

after reading, as the time spent splitting off many tiny tasks is greater than the effort 

of simply performing each task. An assistant’s availability at the moment some duty 

must be performed is crucial. An ambient system, in which a user works within an 

environment in which some agent is actively trying to classify the behavior the user is 

engaging in, and perform subtasks, has the potential to assist with the many small 

tasks that create a burden of day-to-day effort, thereby providing assistance that a 

human assistant could not. 

Another crucial behavior for a non-intrusive assistant – that is, one with minimal 

cognitive load for the user – is anticipation of the needs of the researcher. Ambient 

software assistants have the potential to classify the behavior the user is engaging in, 

predict useful subtasks and expected future tasks, and either perform those tasks or 

perform introductory steps before they are required, thus obviating the need for the 

researcher to identify and describe tasks. This requires plan recognition, identifying a 

user’s actions as part of a script, which is either predefined (as in “reading email, then 

responding, then filing”) or generated on the fly by the system. A script describing 

reading a research paper may include following reference links and seeking deeper 

definitions of key terms. If this script is recognized, the system might display 

recognized terms and links from those terms to other relevant ontologized knowledge 

while the user is still reading; a user might then be presented with a knowledge 

acquisition interface to define unrecognized terms, expanding the knowledge base. 

2.3   Components of a Truly Intelligent Computational Assistant 

Plan recognition: Creating a truly intelligent assistant will require substantial 

computational infrastructure. A crucial piece will be a component responsible for 

gathering information about how people actually perform certain tasks, in as much 

detail as possible; this is a prerequisite for figuring out how to automate pieces of 

those tasks. Similarly important is the capacity to recognize what a person is trying to 

do, and to generate new scripts to help a user optimize his workflow. All of these 

actions must occur more or less transparently to the user of the system; otherwise the 

cognitive load introduced by the intrusiveness of the tool will render it unusable. 

Learning: Making truly intelligent use of any information collected, and minimizing 

the effort involved in using the system, requires many different kinds of learning, 

ranging from learning facts and rules to identifying patterns that can serve as a basis 

for script recognition. Although human training and reinforcement can be involved to 

some extent, especially with respect to reviewing the system’s conclusions, the 

majority of this learning must perforce take place automatically. Taking advantage of 

the inferential capabilities present in Cyc allows the automatic or semi-automatic 
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conjecture of facts, collection of new facts, and production of hypothetical rules and 

scripts that can then be generalized, tightened, corrected, and used. 

Natural Language: Finally, natural language understanding and generation are 

required for optimal interaction – a true assistant would be capable of handling 

aspects of full discourse processing. An assistant system must be able to remember 

questions, statements, etc. from the user, and what its own response was, in order to 

understand the kinds of language ‘shortcuts’ people normally use in context. Input 

from users will not always be in the form of full sentences or questions. The assistant 

will need to use the context of what has been said before, along with knowledge of the 

user’s goals, to interpret requests or commands. For example, a researcher might ask 

“Can you find me any articles by M. Smith of Stanford on bioethics?” The assistant 

might then return a list of 200 such articles. The user might reasonably then ask, “Just 

show me the ones from 2001 or later”, or “Which ones was he the main author on?” 

In order to seamlessly handle this interaction, the system needs to be able to interpret 

references (like “the ones” or “he”) to objects already present in the discourse space. 

Background on the history, goals, and current state of the Cyc Project were given 

in Section 1; what follows is an overview of work being done at Cycorp on each of 

these three high-level components: natural language processing, learning, and ambient 

interaction. 

3   Natural Language Processing in Cyc 

Spoon-feeding knowledge into Cyc (creating terms and hand-ontologizing each fact 

about each concept) is time-consuming, and Cyc’s ontological engineers must become 

adept at translating back and forth between English and CycL. This is a tedious 

mechanism for knowledge acquisition, and furthermore does not allow free interaction 

with users who are not trained in CycL. A few years into the Cyc Project, work began 

on limited natural language processing using Cyc as a substrate, though the plan was 

always to focus more on NLP during Cyc’s second decade of development. 

3.1   Components of Natural Language in Cyc 

Natural language understanding (NLU) and natural language generation (NLG) 

capabilities allow users to interact with Cyc using English instead of CycL. With 

these capabilities, Cyc can start down the road toward being able to read texts and 

learn new information on its own. 

3.1.1   Cyc’s Lexicon 

At the core of Cyc’s natural language processing capabilities is its English lexicon 

(Burns and Davis 1999) [4]. This lexicon contains information about the syntactic 

properties of words and phrases (e.g. “tree” is a noun; “eat” has both transitive and 

intransitive uses), as well as a compositional morphological representation for derived 

words (for example, “flawless” is decomposed into the root “flaw” plus the suffix 

“less”). Most important, though, are the semantic links: pointers from words and 
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phrases to concepts and formulas in the Cyc KB. It is these links that allow for 

translation of English sentences into fully formed CycL representations, and vice 

versa. Cyc’s lexicon currently contains entries for over 20,000 single-word noun, 

verb, adjective, and adverb forms; 40,000 multi-word phrases; and more than 100,000 

proper names. Following are partial lexical entries for the words “tree” and “eat”: 

Lexical Information for “tree” 

• CycL: (#$denotation #$Tree-TheWord #$CountNoun 1 #$Tree-

ThePlant) 

  Meaning: #$Tree-TheWord is a count noun denoting #$Tree-ThePlant 

• CycL: (#$singular #$Tree-TheWord “tree”) 

  Meaning: One singular form of #$Tree-TheWord is the string “tree”. 

