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INTRODUCTION
Chimeric antigen receptor-modified (CAR) T cells have 

improved treatment outcomes for many cancer types, primar-
ily hematologic malignancies. For B-cell acute lymphoblas-
tic leukemia (B-ALL) in particular, CD19-CAR T cells have 
exhibited remarkable activity, leading to their FDA approval 
in 2017. However, only a subset of patients achieve long-
term remissions without subsequent consolidative allogeneic 
hematopoietic cell transplantation (1–4). Treatment failure 
is most likely multifactorial, including lack of cellular expan-
sion postinfusion, diminished effector differentiation, and 
variable long-term persistence to adequately control B-ALL 

lymphoblast proliferation. These factors are likely due, at 
least in part, to intrinsic features of CAR T cells themselves.

Studies have begun to elucidate the signatures within CAR 
T-cell products that are associated with their potency. For 
instance, the presence of inhibitory exhaustion-associated 
markers on the cell surface, such as LAG3 and TIM3 on 
preinfusion CAR T cells, has been associated with poor out-
comes (5). Bulk RNA sequencing of apheresed T cells prior 
to CAR T-cell production has shown that chronic interferon 
signaling contributes to decreased CAR T-cell persistence, 
whereas TCF7 expression was associated with maintenance of 
a naïve T-cell state prior to infusion and persistence of CAR 
T cells after infusion (6). Additionally, bulk transcriptional 
profiling of the infusion product showed that sustained 
remissions were associated with high expression of T-cell 
memory genes in the infusion product, whereas markers of 
exhaustion and apoptosis were features of infusion products 
among nonresponders (7). These and other studies have been 
instrumental in characterizing broad attributes of T cells and 
CAR infusion products that correlate with CAR T-cell activ-
ity. However, understanding how specific phenotypes within 
heterogeneous CAR products translate to distinct functional 
subsets postinfusion is critical for understanding how and 
why certain CAR T-cell clones expand, persist, and become 
effectors within patients.

A recent study explored this issue by comparing the single-
cell gene-expression signatures of preinfusion CAR T cells 
that proliferated to those that failed to expand once infused 
(8). Intriguingly, their analysis of clonal lineages from two 
patients with non-Hodgkin lymphoma (NHL) revealed that 
CAR T-cell clones whose relative frequencies increased after 
infusion tended to exhibit higher cytotoxic profiles. This 
study demonstrated that detailed and integrative analyses 
spanning both preinfusion products and postinfusion sam-
ples stand to uncover unique cellular signatures associ-
ated with optimal CAR T-cell performance. Along those 
lines, we reasoned that the identification of additional genes 
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that poise CAR T cells to differentiate into ideal effec-
tors, especially those that are expressed on the cell surface, 
could provide opportunities to enhance the efficacy of CAR 
T-cell products.

In this study, we sampled CD19-CAR T cells in the preinfu-
sion product and at several time points following infusion in 
pediatric patients receiving treatment for B-ALL. By transcrip-
tionally characterizing more than 180,000 CAR T cells from 
infusion products (14 patients) and postinfusion samples (13 
patients), we were able to dissect CAR T-cell heterogeneity 
pre- and postinfusion and reconstruct clonal lineages across 
time. Leveraging an integrative approach that combines 
patient-focused single-cell genomics with TCR sequencing, 
we identified and validated a unique gene-expression profile 
present in a subset of preinfusion product cells that gave 
rise to highly effective postinfusion CAR T-cell phenotypes. 
A subset of just three cell-surface markers from this tran-
scriptional profile was sufficient to distinguish preinfusion 
cells with immediate effector function and decreased exhaus-
tion potential upon stimulation with antigen-positive tumor 
cells. Flow cytometry analysis of pre- and postinfusion CAR 
T-cell samples, including an independent set of 8 patients 
from a validation cohort, confirmed that the differences in 
transcriptional phenotypes are also reflected at the level of 
the protein and underscored the unique functional associa-
tions distinguishing cytotoxic effector precursors from CAR 
T cells without the precursor profile. The shared phenotypes 
we characterize across patients can be used to understand the 
mechanisms underlying CAR T-cell efficacy and to improve 
product generation and validation during treatment.

RESULTS
Pre- and Postinfusion CAR T Cells Have Distinct 
Gene-Expression Profiles

To determine features of effective CAR T-cell therapies, 
we undertook a comprehensive gene-expression profiling of 
16 pediatric patients with relapsed/refractory B-ALL, 15 of 
whom had received autologous T cells expressing a CD19.4–
1BBz CAR (CD19-CAR; refs. 9, 10) post–lymphodepleting 
chemotherapy on our investigator-initiated clinical study 
(NCT03573700; Fig.  1A). Patients 0 through 12 have been 
reported in detail elsewhere (11). Twelve of the 15 patients 
who were infused with CAR T cells achieved a complete 
response (CR), with 11 of 12 CRs being measurable resid-
ual disease negative (MRDneg) at 4 weeks after CD19-CAR 
T-cell infusion (see Supplementary Clinical Information). 
We analyzed the CD19-CAR T-cell product generated in 

our good manufacturing practice facility (GMP product), 
as well as postinfusion samples obtained from peripheral 
blood mononuclear cells (PBMC) and bone marrow aspirates 
at regular intervals. Single-cell gene expression and T-cell 
receptor (TCR) sequencing were performed on sorted T-cell 
populations in the GMP product and at weeks 1–4, week 8, 
and months 3 and 6 postinfusion. Across all patients and 
time points, we sequenced 118,749 GMP product CAR T 
cells and 66,042 postinfusion CAR T cells, with an average of 
11,549 cells per patient (SD = 7,335) and 20,532 cells per time 
point (SD = 37,898). Of note, the month 6 postinfusion time 
point consists of only 7 CAR T cells, all derived from a single 
patient (Supplementary Table S1). GMP product CAR T cells 
represented 64% of the total CAR T-cell population, and we 
captured on average 3,320 genes per cell (SD = 856). Postinfu-
sion CAR T cells were less transcriptionally active, with 2,299 
genes detected per cell on average (SD = 931).

To understand the range of CAR T-cell phenotypes and 
how these phenotypes change from the preinfusion product 
throughout the course of treatment, we performed uniform 
manifold approximation and projection (UMAP) dimension-
ality reduction and shared nearest neighbor clustering based 
on gene-expression profiles (Fig. 1B). Included in this broad 
analysis were both GMP product and postinfusion CAR  
T cells, which were generally segregated across the primary 
axis of variation (Fig.  1C, top). Unsurprisingly, CD4+ and 
CD8+ CAR T cells also separated distinctly, with few clusters 
shared by both T-cell types (Fig. 1C, second from top). Dif-
ferential gene-expression analysis across the clusters revealed 
several distinct T-cell states. Clusters with predominantly 
GMP product CAR T cells were classified as proliferative, with  
high expression of genes such as MKI67, cell-cycling genes 
CDK1 and CDC20, and DNA replication genes MCM7, TOP2A, 
and TYMS (CD8: clusters 1, 5, 7, 12, 19, 21; CD4: clusters 0, 
9, 10, 11, 15; Fig.  1D and E; Supplementary Fig.  S1A–S1B). 
Inferred cell-cycle phase also tended to vary across the gradi-
ent from GMP products to postinfusion samples, with enrich-
ments for G2–M and S phases substantially overlapping with 
highly proliferative clusters (Fig. 1C, second from bottom).

Within postinfusion CAR T cells, we observed several puta-
tive functional effector populations characterized by robust 
expression of cytotoxic genes GNLY, PRF1, and NKG7 (CD8: 
clusters 3, 8, and 16; CD4: cluster 14; Fig. 1B–E; Supplemen-
tary Fig.  S1A and S1B). Interestingly, expression of GZMK 
distinguished cluster 3 from cluster 8, the “classic” CD8 effec-
tor population with particularly high expression of perforin, 
granulysin, natural killer granule protein 7, and granzyme B 
(Supplementary Fig. S1B). Others have previously suggested 

Figure 1.  Identification of transcriptional subsets within pre- and postinfusion CAR cells. A, Schematic of clinical trial. For single-cell sequencing 
and transcriptional profiling, leukocytes were apheresed from 16 pediatric patients undergoing CD19-CAR T-cell therapy. T cells were selected, virally 
transduced with the CAR-containing lentivirus, and expanded. The autologous CAR T-cell products were infused into 15 of the patients, and blood and 
bone marrow were drawn at protocol-specific time points to isolate CAR T cells. B, UMAP plot with shared nearest neighbor clustering of 184,791 pre- 
(GMP) and postinfusion (PI) CAR T cells across all patients, colored by 21 transcriptional clusters. C, UMAP from B colored by sample type (top), inferred 
CD8+ or CD4+ phenotype using a consensus approach (second from top), inferred cell-cycle phase (second from bottom), or density of overlapping cells 
(bottom). PI, postinfusion. D, Chart depicting the cluster number as indicated in A, with key genes used to characterize the transcriptional profile of each 
cluster; the functional groups each cluster was assigned to based on the specific transcriptional profile, the number of cells in each cluster, the percent 
GMP composition of each cluster, and the percentage of cells inferred to be CD8+ of each cluster. Percentage of cells in a cluster that was CD8+ was 
inferred using SignacX. Colored bars correspond to each broad functional group (proliferating: slate blue; transitioning: navy blue; early effector: burnt 
orange; cytotoxic effector: dark yellow; dysfunctional: burgundy; metabolically active: light brown). E, Dot plots showing the relative expression of genes 
characteristic to relevant cellular processes as listed. Dot size corresponds to the percentage of cells expressing each gene.
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that GZMK-expressing T cells are a distinct T-cell population 
(12), and we found that this cluster was more heterogeneous 
in expression space compared with the tightly grouped cells 
from cluster 8 (Fig.  1B and C, bottom), with lower (albeit 
nearly ubiquitous) expression of GZMB (Supplementary 
Fig. S1B). A separate, early cytotoxic effector cluster (cluster 
16) was distinguished by upregulation of MCM5, a member 
of the minichromosome maintenance DNA helicase neces-
sary for DNA replication (13), indicating a maintenance of 
the proliferation signals observed in GMP product CAR T 
cells despite their simultaneously upregulated effector genes 
(Supplementary Fig. S1B). We also identified two putatively 
dysfunctional CAR T-cell postinfusion populations unique 
to CD8s, clusters 13 and 20. The coexpression of a suite of 
inhibitory regulators and markers within cluster 13, includ-
ing TOX, LAG3, and TIGIT, suggested T-cell exhaustion (14). 
In contrast, cluster 20 CAR T cells exhibited apoptotic pro-
cesses, indicated by downregulation of genes required for 
translation, such as ribosomal subunit genes RLP30 and 
RPL32, and high expression of CASP8 (Fig. 1C). Despite the 
presence of substantial clusters characterized by proliferating 
CD4+ CAR T cells within the GMP product, CD4+ CAR T cells 
made up only 25.7% of postinfusion cells profiled. Similarly, 
the size of the CD4 effector compartment (cluster 14) was 
much smaller than that of the CD8 CAR T cells postinfusion, 
with the majority of postinfusion CD4s maintaining an early 
activation, rather than effector, profile (cluster 9; Supplemen-
tary Fig. S1B).

Although most transcriptional clusters were strongly asso-
ciated with either pre- or postinfusion samples, some popu-
lations (CD8: 6 and 17; CD4: 2; Supplementary Fig.  S1B) 
instead exhibited a putative transitional state between the 
proliferative signature associated with GMP product CAR 
T cells and the cytotoxic effector differentiated state of the 
postinfusion CAR T cells. These transitional phenotypes 
were identified by the joint expression of several cytotoxic 
genes, including LTB (clusters 2 and 6), GZMA (cluster 6), 
GZMK (cluster 17), and PRF1 (cluster 6), in addition to the 
expression of proliferation signals CDC20, PLK1, and MKI67 
(Supplementary Fig.  S1B). Lastly, we identified a putative 
hybrid population, cluster 4, that contained both GMP prod-
uct and postinfusion cells with mixed CD4+ and CD8+ T-cell 
subsets that were unable to be further delineated.

Overall, assessments of variation in gene expression allowed 
us to identify distinct transcriptional programs between 
GMP product and postinfusion CAR T cells. Signals associ-
ated with initiation and maintenance of the complex path-
ways involved in T-cell proliferation were evident within both 
CD4+ and CD8+ GMP product CAR T cells, whereas postinfu-
sion CAR T cells demonstrated signs of differentiation into 
effector T cells displaying potent cytotoxic transcriptional 
profiles. CAR T cells obtained from bone marrow aspirates at 
4 weeks and 3 months after infusion were largely comparable 
to those from the periphery at the same study time points 
(Supplementary Fig.  S2A), though some annotated subsets 
differed somewhat in degree of expression for key annotation 
markers (Supplementary Fig.  S2B). Our detection of CAR 
expression varied substantially across cells regardless of time 
point, T-cell subset, and transcriptional cluster (Supplemen-
tary Fig. S2C).

Postinfusion CAR T Cells Become More  
Effector-Like Over Time

Having established that GMP product and postinfusion 
CAR T cells encompass several distinct transcriptional sub-
sets, we next determined the proportion of postinfusion CAR 
T cells that fit within these broad transcriptional catego-
ries. Starting at week 2 after infusion, the majority of CAR  
T cells could be attributed to cytotoxic effector subsets (CD8: 
clusters 3 and 8; CD4: cluster 14; Fig. 2A). Notably, the week 
2 sample also coincided with the time of peak expansion in 8 
of the 12 responding, sequenced patients with available qPCR 
assays of CAR abundance (Supplementary Table S2). Because 
cytotoxic effectors predominated the postinfusion CAR T-cell 
functional groups, we sought to characterize the kinetics 
of CAR T-cell effector differentiation by assessing variation 
in the transcriptional signatures across postinfusion time 
points. To do this, we considered postinfusion cells based 
on their sampling time point but visualized them in UMAP 
space. As expected, cells obtained from earlier time points 
tended to cluster near cells from the GMP products, whereas 
cells from later time points were more enriched near the bulk 
of the postinfusion populations (Fig. 2B). Next, we character-
ized the development of the effector signature across GMP 
products and postinfusion time points. Compared with CAR 
T cells in the GMP products and at week 1 after infusion, 
genes associated with a cytotoxic effector profile were most 
highly expressed starting at week 2 (Fig. 2C). This correlates 
with a dramatic relative expansion of the populations we 
identified as cytotoxic effectors (CD8: clusters 3 and 8; CD4: 
cluster 14) at week 2, as they represented a total of 65% of 
week 2 CAR T cells (Fig. 2D; Supplementary Table S3). Inter-
estingly, the CD8+ GZMK-expressing cytotoxic effector popu-
lation (cluster 3) was maintained throughout the remainder 
of the sampling window and constituted a sizable 27.7% of 
CAR T cells at month 3 after infusion. In contrast, the GZMK−

GZMB+ population (cluster 8) was largely lost after week 8, 
concurrent with the decrease of GZMB expression after week 
8 across all clusters (Fig. 2C). Despite CD4+ CAR T cells being 
the minority in the postinfusion CAR T-cell compartment, 
the proportion of CD4+ cytotoxic effectors (cluster 14) was 
fairly consistent throughout the study period and encom-
passed 12.8% of all CAR T cells at month 3 after infusion 
(Fig. 2D; Supplementary Table S3).