Lexical Information for “eat” 

• CycL: (denotation Eat-TheWord Verb 1 EatingEvent) 

  Meaning: #$Eat-TheWord is a verb which denotes an #$EatingEvent 

• Semantic translations of ‘eat’: 

(verbSemTrans Eat-TheWord 0 TransitiveNPFrame 

      (and 

            (isa :ACTION EatingEvent) 

             (performedBy :ACTION :SUBJECT) 

             (consumedObject :ACTION :OBJECT))) 

 

(verbSemTrans Eat-TheWord 0 IntransitiveVerbFrame 

      (and 

(isa :ACTION EatingEvent) 

(performedBy :ACTION :SUBJECT))) 

Cyc’s lexicon makes use of a specialized microtheory structure to represent 

languages, including various dialects of English as well as other non-English languages 

(German, French, Spanish, etc.). Small numbers of words and phrases in these other 

languages have been added, mainly as a proof-of-concept that Cyc’s lexical 

representation vocabulary can handle or be easily extended to handle a variety of 

languages. The current focus is on parsing and generating English, though projects 

involving other languages, such as Chinese, are underway (Schneider et al. 2005) [17]. 

3.1.2   Natural Language Generation 

Cyc’s NLG system produces a word-, phrase-, or sentence-level paraphrase of KB 

concepts, rules, and queries. This system relies on information contained in the 

lexicon, and is driven by generation templates stored in the knowledge base. These 

templates are not solely string-based; they contain linguistic features that allow, for 

example, a variety of verb tenses, and correct grammatical agreement, to be produced. 

The NLG system is capable of providing two levels of paraphrase, depending on the 

demands of the application. One type of generated text is terse but potentially 

ambiguous, while the other is more precise, but potentially wordy and stilted. 

Automated interface tools assist users in adding new generation templates as they 

introduce new concepts into the knowledge base. 
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Generation for the predicate #$hasDiet 

 
• CycL Template: 

(genTemplate hasDiet 

        (PhraseFormFn NLSentence 

(ConcatenatePhrasesFn 

            (BestDetNbarFn-Indefinite (TermParaphraseFn :ARG1)) 

            (BestNLWordFormOfLexemeFn-Constrained Adverb 

TypicalTheWord) 

            (BestHeadVerbForInitialSubjectFn Eat-TheWord) 

  (BestDetNbarFn-Indefinite (TermParaphraseFn :ARG2))))) 

• CycL: (#$hasDiet #$Termite #$Wood) 

 

• Generated Text: “Termites typically eat wood.” 

3.1.3   Natural Language Understanding 

With regard to NLU, depth of parsing from natural language to CycL can range from 

very shallow (for example, simply mapping strings to concepts) to deep (full text 

understanding, via translation to CycL formulas). Cyc-based applications have 

differing needs with respect to parsing speed, depth, and accuracy. This has resulted 

in the development of a number of in-house parsing tools, including standard CFG 

parsers and template parsers. External parsing tools, such as Charniak’s (2001) 

statistical parser and the LINK parser developed at Carnegie-Mellon University 

(Sleator and Temperley 1991) [20], have also been adapted and used with Cyc’s 

semantic translation tools. 

Parsing Example 

• English: “Bill Clinton sleeps.” 

• Parsed CycL: 
 (#$thereExists ?SLEEPS 

(#$and 

(#$isa ?SLEEPS #$Sleeping) 

(#$bodilyDoer ?SLEEPS #$BillClinton))) 

3.2   Question-Answering Via Natural Language 

Cycorp has developed a Cyc-based natural-language question-answering application, 

designed to operate over heterogeneous text and structured data. The goal of this work 

is to enable the proactive seeking out of sets of facts that may be relevant to any given 

task that a user is pursuing, such that that information can be presented in a clear, 

coherent context. Ultimately, it will assist users in the task of reasoning systematically 

about entities of interest, hypotheses and facts about those entities, and the likely 

explanations of and consequences of those hypotheses and facts. The resulting 

compilations are not just static shoeboxes for facts; they support a computing 

environment that dynamically recommends actions for researchers to consider. A 

compilation of facts about a particular conference, for example, might include all 

relevant submission dates, location, organizers, conference topic, and second-order 

information such as hotels found in that location. This allows Cyc to suggest 
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appropriate actions at each stage, and even to initiate actions on the user’s behalf. In 

the long term, the goal of this work is to build infrastructure that assists the general 

capability of the system to manage an information-gathering task, by providing the 

means for a user to ask specific questions via natural language. Below is an idealized 

use case pertaining to the example of scientific conferences: 

1. Upon encountering the expression “the proceedings of the ILP 2004 conference” in a 

scholarly context, the QA system tries to determine that ILP is a conference series, held in 

(at least) the year 2004, which publishes formal proceedings. 

2. Based on this information, the information-gathering system suggests that it might be 

worth finding out where the conference was held and what the main theme of the 

conference was. This in turn may lead to questions and/or inferences about who 

participated and what papers were presented. All such queries are optional – the user can 

ignore them all if he or she wishes. 

3. If the user does choose to pursue one of these, the system may suggest several alternate 

paths, each consisting of several subtasks.  For example, suppose the researcher selects a 

query about whether it is likely that inductive logic programming is the main topic of the 

conference. One way to handle this query is to search recent articles linking inductive 

logic programming to known researchers in this field, infer who might have presented at 

such a conference, and search citation sites for evidence that one or more such persons 

did indeed present at the conference in question. 

4. The subtasks then decompose into finding researchers in a particular field, searching 

citation records for papers involving either a set of those individuals or one of them with a 

very unusual name, etc. 

Making such suggestions would be of enormous value, and stretches the limits of 

current knowledge-based systems technology. The next step – which stretches the 

limits of current natural language parsing and understanding technology – is for the 

NL system to automatically read through the online documents and extract these 

subtask answers, after which they can be combined logically to produce an answer. 

An important feature of the information-gathering system is its Fact Sheet facility, 

which provides a framework for organizing and managing information about entities 

and events of interest. The formal representations used in the Fact Sheets allow for 

easy sharing of information across users, and for automated queries to be run against 

the information in the Fact Sheets. Some of the information in Fact Sheets can be 

gathered and verified automatically, before being presented to a user (Schneider et al. 

2005) [17]. Included in Fact Sheets is meta-data about the provenance (both which 

document a fact came from, and who interpreted the document) of pieces of 

information in the Fact Sheet (see Figure 4). 

As implemented, the initial step is to gather facts about an entity. This could be an 

entity that a researcher is specifically interested in, or an entity which Cyc has 

determined, based on what it knows about the user’s interests, would likely be 

relevant to the task. The system first determines that entity’s type. If the entity is 

already known to Cyc, type data will be extracted from the KB; if not, the system 

searches using the entity’s name (currently it searches using Google), gathering 

sentences from the returned documents that mention the entity. To obtain a coarse 

typing – sorting into the kinds of categories one would expect from a traditional 

Information Extraction system such as FASTUS (Hobbs et al. 1997) [7] or ALEMBIC 

(Day et al. 1997) [6] – the sentences are run through third-party named-entity 

recognizers (Klein et al. 2003) [8], (Prager et al. 2000) [15]. Once a rough typing is 
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obtained (e.g. the entity has been determined to be a person, or a place), syntactic 

patterns in the retrieved sentences are analyzed in order to refine that typing. This 

identifies, for example, appositive phrases such as “___, a German pharmaceuticals 

researcher”; these phrases are then interpreted semantically using Cyc’s lexicon. 

 

Fig. 4. Information about a specific paper. Relevant KB content is generated into English and 

displayed in an editable format. The “green light” metaphor for each assertion shows that there 

are no consistency issues with the information displayed. 

Once an entity has been typed, the next step is to determine which kinds of facts 

should be gathered for that entity. There are three reasons why a fact might be 

relevant for research: (1) a user requests it; (2) the system is aware that it is an 

appropriate type of information (e.g. because an ontologist asserted that it is an 

appropriate type of information for a particular type of entity, or because knowing 

that fact will trigger interesting inferences); and (3) it is a type of information that is 

commonly known for that type of entity. When performing automatically-guided fact 

gathering about a particular entity, the Cyc system finds out which facts are relevant 

by consulting existing Fact Sheets, which were created (some manually and some 

automatically) on the basis of reasons (2) and (3). Next, the system constructs search 

strings suitable for use by an information retrieval engine. If the search engine finds 

results, the portions of the resulting sentences that correspond to the blanks in the 

search strings are semantically analyzed, and the results substituted into the variable 

position(s) in the original CycL query. Before actually asserting the resulting 

formulas into the knowledge base, Cyc attempts to verify the proposed facts, using 

KB consistency checks and additional corpus checks. Finally, verified facts are added 

to the Fact Sheet, along with meta-information about their sources. (This approach to 

knowledge acquisition is described more fully in the discussion of learning in Cyc in 

section 4.2.2.) 
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After preliminary testing, we believe that this system shows substantial promise as 

a tool that researchers can use to gather and manage information. Because a formal 

representation underlies the data stored in the system, others can readily reuse its 

knowledge (unlike text documents), and automatic updates made by one user can be 

automatically disseminated to other users. We expect that both the fact-gathering 

ability and the verification methods will improve as we extend and refine our initial 

solutions to these problems. 

Depending on the particular domain of interest, the fact-gathering system produces 

results that have a precision level between 50% and 70% (Matuszek et al.; Schneider 

et al. 2005) [12,17].  The level of fact acquisition is lower; these same tests show that 

the system finds the sought-after information anywhere from 8% to about 20% of the 

time.  This relatively low number is not surprising, given that the system is asking 

about entities that in many cases are not well known (e.g., it would not be surprising 

for no web page to list the organizing committee for a departmental colloquium 

series). Additionally, the techniques currently being employed are very shallow 

(requiring exact string matches); the addition of more sophisticated NLP methods 

should allow for substantially better retrieval rates. 

4   Learning Within Cyc  

In the early days of the web, the “Ask Jeeves” site offered a very exciting prospect: 

millions of people would pose questions, and hundreds of librarians would find the 

answers and add them to the site. Over time, the system would become increasingly 

comprehensive, gradually accumulating the knowledge it would need to answer 

almost any question. 

Nearly a decade after the founding of “Ask Jeeves” in 1996, it has become clear 

that one of the biggest hurdles facing projects that try to store information with only 

minimal understanding of the background concept is one of is combinatorics. The 

following question is typical, reasonable, and should be answerable; but it will 

probably never be repeated this century: “What time tracking programs for a Palm 

Pilot can track on quarter hour intervals, track at least 10 projects, and synchronize 

with Excel?” Tens of thousands of librarians could not hope to anticipate even a 

fraction of questions that users asked. The situation is even worse in scientific 

applications where almost all questions are likely to be unique. 