To better understand potential differences between cyto-
toxic CD8+ clusters 3 and 8, and why their relative abun-
dances might fluctuate over time, we next performed 
differential expression analysis and regulatory network infer-
ence (15), specifically contrasting these two transcriptionally 
defined populations. In comparison with cluster 8, cluster 3 
expressed significantly higher levels of JUN, JUNB, and FOS 
(Supplementary Table  S4), which are members of the AP-1 
transcription factor complex known to positively affect cel-
lular proliferation through regulation of cell-cycling proteins 
(16–20). Analysis of inferred coregulated gene networks on a 
downsampled subset of the postinfusion data confirmed the 
upregulation of JUN+, JUNB+, and FOS+ regulons in cluster 
3 compared with cluster 8 (Fig.  2E), further indicating the 
enrichment of this transcription factor program within this 
cluster. Moreover, AP-1 signaling, and c-Jun specifically, has 
been shown to be a critical element of T-cell populations that 
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do not proceed toward a terminally exhausted phenotype 
(21–23). Concordant with global gene-expression analyses 
(Fig. 1B), GZMK−GZMB+ cluster 8 also seemed to exhibit less 
variation in inferred regulatory network expression, again sug-
gestive of a more focused transcriptional state than observed 
in the more broadly variable cluster 3 (Supplementary Fig. S3).

Dysfunctional T-cell responses, including exhaustion, can 
arise in some cases of prolonged activation and effector func-
tion (24). We therefore investigated whether markers of T-cell 

exhaustion and cellular death, identified within clusters 13 
and 20, respectively, appeared at a time congruent with 
extended effector function. As early as week 1, markers often 
associated with exhaustion and apoptosis were observed in 
postinfusion CAR T cells; however, later time points (week 8 
and month 3) were substantially more enriched for exhaus-
tion and apoptotic genes (Fig.  2C). This is supported by 
the time points in which the exhausted CD8+ T-cell cluster 
(cluster 13) appears after infusion, as it constituted only 

Figure 2.  Expression of effector and dysfunctional genes over time correlates with kinetics of CAR T-cell subsets. A, Relative proportion of functional 
groups as defined in Fig. 1, aggregated across donors for each preinfusion and postinfusion time point. The number of cells per time point is included in 
parentheses under each time point label. The six-month time point was excluded due to the limited number of CAR T cells (n = 7, from a single patient). A 
dashed vertical line indicates the median time point of peak expansion across sequenced patients. B, UMAP of pre- and postinfusion CAR T cells, colored 
by GMP status or postinfusion time point. Cells from later time points were plotted on top of those from earlier time points. C, Heatmap of average gene 
expression across CAR T-cell time points, visualizing variation in genes associated with cytotoxic effector function or T-cell dysfunction as indicated.  
D, Stacked bar plots portraying each transcriptional cluster’s relative contribution to the indicated time points, colored by transcriptional cluster. E, Violin 
plots depicting activity level of select regulons that were significantly different between transcriptional clusters 3 and 8. Asterisks indicate the degree 
of significance. ****, Padj < 1E−15; ***, Padj < 1E−10 (>1E−15); **, Padj < 1E−5 (>1E−10); *, Padj <  0.05 (>1E−5).
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a minor proportion of the population at week 1 (6.3%), 
increased to 14.4% at week 3, and made up 36.8% and 34.2% 
at week 8 and month 3, respectively (Fig. 2D). GZMK was also 
expressed highly at month 3 after infusion, concordant with 
an increase in exhaustion signals; notably, this signature has 
been associated in other studies with precursor exhausted T 
cells (Tpex; ref. 25). The dying population (cluster 20) is espe-
cially enriched at week 3 after infusion, yet this phenotype 
is also present in earlier postinfusion time points (Fig. 2D). 
Although the enrichment of dysfunctional signals later sug-
gests that a subset of dysfunctional CAR T cells arise as a 
result of chronic effector function, evidence of putative T-cell 
dysfunction appearing as early as week 1 after infusion may 
indicate that some cells develop their dysfunctional state 
almost immediately after infusion.

Pseudotime Identifies Two Distinct Trajectories 
for Postinfusion CAR T-cell Differentiation

Comparing gene-expression clusters with sample kinetics 
demonstrated a general trend toward effector differentiation, 
which accelerated at 2 weeks after infusion. However, these 
data also revealed surprising heterogeneity in gene-expression 
profiles, with dysfunctional cells present even at the very ear-
liest time points after infusion. To explore the relationship 
between cell fates and differentiation states, in particular 

the precursors and offspring of cytotoxic effectors (CD4: 
cluster 14; CD8: clusters 3 and 8) and dysfunctional cells 
(CD8: clusters 13 and 20), we utilized pseudotime analysis 
(on a downsampled subset of the data; see Methods), where 
each cell is assigned a putative degree of progression along an 
inferred trajectory. Cells that fall within a specific area of the 
pseudotime are grouped into states.

CAR T cells from GMP products and postinfusion samples 
clustered along 7 distinct states (Fig. 3A), with the root of the 
trajectory in state A (Supplementary Fig.  S4A). Unsurpris-
ingly, the majority of GMP product CAR T cells fell within the 
root of the pseudotime trajectory, whereas postinfusion cells 
predominated among the branching trajectories (Fig.  3B). 
As cells progress along the pseudotime trajectory, one group 
(state B) splits into a distinct differentiation pathway from 
the others. Because state B arises earlier in pseudotime than 
the other states, we classified state B as “early” and states D, E, 
F, and G as “late.” Of note, dysfunctional cluster 13 spanned 
both the early and late pseudotime states, whereas dysfunc-
tional cluster 20 was primarily confined to state B (Supple-
mentary Fig. S4B). Due to the association of cluster 20 with 
cellular death processes, we evaluated the expression of the 
apoptotic gene CASP8 across all states. Expression of CASP8 
was highest in state B relative to all other states (Fig.  3C; 
adjusted P  <  0.001), suggesting that a subset of cells after 

Figure 3.  Pseudotime trajectory analysis identifies a subset of dysfunctional postinfusion CAR T cells that arise directly from the GMP product rather 
than from prolonged antigen exposure. A–B, Monocle pseudotime map depicting trajectory analysis of 3,416 CAR T cells. Downsampling was necessary 
due to computational limitations. The analysis included 368 cells (the number of all cells at the month 3 time point) from each time point, as well as 
all 840 cells with TCRs matching known pre- and postinfusion lineages regardless of cluster designation. Pseudotime states were generated based on 
internal clustering by the pseudotime analysis. A, Cells are colored by pseudotime state. B, Cells are colored by either GMP or postinfusion sample types. 
C, Dot plot comparing relative expression of CASP8, LAG3, and TOX across pseudotime states, with the percentage of cells expressing a gene encoded 
by dot size. D, Dot plot comparing relative expression of effector genes (NKG7, GNLY, GZMB, and GZMK) across pseudotime states, with the percentage 
of cells expressing a gene encoded by dot size.
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infusion directly acquire a dysfunctional phenotype and pro-
ceed to cluster 20 (state B; Supplementary Fig.  S4B), which 
likely results in cell death. In contrast, another trajectory 
terminates in a potent effector phenotype (states C, D, and G; 
Fig. 3D), whereas a subset of those proceeds on to exhaustion, 
as characterized by higher coexpression of TOX and LAG3 
(state C; Fig.  3C; adjusted P <  0.001). These interpretations 
broadly concur with our traditional gene-expression analyses 
that indicated dysfunctional phenotypes developed in a sub-
set of cells early after infusion.