Given the availability of a large knowledge base, and the ability to augment that 

knowledge base using information obtained from the web, it should be possible to 

successfully direct the learning of new knowledge that in turn improves the system’s 

ability to anticipate and answer the needs of scientists.  We have hypothesized two 

ways for Cyc to use what it already knows to “bias” or guide this learning: (1) guiding 

the gathering of facts needed to answer queries (or sub-queries), automatically or via 

directed dialogues with knowledge workers; and (2) guiding the induction of new 

knowledge from what is already known. 

Performing machine learning over the knowledge centralized in the Cyc 

knowledge base (or accessible from that knowledge base, as in the integration of 

relational databases) requires the application of a variety of techniques that are 

normally used separately. Cyc’s inferential capabilities allow the automatic or semi-
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automatic conjecture of facts, the collection of new facts, and the production of 

hypothetical rules and scripts that can then be generalized, tightened, corrected, and 

used. This iterative process starts with the low-hanging fruit of implicational rules, 

and can be expanded to acquisition of more and more complicated knowledge 

structures. Cyc is a good testing ground for this use of knowledge collection and 

induction; its large pre-existing corpus of facts and rules provides models that ease the 

process of fact acquisition and rule induction. 

4.1   Learning in Cyc: Goals 

Current work in the Cyc Project is taking steps towards beating the combinatorics 

problem mentioned earlier in relation to Ask Jeeves, creating something like an Ask 

Jeeves that can directly answer questions.  There are two parts to this proposed solution: 

1. Use a large knowledge-based system, relying on Cyc, as a representational 

interlingua, so that n fragments of information from m sources can arithmetically 

and logically combine into answers for novel questions.  To do this, the meaning 

of the n fragments must be available to Cyc. In the specific case of automated 

(but imperfect) extraction of desired facts from text corpora, n can be very large. 

2. Apply a combination of statistical, deductive, and inductive techniques, to get 

Cyc to learn to answer questions.  Some of this learning will be 100% automatic, 

such as inducing rules from specific facts and generalizing existing rules.  Some 

of this learning will be semi-automatic, such as automatically identifying a small 

number of specific “pivotal” questions for human users to answer. 

Consider even the relatively simple question of booking travel for a conference.  

To manage this task, the system needs to be able to go out to the web and determine 

the location of the conference; it needs to know things about the person who is doing 

the traveling; it needs to be aware of when the travel must occur, which requires 

sophisticated temporal understanding; and it should have heuristics (rules of good 

judgment) that specify that for uncertain dates it should volunteer the argument it used 

to make its guess, but for true specific dates, it should only show the argument if 

prodded. 

The first stages of the necessary learning can be subdivided into two categories: 

fact gathering, the collection of basic knowledge that translates into simple CycL 

assertions, and rule production, which allows the system to conclude to higher-level 

knowledge given those facts. Fact gathering currently targets ground-level assertions, 

either at the instance level or the type level, while rule production has focused on 

generating rules from large sets of ground facts via induction. 

Instance-Level Fact: (isa Lenat ArtificialIntelligenceResearcher) 

Type-Level  Fact: (genls ArtificialIntelligenceResearcher 

ComputerScientist) 

       An AI researcher is a kind of computer scientist. 

Rule: (implies 

       (and 
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           (isa ?CONF Conference) 

           (topicOfIndividual ?CONF ArtificialIntelligence) 

           (presenter ?CONF ?PER)) 

       (isa ?PER ArtificialIntelligenceResearcher)) 

  By default, presenters at AI conferences are AI researchers. 

 

Fig. 5. Factivore used for task assignments. In this form, the employee Cynthia Matuszek is 

being assigned to the task of importing and exporting CycL collections to an induction system 

as unary predicates, to which they are logically equivalent. The different colors of “lights” 

indicate assertions that are already made (green) or in the process of being made (blue). 

4.2   Gathering Facts 

4.2.1   Gathering Facts Via User Interaction 

In previous work, Cycorp developed a general knowledge acquisition interface called 

the Factivore (Witbrock et al. 2005) [23]. This component of the Cyc system uses 

templates, represented in CycL and stored in the Cyc KB, to describe “forms” which, 

if filled in, in English, to the system’s satisfaction, will result in appropriately 

formalized assertions appearing in the KB. 

This allows users who are not trained ontologists to enter information that might 

not be possible to obtain otherwise, such as the creation of task assignments for a 

research group. It is ultimately necessary for a scientist to describe that information 

somehow – it cannot be retrieved from a web page or calculated from implication 

rules (at least until AI technology has become substantially more sophisticated!). The 

least intrusive behavior an assistant can display is to remind a researcher of the need 
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to provide such instructions to a team, and to provide a mechanism that ensures that it 

can be done with minimal effort expended on tool use.  

For the Factivore’s initial deployment, ontologists asserted the underlying 

templates into the KB. While this somewhat painstaking process was reasonable in 

that context, given the relatively small number of entity types to be represented, and 

the large number of those instances, the situation with an ambient research assistant is 

quite different. Depending on task exigencies, new entities of any type may need to be 

represented in the KB. This longer-term goal was the reason for storing the templates 

in CycL in the KB. It  is now possible for Cyc to autonomously produce templates for 

any type of entity for which Cyc knows a few instances. Over time, it is intended that 

the system will learn to produce and display these forms in context, eliciting the 

information required to handle the current task properly, storing it in the KB for future 

use as learned information, and providing an ever-growing base of “ground facts” to 

use for rule induction (and improved Factivore form design).  

4.2.2   Gathering Facts Via Web Search 

Given the existing infrastructure in Cyc for representing types and parsing simple 

natural language sentences, combining these capabilities for targeting knowledge 

collection from the World Wide Web (e.g. via Google) is a natural mechanism for 

gathering knowledge (Matuszek et al. 2005). The advantages of targeting the web, 

rather than a human user, are compelling – the user, who need not answer questions or 

struggle with the system when the information cannot be understood, need expend no 

cognitive effort. Given the sea of web pages that can be accessed using tools like 

Google (Brin and Page 1998) [2], Cyc can simply skip pages it cannot understand, 

with a substantial likelihood of finding alternate web pages that provide the answer. 

The implementation of this approach decomposes into several subtasks: 

• Generating strings for web searches and web page counts from partial logical 

sentences and logical terms using Cyc’s natural language lexicon: 

Given a partially-bound CycL phrase, such as: 
  (occupation Lenat ?WHAT) 

 Return one or more search strings: 

  “Lenat has been a ____” 

  “Doug Lenat has been a ____” 

  “Lenat is a ____” 

• Using Google’s public API to have Cyc access web pages in their ranked order.  

• Identifying a match in the web page, then interpreting that match into a formal 

representation that is consistent with the constraints imposed by the logical 

sentence: 

  Finding the string “Lenat has been a professor of …” in a web page 

  Interpreting into the term #$Professor 

  Substituting into the original CycL: (occupation Lenat 

Professor) 
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• Eliminating bad interpretations or erroneous websites by semantically 

verifying the claim against the KB. Cyc would never suggest (occupation 

Lenat PrimeNumber), (which might be incorrectly parsed from the sentence 

“Lenat is a prime example...”), because PrimeNumber is a member of a class 

known to be disjoint with occupation type. 

• Verifying the correctness of the parse interpretation by using Google to search 

for the natural-language interpretation of the assertion we have now constructed, 

and performing a second round of search over those strings, which allows us to 

reject interpretations that are a result of bad parses, or are simply too broad.  One 

of the strings “Lenat is a professor” or “Lenat has been a professor” produces 

results, whereas “Doug Lenat has been a paramedic” – resulting from a mis-parse 

of a page about machine translation – does not. 

• Asserting the CycL Sentence into the KB, once it has passed all automatic 

verification tests. 

Targeting the automatic acquisition of simple sentences minimizes the difficulty 

inherent in generating and parsing complex natural language constructs. As well, simple 

facts are more likely to be described in a single sentence on the web that can be found 

and parsed. In initial trials, the search and verification process produced sentences that 

were correct, according to human review, approximately 50% of the time. While this is 

not adequate for the needs of a fully autonomous system, when combined with the 

validation provided by a user who is treating the information provided as a suggestion, it 

has the potential to be very useful, c.f. (Witbrock et al. 2005) [23]. 

4.2.3   Using Inference to Generate Facts: Abduction 

An efficient approach to generating candidate sentences relies on using the abductive 

reasoning capabilities of the Cyc inference engine. In the literature on AI and logic 

programming, an abduction is generally understood to be an argument of the form: 

{Ga ∧ [∀x ( Fx → Gx )]} → abduced  Fa 

Thus abduction is generally performed as deduction-in-reverse
1
: working 

backwards from rules that have the desired result in the antecedent from consequents 

that are known to be true and relevant.
2
 If new abductive rules are desired, they can be 

                                                           
1 Logically, abduction and deduction-in-reverse are distinguishable (Mayer and Pirri 1996); in 

practice, this form of abduction is productive when applied to a large knowledge base containing 

many deductive rules and an inference harness designed to take advantage of those rules. 
2 More formally, finding candidate hypotheses in Cyc is done by querying the inference engine 

about the truth of observation o (the seed query), which will be a CycL formula containing 

unbound variables, and then treating the generated deductive proof attempts as candidate 

explanations of o. If we have a seed of the form Ga, and a rule of the form (∀x)(Fx → 
Gx), Ga is passed to Cyc’s inferential query mechanism. With one transformation step the 

tactician finds (∀x)(Fx → Gx) and transforms the problem to Fa. It then attempts to 

prove Fa. Whether or not Fa is true, the inference process stores the problem Fa. Fa is thus 

generated as a problem in a deductive inference’s search for a proof of Ga. Such generated 

problems are also abduced hypotheses for Ga. Accordingly, the converse forms of rules that 

use implies are used to generate abductive hypotheses. 
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written with implies, and they will thereby be available for both deduction and 

abduction. 

As an example: given the previously introduced rule, a new seed query (for which 

hypothetical bindings are desired), and pre-existing knowledge about researchers and 

conferences: 

• Seed query:(presenter AAAI-05 ?WHO) 

• Assertion:(isa Witbrock ArtificialIntelligenceResearcher) 

• Assertion:(isa AAAI-05 Conference) 

• Assertion:(topicOfIndividual AAAI-05 ArtificialIntelligence) 

• Rule: (implies 

(and 

(isa ?CONF Conference) 

(topicOfIndividual ?CONF 

ArtificialIntelligence) 

(presenter ?CONF ?PER)) 

(isa ?PER ArtificialIntelligenceResearcher)) 

An abductive reasoning process matches the assertion to the consequent of the rule, 

and generates the following defeasible hypothesis: 

• Candidate Hypothesis: (presenter AAAI-05 Witbrock) 

The candidate sentences suggested are checked (via inference and specialized well-

formedness-checking modules) for consistency with the current knowledge in the KB. 