The TCR Serves as a Barcode for CAR T-cell 
Lineages

Although pseudotime is a useful tool to infer lineage 
relationships and identify potential differentiation branch 
points, to understand what transcriptional signatures give 
rise to the desired effector CAR T cells, we needed a method 
to definitively track these lineages between pre- and postinfu-
sion samples. The endogenous TCR is an optimal marker of 
T-cell lineages, as it remains static throughout differentiation 
and is passed to each daughter cell during T-cell proliferation, 
a process known as clonal expansion. It is estimated that 
most paired αβ TCRs are represented in the naïve human rep-
ertoire only a small number of times, generally once (26–28). 
Therefore, clonal expansions, defined by cells with at least 
one matching α  and one matching β  chain (Supplementary 
Fig. S5A), in the effector and memory repertoires have a high 
likelihood of being descended from the same parental clone. 
Thus, we hypothesized that we could utilize the endogenous 
TCR in transduced cells as a lineage barcode for CAR T cells 
after product generation and infusion.

To test whether we could track CAR T-cell clonotypes 
across multiple time points, we first quantified the number 
of unique clones in GMP products and at each postinfusion 
time point. Targeted cDNA enrichment of the complementa-
rity-determining region 3 (CDR3) of both α and β subunits of 
the TCR yielded a total of 153,853 unique αβ pairs. Cells with 
a given αβTCR appearing at more than one time point were 
defined as “lineages.” Although the lineages identified by this 
classification are persistent across time points, it is impor-
tant to note that these lineages are necessarily undersampled 
because we cannot sample all infused cells within a patient; 
importantly, in subsequent analyses, this undersampling 
biases our results toward the null hypothesis that persistent 
and nonpersistent lineages are similar.

In 10 of the 15 sequenced patients who were infused, we 
tracked multiple lineages originating in the GMP product, 
with a range of 4 to 125 (Fig. 4A; Supplementary Table S5). 
Overall, investigations into relative clonal dynamics of CAR T 
cells over time uncovered considerable diversity in the GMP 
product. After infusion, evidence of moderate clonal expan-
sion (clone size  >10 cells) occurred in 7 patients (Supple-
mentary Table S6). We observed a range of clone sizes among 
CAR T cells across the postinfusion time points. For instance, 
44,981 TCRs (defined using the one-from-each approach; 
see Methods) assayed postinfusion were observed only once. 
However, we also detected 2,620 TCRs more than once but 
in  ≤10 cells. Analyzing these data across all patients, we 
observed a difference between average clone sizes in persistent 
clonal lin eages compared with clonotypes that we observed 

only once (Supplementary Fig. S5B), with persistent lineages 
exhibiting larger overall clone sizes. This suggests that these 
lineages represent expanded or expanding populations.

To determine the trajectories of particular postinfusion 
cell states, we first identified the earliest time point that 
a specific TCR lineage was observed, determined the clus-
ter encompassing that clone at that earliest time point, 
and then determined the cluster that housed the final time 
point where that TCR clonotype was observed (Fig. 4B). We 
focused on the lineages across CD8+ clusters because very few 
lineages were identified among the CD4+ T cells in general 
(and zero CD4+ lineages crossing multiple postinfusion time 
points), reflecting a relative underabundance of CD4+ CAR T 
cells observed after infusion. Interestingly, multiple αβTCRs 
mapped across the cytotoxic effector clusters 3 and 8, poten-
tially suggesting that CD8+ effector subsets share common 
origins. For instance, CAR T cells within cluster 3 (GZMK+ 
effectors) at relatively early time points often shared TCRs 
with cells from cluster 8 (GZMK−GZMB+ effectors) at later 
time points, again suggesting that CD8+ T cells expressing 
GZMK can be an earlier effector state immediately preceding 
GZMB+ cytotoxic effectors (29). However, we also observed 
evidence of the opposite phenomenon occurring, where 
GZMB-expressing cluster 8 lineages later acquire the GZMK+ 
effector signature.

Pseudotime analysis suggested that dysfunctional cell 
states, consisting primarily of clusters 13 and 20, arise from 
two transcriptional pathways: early dysfunction rapidly 
acquired after infusion or late dysfunction acquired as a con-
sequence of sustained effector function. We observed some 
postinfusion lineages in clusters 3 and 8 at early time points 
that were also seen in cluster 13 at later time points, which 
may represent the conventional loss of effector potential 
and the onset of exhaustion in the cytotoxic effectors, or late 
dysfunction. Some lineages from CD8+ GMP cells, specifi-
cally from cluster 1, were mapped to cluster 13 upon infusion 
(Fig.  4C), suggesting early dysfunction. However, establish-
ing conclusive evidence of early dysfunction using TCR lin-
eages remains complicated by a relatively limited sampling of 
extremely diverse populations.

We next endeavored to use TCR lineages to identify pre-
cursors within the GMP that gave rise to the predominant 
cytotoxic effector populations observed throughout postin-
fusion time points (Fig.  4C), once again concentrating on 
CD8+ lineages. We identified postinfusion clonotypes that 
shared exact  αβ  TCRs with GMP cells. Because the effector 
populations exhibit distinct transcriptional signatures, we 
hypothesized that precursor lineages within the GMP would 
fall within a limited set of clusters. However, these effector 
lineages linked to several GMP clusters, including 1, 5, 7, and 
12 (Fig.  4D and E). Therefore, based on global gene-expres-
sion analysis alone, no single GMP product cluster contained 
the precursors for potent effector lineages.

Effector GMP Product Cell Precursors Have an 
Identifiable Signature Preinfusion

Because global gene-expression analysis did not identify 
a single effector precursor transcriptional cluster within 
the GMP product, we hypothesized that more subtle gene-
expression patterns that were obscured by the substantial 
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Figure 4.  Tracking of endogenous TCR over time identifies CAR T-cell lineages and their subsequent fates. A, Alluvial plot of CAR T-cell lineages 
across the GMP and postinfusion (PI) time points. Lineages were defined using a “one-from-each” approach, where cells that match their most highly 
expressed (as a stringency filter) α and β chains are designated as lineages (detailed further in Supplementary Fig. S3). Each line corresponds to an indi-
vidual CAR T-cell lineage. Due to space constraints, only immediately consecutive connections are visualized (e.g., excluding direct connections between 
GMP and Wk3). Black columns result from the stacking of many clones that are detected in only a single cell at a given time point. B (left), UMAP plot 
emphasizing CAR T-cell lineages detected across PI time points. Arrows indicate the CD8+ CAR T cells of the same lineage, starting at the earliest PI time 
point a lineage was detected and ending at the final time point a lineage was detected. Cells without lineages across PI time points are colored gray. All 
other cells are colored by their postinfusion time point. Colored cells without arrows are in lineages that span GMP to PI time points. B (right), Alluvial 
plot depicting the cluster assigned to the earliest postinfusion detection of a lineage and the cluster assigned to the latest detection of a lineage. Colors 
correspond to transcriptional clusters. When lineages span multiple clusters at the same time point, we include both clusters in the plot. C (left), UMAP 
plot emphasizing CAR T-cell lineages spanning GMP and multiple postinfusion time points. Arrows indicate the CD8+ CAR T cells of the same lineage, 
starting at the first detection of the lineage in the GMP and ending at the final detection of the lineage. To aid in visualization, only CD8+ GMP lineages 
observed in more than one postinfusion time point are represented with an arrow. Cells without lineages tracking to the GMP product are colored gray. 
All other cells are colored according to their GMP status or postinfusion time point. C (right), Alluvial plot depicting the cluster assigned to the lineage in 
the GMP sample and the cluster assigned to the final detection of the lineage. Colors correspond to transcriptional clusters. When lineages span multiple 
clusters at the same time point, we include both clusters in the plot.  (continued on following page)
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variation considered during broader analyses might charac-
terize a pre-effector phenotype. To test this hypothesis, we 
compared the transcriptional profiles of GMP product cells 
that shared TCRs with cells found in postinfusion effector 
clusters 3 and 8 to all other CD8+ CAR T cells in the GMP 
product whose TCRs were never observed in those clus-
ters (termed “GMP controls”). This comparison identified 
both upregulated and downregulated genes associated with 
the precursors that shared lineages with cytotoxic effector 
responses (Fig.  5A; Supplementary Table  S7). Particularly, 
lineage-defined effector precursors were, prior to infusion, 
already expressing genes associated with an effector T-cell 
phenotype, including classic effector markers EOMES, GNLY, 
GZMH, GZMK, and IFNG. Surprisingly, genes that are often 
associated with impaired T-cell activation and effector func-
tion, such as TIGIT and LAG3, were also upregulated among 
the effector precursors when compared with the GMP con-
trols, though these genes are also often expressed in activated 
effectors. Other downregulated genes within the effector 
precursors relative to control cells were associated with T-cell 
memory subsets. For example, effector precursors signifi-
cantly downregulated central memory genes SELL, which 
encodes for CD62L, and IL7R, as well as the stem cell memory 
gene LEF1. Although previous CD19-CAR T-cell studies have 
identified CD27 as a marker for optimal CAR T-cell perfor-
mance (6, 7), in this analysis the GMP product T-cell lineages 
that also appear in postinfusion effector clusters exhibited 
markedly lower levels of CD27 gene expression in the product. 
Notably, we found no difference in CAR expression between 
lineage-defined effector precursors and other CD8+ CAR T 
cells in the GMP product (Supplementary Fig.  S6; adjusted 
P = 1). However, the percentage of lineages spanning the GMP 
product and postinfusion samples that anchored specifically 
in cytotoxic effector clusters 3 and 8 was significantly lower in 
nonresponders versus responders to treatment, although this 
analysis was notably limited by the small number of nonre-
sponders with available lineage data (n = 2) and the restricted 
number of lineages available for some patients (Fig. 5B; Sup-
plementary Table S5).

To investigate potential mechanisms into the processes 
distinguishing lineage-defined effector precursors from 
other GMP cells, we inferred the activity of transcriptional 
regulatory networks using SCENIC on a subset of the 
GMP CD8+ CAR T cells, specifically including all cells with 
lineages tracing to postinfusion effector clusters 3 and 
8. Despite some overlap, most precursor effectors clus-
tered distinctly from other cells in the SCENIC analysis, 
suggesting that defined regulatory networks underlie the 
expression differences between these and other preinfusion 
cells (Fig. 5C). In particular, effector precursors showed sig-
nificant upregulation of regulons of known T-cell survival 
and effector differentiation genes, including regulons for 
BATF3+, PRDM1+, MAF+, and EOMES+, and significant down-
regulation of stem cell memory regulons LEF1+ and TCF7+, 
among others, suggesting that effector precursor CAR T 
cells are primed to differentiate into potent cytotoxic effec-
tors rather than multipotent memory T cells with enhanced 
self-renewal capacity (refs. 30–37; Fig.  5D). It is important 
to emphasize that this analysis serves as an independent, 
orthogonal validation of the pre-effector signature defined 

using transcriptional comparisons distinguishing effector 
precursors. Here, the SCENIC analysis was applied to define 
the variation in transcriptional regulons across the GMP 
product, and it independently identified the effector precur-
sors as clustering separately based on inferred transcription 
factor activity.

As we were able to find a profile unique to pre-effector 
GMP product T cells, we next tested whether we could train a 
classifier to assess CAR T-cell effector potential in other GMP 
products. The top 100 differentially expressed genes between 
a randomly downsampled subset of pre-effector and other 
CD8+ CAR T cells of the GMP product were selected to train 
a machine-learning algorithm to predict whether a given CAR 
T-cell in the GMP product would give rise to a lineage that 
was observed in the CD8 effector pool after infusion. Leave-
one-out cross-validation (LOOCV) was used to validate the 
accuracy of the model, and the differentially expressed signa-
tures were also computed only from each training set. Using 
1,000 randomly downsampled sets of CAR T cells, the best 
performance of the classifier reported an accuracy of 87.5% 
and an AUC of 0.939, with an overall average of 78.4% accu-
racy and an AUC of 0.876 across the 1,000 iterations (Fig. 5E; 
Supplementary Fig. S7).

We theorized that if the GMP product cell precursor signa-
ture indeed correlates with the eventual development of cyto-
toxic effector CAR T cells, selectively isolating these precursor 
cells should enrich pre-effector associated TCR clonotypes. 
To test this, we selected a subset of genes that encode for 
surface proteins that were found more frequently expressed 
in effector precursors than other GMP cells: TIGIT, SELL 
(CD62L), and CD27 (Supplementary Fig.  S8A). CD8+ CAR  
T cells that contained the predicted effector precursor profile 
(TIGIT+CD27−CD62Llo) were sorted from a cryopreserved 
GMP sample from a single patient. TIGIT+ cells represented 
12.7% of CD8+ CAR T cells, and we further subsetted on cells 
that were low for both CD62L and CD27 (57.9% of TIGIT+ 
cells; Fig.  5F). We also sorted CD62L and CD27 mid-hi 
expressing TIGIT− cells (74.9% of TIGIT− cells) to use as a 
population representing an opposing, noneffector precur-
sor phenotype. We next sequenced the CDR3 of the  β  TCR 
chain within the bulk RNA (which allows only assessment 
of unpaired TCR chains) obtained from each sorted popu-
lation to compare the relative abundance of effector pre-
cursor lineages in each sorting scheme. We focused on β 
rather than α chains due to the increased diversity generated 
by β recombination, which results in a greater likelihood 
that the observation of identical chains across one or more  
T cells indicates shared clonal origin rather than convergent 
recombination events (38). Because of dramatic differences in 
sample sizes and the extreme diversity of the repertoires, we 
first compared the 1,000 most frequently observed  β  TCRs 
from each sort condition with those observed in our single-
cell postinfusion data; interestingly, the top clones with the 
effector precursor surface phenotype were more than twice as 
likely to be observed postinfusion than the top clones with 
the noneffector surface phenotype (effector: 132; noneffec-
tor: 59; Fisher exact test, P  <  0.001). When considering all 
TCRβ  nucleotide sequences from bulk-sorted T cells that 
matched those in the patient’s postinfusion CD8 repertoire, 
we observed marked differences in the proportion of the 
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Figure 5.  A subset of GMP CAR T cells is uniquely poised to give rise to cytotoxic effectors. A, Dot plot comparing relative expression of 14 genes 
differentially expressed between GMP effector precursors (labeled as “precursors”), as defined by αβTCR lineage tracing, and all other CD8+ GMP CAR 
T cells (labeled as “nonprecursors”). B, Box plot comparing the proportion of GMP to postinfusion lineages that ended up in effector clusters 3 and 8 
between responders and nonresponders. C, UMAP based on SCENIC transcriptional factor regulatory network analysis conducted on effector precursors 
(labeled as “precursors”; red) and a random subset of other CD8+ GMP CAR T cells (labeled as “nonprecursors”; blue). D, Violin plots comparing activity 
levels of regulons based on SCENIC analysis. Asterisks indicate the degree of significance. ****, Padj < 1E−15; ***, Padj < 1E–10 (>1E−15); **, Padj < 1E−5 
(>1E−10); *, Padj < 0.05 (>1E−5). (continued on next page)
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inferred transcriptional clusters to which each phenotype 
mapped (Supplementary Fig.  S8B). The precursor effector 
surface phenotype-sorted cells expressed TCRs that were 
more likely to be observed in proliferating CD8 clusters 
(1, 5, 7, 19), early CD8 effector cluster 16, and GZMB 
CD8 effector cluster 8 when compared with the opposing 
signature, though only cluster 8 showed statistically sig-
nificant enrichment after adjustment for multiple testing 
(Fig.  5G). In contrast, the opposing, noneffector surface 
phenotype was primarily enriched for transitioning CD8 
clusters (6  and  17) and exhausted CD8 cluster 13, with a 