They are then evaluated for inferential productivity, i.e., the degree to which they are 

likely to be subsumed by the antecedent of some rule. Any highly inferentially 

productive statement has the potential to disproportionately increase the knowledge 

that can be deduced. When actually performing abduction of this sort, either web 

verification systems or a human knowledge worker evaluates each sentence for truth 

and plausibility (Matuszek et al. 2005, Witbrock et al. 2005) [12,23]. The results of 

this evaluation will be used to improve automated filtering of conjectured sentences, 

as well as to determine whether those sentences should be immediately applied to 

tasks where assistance is desirable. 

4.3   Rule Induction 

The successful acquisition of a large, consistently structured data set that is well 

connected to the existing Cyc knowledge base is possible, based on abductive 

hypotheses, web search, and gathering facts from users via the Factivore. The logical 

next step in learning is the induction of rules.
3
 Induction of implication rules is a 

process of arguing that a rule is a possible explanation underlying a set of correlated 

                                                           
3 Consistency of form minimizes the inference-based data transformation necessary to perform 

successful induction, and data that is thoroughly connected to the rest of the knowledge base 

allows for the automatic formation of better and more descriptive rules. 
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facts (e.g., if every person that is known to be a mother is a female person, perhaps it 

can be concluded that all mothers are female). An example rule induced from data 

might be: 

[Pa ∧ Pb ∧ Qa ∧ Qb ∧ Rb ∧ Sa ∧ ¬(Sb)] 

→induced 

{∀x [Px ∧ Qx ∧ ¬(Rx) → Sx]} 

Typical inputs to induction (Srinivasan et al. 2003) [21,22] – a list of first-order facts 

constructed using a set of related predicates – can be readily produced by simple 

queries to Cyc’s inference engine over some set of predicates, meaning that running 

induction continuously oveor large sets of knowledge found in the Cyc KB is limited 

only by the speed of the induction process. Induction, like abduction, is not 

guaranteed to produce sound assertions; some are true (accurate when applied to 

future data points that may be introduced), while others are true only over the training 

set and must be revised when other, conflicting data points are introduced. 

Induction was tested in the project management/personnel management domain in 

the Cyc Knowledge Base, using a combination of the FOIL 6 (Quinlan and Cameron-

Jones 1993) [16] and ALEPH systems (Srinivasan 2001) [21], over an initial set of 10 

predicates, which had a combined extent of 1,680 assertions. The predicates used for 

induction were: 

primarySupervisor  projectManagers  

projectParticipants   projectTasks 

assignedEffortPercent  requestedEffortPercent 

participantIn 

• (assignedEffortPercent TASK AGT) means that the IntelligentAgent 

AGT has been assigned the task TASK. 

• (primarySupervisor AGT1 AGT2) means that AGT2 is the default 

directingAgent in any work-related action in which AGT1 is a  

deliberateParticipant. 

• (participantIn AGENT GATHERING) means that AGENT is an intentional 

participant in the SocialGathering, GATHERING. 

• (projectManagers PROJECT MANAGER) means that MANAGER manages 

PROJECT, an instance of Project. 

• (projectParticipants PROJECT AGENT) means that the 

intelligentAgent AGENT participates in (usually, receives tasks from) the project 

PROJECT. 

• (projectTasks PROJECT TASK) means that TASK is a task sanctioned by 

the Project PROJECT. Typically, this means that TASK is a sub-task of the 

overarching task of ‘completing PROJECT.’ 

• (requestedEffortPercent TASK AGENT) means that an authorized 

person (usually the project manager of some parent task of TASK) requests that 

AGENT work on TASK. 
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A human reviewer then evaluated the rules. For the initial test runs, sets of predicates 

from a variety of different domains were selected, and approximately 150 rules were 

produced over those sets. Two human reviewers independently evaluated all rules 

using a tool specific to that task (Witbrock et al. 2005) [23]. On average, 7.5% of the 

automatically produced rules were considered good enough to assert into the KB 

immediately; 35% more were found to need only quick editing to be assertible. The 

most common editing required was the deletion of extraneous clauses in the 

antecedent. On average, it took reviewers 7 hours to review 150 rules, meaning a 

production rate of ~10 rules per hour when minor editing was allowed, about three 

times the rate at which a senior Cycorp ontologist can produce rules by hand. Inter-

evaluator agreement is approximately 90%. This suggests that, even with human 

evaluation of rules, induction over ontologized data has the potential to be a 

comparatively efficient way to discover correlations in at least some bodies of 

assertions. Some examples of rules that were produced by this system follow: 

(implies 

(and 

(projectParticipants ?PROJECT ?AGENT) 

(primarySupervisor ?AGT2 ?AGENT) 

(projectManagers ?PROJECT ?AGT2)) 

(primaryProject ?AGT2 ?PROJECT)) 

If someone is a participant in some particular project, someone else is that 

person’s primary supervisor; and the second person is the manager of the 

project; then the first project is probably that person’s primary project. 

(implies 

(and 

(primaryProject ?AGT ?PROJECT) 

(projectTasks ?PROJECT ?TASK) 

(requestedEffortPercent ?TASK ?AGT ?PRC)) 

(assignedEffortPercent ?TASK ?AGT ?PRC)) 

If someone’s primary project has a task that must be performed; and some 

percentage of that person’s time is requested for that task; then they will 

probably be assigned at that percentage to that task. 

While these relationships may seem obvious to a person (such as a human assistant), 

they represent fairly deep reasoning, of the sort that an ambient assistant system must 

handle transparently and quickly. Not only must the system perform induction 

successfully; it is necessary to reason about the nature of the terms found in the data 

set. For example, if this information is being drawn via NL parsing from some corpus, 

such as a status report, the concept of “participant” may not be explicitly defined. 

People may be described as “participants,” “manager [of],” or “reviewer,” and the 

generalization of those to the category “project participant” must be made by either a 

human, or by a system with broad world knowledge. 
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5   Developing an Ambient Cyc Application 

This section outlines current efforts to deploy Cyc to assist with information-

gathering tasks by human researchers, analysts, ontologists, and others working in 

information-intensive fields. These efforts focus largely on building an application 

framework that extends the Cyc system.  This framework derives its core capabilities 

from the Cyc knowledge base and inference engine, which enable automated, context-

sensitive reasoning over multi-source data. The features most relevant to the 

construction of an ambient assistant are highlighted in this section: anticipation of a 

user’s information needs, and hypothesis generation and tracking. 

5.1   Anticipation of Information Needs 

Cyc incorporates two classes of models of users and analytic processes (illustrated in 

Figure 6).  The first, object-level, class is based on the nature of the objects of inquiry 

(e.g. models of structured interpersonal transactions guide analyses of social 

networks). The body of prior knowledge (such as knowledge of people, objects, 

places, actions, and real-world event types) in the Cyc knowledge base underpins 

models of object-driven analytical processes. The second meta-level class of models 

derives from principles of effective research techniques.  For example, one such 

default principle is: “If there are n prima facie equally good alternatives to pursue at a 

particular stage of analysis, it is equally important to pursue each of the n 

alternatives”. The first class of models will be used to anticipate users’ information 

needs and to proactively fulfill them. The second class of models will be used to build 

increasingly accurate individual and composite models of researchers and their needs. 

5.1.1   Models of Object-Driven Analysis Processes and Anticipation of 

Information Needs 

Speaking at the level of highest generality, any analytical inquiry about something 

involves: (1) investigating the thing’s parts (using a very broad construal of “parts”), 

and (2) investigating how the thing bears significant relationships to other things.  

Cyc understands this feature of analysis by virtue of having a very general script
4
 that 

says “To learn about a thing, one must find out about its significant parts and its 

significant external relations”. (Siegel et al. 2005) [19] 

Once realized, an assistant using this analytical schema will know what sorts of 

fact are relevant when studying certain broad classes of things.  For example, when 

studying an event, such as travel, it will know the importance of understanding what 

type of event it is in order to situate it in the context of other events – in particular, 

sub-events and super-events of a focal event like a scholarly conference.  Similarly, 

 

                                                           
4 Scripts are type-level representations of events that have some sort of complexity in terms of 

either the temporal ordering of their sub-event types (or “scenes”), or in terms of the types of 

things that typically play roles in their scenes.  As such, scripts could enable Cyc to recognize 

complex actions based on matching sensor data to the patterns of scripts, and they could 

enable Cyc to perform complex actions according to a default prescribed action sequence. 
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Fig. 6. Analysis Procedure for Business Travel, illustrating the relation between the process of 

analyzing the behavior of a person and a script that describes the typical progression of a 

certain class of human behaviors. On the analysis side, finding a person’s name in a hotel 

register corresponds to a behavior in the real world: a person spending time in a temporary 

lodging. Spending time in a temporary lodging is typically associated with both travel and a 

purpose for the travel, each of which are features of the object of analysis, and each of which 

suggest natural behaviors for an assistant system to pursue. 

when studying a physical thing, it will try to understand what kinds of things it can be 

a part of, and what kinds of parts it has. Armed with general principles of this sort, 

such an assistant will not need to be explicitly told that if an individual is traveling for 

a conference, it is important that that person be registered in a hotel somewhere in the 

vicinity of the conference in the time frame in which the conference is taking place. 

This knowledge will result from Cyc’s understanding of location and co-location, 

temporality, event occurrence, the meaning of “attendance,” and a host of other 

factors. Like a good assistant (and unlike much current software), these details can be 

recognized as related and relevant – not only without the researcher spelling out every 

detail of his or her needs, but without any explicit interaction between the researcher 

and the system. By recognizing classes of questions as significant, Cyc has 

motivation to instigate lines of inquiry that will reveal the information (e.g., by 

accessing transportation schedules), thereby having this information ready for the 

researcher when the time comes to book travel. 

5.1.2   Ideal Analysis Processes, Script Learning and the Detection of Bias 

The successful realization of Cyc as an ambient assistant relies on having large 

amounts of data showing what human agents with extensive knowledge requirements 

actually do as they work. The development cycle currently takes advantage of a 

transaction capturing environment, which allows researchers to capture and record 

activities occurring during the course of real tasks, including the stream of tasks, 

queries, documents examined, and reports produced. To the extent possible, it also 

captures working or draft documents produced. Actions are captured in very fine 

detail, often down to the keystroke. By interpreting transaction logs and comparing 

logged behaviors to descriptions of ideal processes, it is anticipated that Cyc will 

learn new strategies, expose some single-occurrence errors, and detect patterns that 

indicate important systematic biases on the part of individual users. This knowledge 
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can then be generalized to broader and broader scripts of human behavior, resulting in 

knowledge of general scripts that specify how particular tools (such as IR engines, 

Cyc’s own hypothesis generation tools, and other analytical tools) should be used. 

For example, a script might be developed over time that says that, when a user is 

searching the Internet for information about work related to statistical approaches to 

data retrieval, it is important to execute searches that ultimately incorporate all major 

relevant research sites – CiteSeer, the ACM portal (http://portal.acm.org), etc. The 

assistant will then be able to detect when a user has deviated from ideal behavior, and 

suggest a search specifically including a missing site. Discrepancies such as this – 

unique errors on the part of the researcher – have quick remedies, such as a set of links 

to IR searches that have already been performed on the remaining relevant terms.  