slight enrichment for GZMK cluster 3, though only clus-
ters 13 and 3 were significantly enriched after adjustment 
for multiple testing. Postinfusion cells sharing TCRs from 
the precursor effector sorting scheme were also signifi-
cantly more clonally expanded (Kolmogorov–Smirnov test, 
P < 0.001; Fig. 5H). These analyses confirmed that the tran-
scriptional profile associated with precursors of effector lin-
eages is also reflected on the cell surface and demonstrated 
that the surface markers identified by our analyses could 
be utilized to enrich GMP cells primed to become potent 
cytotoxic effectors.
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Figure 5. (Continued) E, AUC of the best performing iteration of an SVM classifier trained on the top 100 differentially expressed genes between 
GMP effector precursors and all other CD8+ GMP T cells. The single-cell data set was randomly downsampled for 1,000 iterations, with LOOCV in each 
iteration. F, Flow cytometry data from an aliquot of patient 11’s GMP preinfusion product, visualizing CD8+ CAR T cells with the effector precursor 
surface phenotype (TIGIT+, CD62Llo, and CD27−) and the opposite noneffector associated surface phenotype (TIGIT−, CD62hi, and CD27hi). G, Bar plot 
comparing the proportion of bulk β TCRs sequenced that matched those from postinfusion CD8 transcriptional clusters. Differences are represented 
as log2 fold change for the proportions of TCRs matching each cluster. Colors correspond to the precursor effector signature (red) or the opposing, 
noneffector signature (blue). Asterisks indicate the degree of significance. ****, Padj < 1E−15; ***, Padj < 1E−10 (>1E−15); **, Padj < 1E−5 (>1E−10); *, 
Padj < 0.05 (>1E−5); Padj < 0.1 (>0.05). H, Cumulative β clone sizes of postinfusion CAR T cells that share β TCRs with GMP product CAR T cells sorted 
by the precursor effector phenotype (red) or the opposing, noneffector surface phenotype (blue). The graph represents the proportion of cells (y-axis) 
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Immunophenotyping Confirms Expression and 
Validates Functional Differences

Though our in-depth single-cell expression analyses 
demonstrated clear transcriptional differences that were 
consistent across multiple patients and time points, tran-
scriptional abundance does not necessarily correlate with 
protein abundance (39). Therefore, we next endeavored to 
immunophenotype CAR T cells and, when sufficient sample 
was available, test for functional activation via intracellular 
staining in the context of ex vivo coculture with CD19+ 
tumor cells.

To functionally validate our effector precursor signa-
ture, we cocultured GMP CAR T cells from patients 0–15 
with either CD19+ tumor cells or tumor cells lacking the 
CD19 antigen and then assayed a panel of surface and 
intracellular proteins by flow cytometry. Notably, CD8+ 
CAR T cells with the precursor effector surface phenotype 
(TIGIT+CD27−CD62Llo) were significantly more likely to 
produce IFNγ  than cells with the opposite surface pheno-
type (TIGIT−CD27+CD62Lhi; Fig.  6A, top; Supplementary 
Fig.  S9A and S9B). Concordantly, these effector precursor 
cells were also significantly less likely to produce TOX, 
the transcription factor associated with T-cell exhaus-
tion (Fig.  6A, bottom; ref.  37). We repeated these experi-
ments with GMP CAR T-cell samples from a distinct set 
of patients whose cells were not included in the initial 
transcriptional profiling data set (patients 16–23; see Sup-
plementary Clinical Information) to independently vali-
date the immediate functional superiority of the effector 
precursor cells in the context of CD19+ tumor stimulation. 
The results replicated those from the original cohort (Sup-
plementary Fig.  S10A), indicating that preinfusion CAR  
T cells of the GMP product with the precursor effector 
surface phenotype rapidly produce IFNγ upon stimulation 
with antigen. Critically, cells within the opposing phe-
notype develop a dysfunctional profile immediately after 
stimulation. CD8+ CAR T cells with the effector precursor 
phenotype constituted a small proportion of the total CD8+ 
CAR+ T GMP cells, representing a mean percentage of 1.4% 
across all subjects, while the opposing surface phenotype 
was observed in 32.9% of CD8+ CAR T cells.

Lastly, we sought to confirm at the protein level the devel-
opment of the phenotypes associated with the transcrip-
tionally defined cytotoxic effector clusters 3 and 8. Among 
the preinfusion CD8+ CAR T cells, we observed distinct 
populations on the basis of GZMB and GZMK staining 
both before and after stimulation with the CD19+ tumor cell 
line. Specifically, GZMK+GZMB+ cells made up an average of 
17.6% of CD8+ CAR T cells prior to stimulation but increased 
significantly upon stimulation to an average of 64.3%, at 
which point the double-positive population predominated 
in the cultures (Fig. 6B, left; Supplementary Fig. S10B). This 
increase in GZMK+GZMB+ cells was due to decreases in the 
proportions of GZMK−GZMB− and GZMK+GZMB− cells, as 
GZMK−GZMB+ cell proportions did not change upon stimu-
lation (Supplementary Fig. S10B). These population propor-
tions broadly match those observed in single-cell expression 
analyses, where the transcriptionally defined GZMK+GZMB+ 
cluster 3 made up the vast majority of cytotoxic CD8+ T cells 

(Fig.  1B and D). Postinfusion CD8+ CAR T cells from the 
sample obtained at peak expansion displayed the same pat-
tern of GZMB and GZMK production as preinfusion CD8+ 
CAR T cells having undergone CD19+ stimulation, confirm-
ing that CAR T cells directly isolated from the patient were 
activated (Fig. 6B, right).

DISCUSSION
Our study characterizes and tracks the significant hetero-

geneity in preinfusion CAR T cells. Upon infusion into the 
patient, different CAR T-cell subsets lead to divergent differ-
entiation trajectories. The first trajectory involves effector dif-
ferentiation, characterized by the expression of conventional 
cytotoxic genes such as granzymes, PRF1, and NKG7 (40), 
from a highly proliferative state of the GMP product. Others 
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Figure 6.  Flow cytometry data validate the transcriptional charac-
terization of CD8+ CAR T cells. A, Box plots comparing the percentage 
of IFNγ-producing CD8+ CAR T cells (top) and TOX-producing CD8+ CAR 
T cells (bottom) between effector precursor preinfusion cells (Tigit+, 
CD62Llo, CD27−; red) and preinfusion cells with the opposing surface phe-
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from the same patient and sample. B, Representative flow cytometry 
data visualizing GZMB-BV421 and GZMK-FITC staining of preinfusion 
CD8+ CAR T cells (left) stimulated with either CD19+ tumor (red) or CD19 
KO tumor (blue) and unstimulated postinfusion CD8+ CAR T cells (right).
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have demonstrated a similar differentiation trajectory of pro-
liferation in preinfusion and early postinfusion CAR T cells 
leading to potent cytotoxic effector T-cell function postinfu-
sion in both B-cell maturation antigen CAR and CD19-CAR 
T cells (41, 42). As expected, this highly cytotoxic effector 
state eventually culminated in T-cell exhaustion, character-
ized by the expression of TOX and other inhibitory proteins, 
and cell death, as evidenced by an upregulation of CASP8. 
Alternatively, the other trajectory indicates the rapid develop-
ment of these same exhaustion and cell death signatures soon 
after infusion. By using the endogenous TCR as a method to 
track CAR T-cell lineages, we discovered that the cells of the 
GMP product giving rise to cytotoxic effector phenotypes 
correspond to a unique subset with a statistically robust 
transcriptional signature; the presence of this signature in 
CAR T cells of the GMP product consequently affects effec-
tor differentiation postinfusion. An elegant prior study from 
Sheih and colleagues used a similar approach to track CD19-
CAR T-cell lineages in two adult subjects with relapsed and 
refractory NHL (8). Using paired TCR chain sequences from 
single-cell analysis, they identified CAR T-cell clonotypes in 
the preinfusion product that either expanded [increased rela-
tive frequency (IRF)] or declined [decreased relative frequency 
(DRF)] upon infusion. Comparative gene-expression analyses 
between the preinfusion IRFs and DRFs revealed that the IRF 
clones displayed higher expression of cytotoxic genes such as 
GNLY and many granzymes, chemokines (CCL4 and CCL5), 
and the cytokine IFNG. Although we present a larger cohort 
of patients, the substantially greater TCR repertoire diversity 
characteristic of the pediatric population compared with 
adults (Supplementary Fig. S11) poses significant challenges 
for identifying shared TCRs between the GMP product and 
postinfusion CAR T cells. Regardless, the lineages we iden-
tified, when analyzed in the context of more than 180,000 
single-cell expression profiles, allowed us to dissect the spe-
cific features of preinfusion CAR T cells that led to particular 
transcriptional subsets postinfusion. More broadly, our data 
demonstrate that despite all CAR T cells of the preinfusion 
product having experienced the same product preparation 
(i.e., activation, viral transduction, ex vivo expansion, and 
cryopreservation) and recognizing the same antigen, they 
may yet be primed for divergent cell fates.

We were surprised to observe TIGIT upregulation in the 
GMP product precursors of the cytotoxic effector popula-
tion, as this gene is usually known as a negative regulator 
of T-cell function by competing with CD266 for binding to 
CD155 on dendritic cells (42, 43). Adding to its inhibitory 
potential, TIGIT also prevents homodimerization of CD266 
to directly restrain costimulatory signaling (44). One hypoth-
esis for the functionality of TIGIT in this regard is that CAR 
T cells expressing TIGIT may benefit from its inhibitory 
effects by limiting the strength of early effector responses 
that could ultimately lead to a premature dysfunctional state. 
Under this assumption, overstimulated CAR T cells with-
out TIGIT would become overactivated and subsequently 
exhaust themselves early in the treatment window. Our func-
tional analysis supports this hypothesis by highlighting that, 
despite becoming more highly activated upon stimulation, 
TIGIT+CD27−CD62Llo CAR T cells are less exhausted upon 
stimulation, as evidenced by lower TOX expression compared 

with cells with the opposite signature and the rapid induc-
tion of IFNγ secretion. Importantly, we analyzed in this study 
CAR T cells that were generated with a self-inactivating lenti-
viral vector encoding a 4-1BBz CAR. In contrast to retroviral 
vectors encoding 4-1BBz CARs, tonic signaling is limited 
post–lentiviral transduction, because CAR expression in T 
cells is lower (45). However, fine-tuning CAR expression to 
prevent early effector differentiation to delay CAR T-cell 
exhaustion might further enhance CAR T-cell effector func-
tion; for instance, integration of the CAR vector into the 
TRAC locus during product generation abates tonic signal-
ing and impedes the onset of exhaustion (46). Additionally, 
recent findings have also suggested a role for inhibitory 
natural killer–like receptors, such as NKG2A, KLRB1, and 
TIGIT, in restraining the development of T-cell dysfunction 
and activation-induced cellular death (47). Taken together, 
these data demonstrate the potential utility in harnessing the 
role of inhibitory molecules to increase the magnitude and 
persistence of effector responses.

Although our data provide additional context to the tran-
scriptional programs that drive optimal CAR T-cell effector 
function, there are limitations within our study. One barrier 
to correlating our findings with CAR persistence is the fact 
that most patients achieved a CR and proceeded to hemat-
opoietic cell transplantation after the tumor burden was 
effectively decreased, preventing long-term follow-up of study 
participants. Moreover, we cannot fully account for differ-
ences in either the conditions of ex vivo culture and expan-
sion, differences between freshly processed (postinfusion) 
or cryopreserved (GMP) samples, or differences in handling 
of the preinfusion CAR T-cell cultures and postinfusion 
PBMCs. Intensive pretreatment of the patients participating 
in the study adds another layer of complexity to the analysis, 
as these treatments may have altered baseline T-cell states, 
making it more difficult to elucidate clinical correlates with 
our GMP precursor phenotype. Perhaps the foremost limita-
tion of our approach is the inherent constraint on lineage 
sampling, as the isolated CAR T cells from postinfusion 
peripheral blood draws and bone marrow aspirates represent 
only a small proportion of the total CAR T-cell popula-
tion, especially at earlier time points when the cells are still 
expanding. Likewise, sampling only peripheral blood and 
bone marrow misses some lineages that home to lymphoid 
organs, effectively reducing the number of lineages available 
for analysis. However, this nonexhaustive lineage sampling 
regime is inherent to all human TCR studies and clearly did 
not prevent the identification of generalizable patterns, even 
across patients with diverse clinical histories. Although the 
signatures we identified were robust, the data were acquired 
from a cohort of just 16 pediatric patients from one institu-
tion, although we did functionally validate the signature in 
an independent set of 8 additional patients. Regardless, this 
signature may not be broadly applicable to all CAR products, 
especially those generated from apheresis products from 
adults. For instance, second-generation CAR T cells with a 
CD28 costimulatory domain have been shown to generate 
a distinct transcriptional profile in transduced T cells when 
compared with 4-1BB CAR-transduced cells (48). It is there-
fore possible that our identified gene signature is specific for 
CARs with 4-1BB costimulatory domain, though we would 
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consider this only a minor limitation because 4-1BB CARs 
are FDA approved and are widely used in preclinical as well 
as clinical studies. Finally, as is the case with many human 
studies, our clinical associations are correlational in nature, 
particularly as it pertains to our interpretations of functional 
responses within individual patients.

Despite the noted limitations of this study, our data pro-
vide unique insight into CAR T-cell biology in humans and 
set the stage for opportunities to improve current CAR T-cell 
therapy approaches for a broad range of malignancies. First, 
the key to elucidating the transcriptional and protein signa-
tures associated with CAR T-cell cytotoxicity in our study is the 
integration of the preinfusion product into our analyses, made 
possible by having access to cellular products generated in 
the institution’s good manufacturing process facility. Our 
analyses demonstrate that research on patient-derived prod-
ucts is instrumental to understanding the biological changes 
acquired upon infusion. Utilizing these valuable samples, we 
developed an innovative method to identify gene signatures 
for other CAR T-cell products by leveraging endogenous TCR 
sequences within an integrative analytic process (Fig. 7) that 
can now be applied to any CAR study with similar sample 
availability. Our primary findings suggest that only a small 
proportion of lineages traced from the infusion product are 
responsible for the majority of observed effector phenotype 
CAR T cells in PBMCs and bone marrow after infusion. If 
future preclinical and clinical studies are able to validate that 
this small precursor pool is responsible for the majority of 
CAR T-cell activity, the resulting classifier and enrichment 
schemes based on the gene-expression differences between 
pre-effector CAR T cells and the other GMP cells could 
potentially be used prior to treatment, after generating the 
CAR T-cell product, to predict CAR T-cell product efficacy. 
In addition, these approaches could assist in deciding if 
CAR T-cell therapy should be combined with other agents or 
abandoned altogether for particular cases. These studies also 
raise the intriguing possibility that infusion cells with the 
opposing signature may be destined for a rapid dysfunctional 
fate, which we speculate could limit the efficacy of the infu-
sion CAR T-cell product. If this hypothesis is correct, using 
the genes identified in our pre-effector signature, a suite of 
surface markers could potentially be used to enrich the most 
efficacious CAR T cells prior to infusion and deplete cells 
destined for a dysfunctional fate.