 

 

Fig. 7. Planned user action tracking. The right-hand side of the diagram displays a list of the 

actions Cyc and the user take; on the left-hand side is the idealized script. First, the user asks a 

query and Cyc provides two answers.  Next, the user views one of the answers (the more 

certain one), and then logs out. Cyc logs the fact that the user neglected to pursue one answer, 

and detects that the behavior logged differs from the learned case. 

Ultimately, it will be possible to detect the systematic biases of specific users.  By 

building long logs of the ways behaviors diverge from the ideal in each case, it will be 

possible to help scientists recognize their own systematic shortcomings, and 

ultimately make up for those shortcomings. Of course, when there is a discrepancy 

between Cyc’s view of an ideal strategy and a researcher’s behavior, it will not 

always be the user who is at fault.  In some cases, a discrepancy will arise because 

Cyc does not yet know about a particular approach, or simply does not recognize the 

correct termination case; perhaps the user in the diagram above was not doing a broad 

literature search, but rather trying to find a specific piece of work, and was satisfied 

before exhausting the search possibilities. 

In some cases, Cyc will potentially be able to learn that what may appear to be 

evidence of bias is actually evidence of effective use of tacit expert knowledge. This 

would allow the system to distinguish omissions from situations where the user has 
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yet to perform an action, or already knows what the result of the behavior would be. 

This kind of sophisticated user model would provide a notable advantage over 

systems that produce intrusive warnings stating the obvious. 

5.2   Hypothesis Generation and Tracking 

One way in which an assistant can assist a researcher to obtain knowledge is by 

hypothesizing, in advance, what approaches a researcher would benefit from 

pursuing. Such hypotheses need to be presented in a context that makes it clear why 

they should be of interest, and – in order to minimize the cognitive and time cost of 

tool use – it will be necessary to provide easy one-click tools that enable users to 

assess hypotheses based on existing documents, and then to confirm or deny the 

hypotheses. Several such tools have already been developed for a variety of uses 

within Cyc, ranging from simple sentence reviewers (and more complex rule 

reviewers) to predicate populators that allow an untrained user to select from a 

checklist of possible values for an argument position (Witbrock et al. 2005) [23]. 

Hypotheses are generated, again, by allowing abductive inference over Cyc’s 

common sense and domain-relevant rules. For example, consider an inference initiated 

during an attempt to find answers for the question: “Who has done work relevant to our 

current inductive approach to machine learning of rules?” This question can be 

answered in a fashion analogous to that of the example presented in Section 4.2.3: 

working backwards from rules that have the desired result in the antecedent from 

consequents that are known to be correct and relevant (Siegel et al. 2005) [19]. 

In addition, work is progressing on a project designed to extend Cyc’s capacity to 

develop hypothetical supports for focused queries into a richer capability called 

“scenario generation”. This scenario generation will be initiated by a description of a 

“seed event”, which users will be able to describe using the Factivore. For example, 

the system could be tasked with determining in what ways an upcoming conference 

trip could result in scheduling difficulties. The system will then generate scenarios 

under which the result could occur – for example, another conference that is likely to 

be of interest is scheduled for the same block of time, or the person who should attend 

may be on vacation, or – less probably – the conference might be cancelled. Cyc 

would generate a range of scenarios ranked in terms of relevance, using rule-

clustering technology that ensures reasoning with the most salient rules first. Having 

generated hypotheses via abduction, Cyc refines the hypotheses, by adding useful 

information to them via deduction. The next round of abductions will branch again, 

producing a tree structure among scenario contexts. 

6   Conclusion 

A true AI can fully manage a variety of tasks, not just simplify them or make them 

faster. Like a good human assistant, a fully realized AI assistant will make tasks 

silently vanish: you will never be aware that they even needed to happen. Failing that, 

such an assistant will bring things to your attention only when you must do something 

about them. Human assistants use common sense in determining which tasks may 

simply be carried out and then dismissed; on which tasks the supervisor must be kept 
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apprised of progress; and when to alert the supervisor that some serious roadblock has 

been encountered. By drawing on a body of knowledge about scientific research, and 

about such common-sense concepts as what sorts of things motivate agents to act, 

how time works, and what is or is not a difficult problem, Cyc will be able to carry a 

part of the cognitive burden of day-to-day scientific research overhead tasks. 

Accomplishing this will depend on having many of the same characteristics that 

are the hallmarks of a human ambient assistant: flexibility, availability, ease of 

communication, the ability to learn from a variety of sources, and the ability to 

correlate learned information and learn higher-level information about expectations 

and priorities. Furthermore, an ambient assistant – one that is part of the environment 

in which a researcher lives, and can reason about every aspect of the interrelated 

events and factors that make up the day-to-day life of a researcher – has the potential 

to do much more, and much less obtrusively, than a human assistant. 

Simply developing many different kinds of special-purpose software will not 

accomplish this extraordinarily challenging vision; it requires common sense, the 

ability to learn, and deep integration with the tools and tasks a researcher uses daily. 

While we would hardly claim that Cyc contains all of the information and abilities to 

achieve an unobtrusive, useful ambient assistant, we have mapped out in this paper a 

number of abilities that, when combined together, should prove sufficient to provide 

the basis for such an ambient assistant.  Cyc has made substantial strides in each of 

these areas, and also has an active research program that should enable ever more 

progress in the future. 
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