METHODS
Study Design and Participants

The samples were obtained from subjects enrolled in a single- 
institution phase I/II clinical study evaluating the safety and efficacy 
of escalating doses of autologous CD19-CAR T cells in pediatric/
adolescent and young adult subjects  ≤21 years old with relapsed/
refractory CD19-positive B-ALL (SJCAR19; NCT03573700). The pro-
tocol was approved by the St. Jude Children’s Research Hospital 
institutional review board. Written informed consent/assent was 
obtained from all participants/parents in accordance with institu-
tional guidelines and the Declaration of Helsinki. The clinical-grade 
lentiviral vector encoding the CD19.4-1BBz CAR, and CD19-CAR 
T-cell products were manufactured at the Children’s Good Manu-
facturing Practice facility of St. Jude. The study, lentiviral vector, and 

the manufacturing of autologous CD19-CAR T cells are described in 
detail elsewhere (11).

Protocol treatment included lymphodepletion [fludarabine (25 
mg/m2, days −4 to −2) and cyclophosphamide (900 mg/m2, day −2)] 
followed by CAR T-cell infusion (day 0). The first six patients received 
1 × 106 CAR-positive T cells/kg, and starting with patient 7, 3 × 106 
CAR-positive T cells/kg were infused. The highest dose provided 
only 3-fold more cells than the lowest dose, and there were no 
major differences observed between dosages (11). Response, at 4 
weeks after infusion, was categorized as CR, either minimal residual 
disease (MRD)–negative or MRD-positive, or no response (NR). 
When available for a given patient, MRD testing included flow 
cytometry, RT-PCR, and/or next-generation sequencing (Adaptive 
Biotechnologies) techniques.

Peripheral blood samples analyzed for this study were collected 
at weeks 1–4, 8, and months 3 and 6 after infusion; bone marrow 
aspirates were obtained at week 4 and month 3 after infusion. qPCR 
assays for the CD19-CAR transgene were performed as previously 
described (11).

Sample Processing and T-cell Sorting for  
Single-Cell Analysis

PBMCs were separated from whole blood via centrifugation in a 
BD Vacutainer CPT Mononuclear Cell Preparation Tube (#362761), 
and remaining red blood cells (RBC) were lysed for 1 minute at 
room temperature. Bone marrow cells were collected, and RBCs were 
lysed for 5 minutes at room temperature. Cryopreserved aliquots 
of the GMP cell product were thawed at 37°C and washed prior to 
staining. Cells were blocked with Human TruStain FcX (BioLegend; 
cat. #422302) and then stained with a human CD19-CAR detection 
reagent (Miltenyi; cat. #130-115-965) for 10 minutes at room tem-
perature. Cells were then washed twice and incubated with an anti-
biotin antibody to label the CD19-CAR detection reagent (Miltenyi; 
cat. #130-111-068) and a cocktail of surface antibodies targeting 
CD45, CD3, CD14, CD16, CD8, and CD4 for 10 minutes at room 
temperature. Cells were washed twice, stained with DAPI, and then 
resuspended in fluorescence-activated cell sorting (FACS) buffer for 
cell sorting using the FACSAria III (BD Biosciences). Total CD3+ 
T cells were sorted, except when the CAR+:CAR− or CD4:CD8 ratios 
were highly skewed in GMP product samples. In this case, popula-
tions were sorted separately to be combined at equal cell ratios for 
GMP product samples. For postinfusion samples, only total CD3+ 
T cells were sorted.

The antibodies used were CD45-FITC (BD Biosciences; cat. #555482), 
CD3-APC (Tonbo Biosciences; cat. #20-0038-1500), CD14-APC-Cy7 
(BD Biosciences; cat. #333945), CD16-APC-Cy7 (BD Biosciences; cat. 
#557758), CD8-BV510 (BD Biosciences; cat. #563919), and CD4-
BV786 (BioLegend; cat. #317442).

Single-Cell Gene-Expression and V(D)J Sequencing
Sorted cells from each sample were counted and assayed for viabil-

ity via hemocytometer. Because GMP samples were always obtained 
after cryopreservation, sorted CD4+ and CD8+ populations were 
sometimes differentially pooled in order to obtain specific CD4:CD8 
ratios; however, postinfusion samples were always analyzed fresh, and 
the CD4:CD8 ratios remained unmanipulated in order to maintain 
an accurate representation of the CD4+ and CD8+ CAR T-cell response 
dynamics within patients. Sorted cells were processed using the 10X 
Genomics Chromium controller and the Chromium Single-Cell V(D)J  
5′ reagents kits (10X Genomics; Part #1000014/1000006). TCR V(D)J 
cDNA was enriched using the Chromium Single-Cell V(D)J Enrichment 
kit for human T cells (10X Genomics; Part # 1000005). V(D)J libraries 
and 5′ gene-expression libraries were generated using 10X Genomics 
library preparation kits. Quantification and quality assessment were 
completed using the Agilent Tapestation and Agilent High Sensitivity 
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Figure 7.  Endogenous TCR tracking as a broadly applicable method for CAR T cells. Schematic overview of the experimental approach and analytic 
pipeline for (i) identifying signatures associated with precursors of potent cytotoxic effectors in CAR GMP products, (ii) evaluating effector potential of 
CAR GMP products, and (iii) enriching CAR GMP products to maximize therapeutic potential.
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DNA reagents (Agilent; Part #5067–5593) and Screen Tapes (Agilent; 
Part #5067–5592). Libraries were sequenced on the Illumina NovaSeq 
platform (gene-expression sequencing configuration: 26-8-0-91; TCR 
sequencing configuration: 150-8-0-150).

Single-Cell Gene-Expression and V(D)J Analysis
Single-cell gene-expression data were processed using CellRanger 

(v.3.1.0, 10X Genomics) with the corresponding GRCh38 refer-
ence (v.3.0.0) modified to include the first 825 nucleotide bases 
of the CD19-CAR transcript. Resulting gene-expression matrices 
were aggregated, again using CellRanger with default parameters 
(i.e., with depth normalized by the number of mapped reads), 
resulting in an average of 46,143 reads per cell, over 95% of reads 
within cells, 1,886 median genes per cell, and 5,955 median UMI 
counts per cell. Single-cell TCR data were processed using the 
same version of CellRanger with the corresponding GRCh38 V(D)
J reference (v. 3.1.0). Across all V(D)J reactions, the median number 
of mean TCR read pairs per cell was 11,179 (minimum: 4,419). All 
included gene-expression and V(D)J reactions passed CellRanger 
quality control metrics.

Aggregated gene-expression data were subsequently analyzed 
using Seurat (49) within the R statistical environment, including cells 
with a minimum of 300 detected genes and genes found in a mini-
mum of three cells. Standard filtering and processing procedures 
were utilized prior to downstream analyses. Specifically, we excluded 
potential doublets and dying cells by filtering out cells with ≥5,000 
genes and ≥10% mitochondrial content, respectively. Data were log-
normalized using default parameters. We then excluded any cell that 
did not contain at least one CD19-CAR UMI in order to exclusively 
analyze transcriptionally defined CD19-CAR T cells. CD19-CAR T 
cells utilized for downstream analyses exhibited 11,259 median UMI 
counts per cell, 2,992 median genes per cell, and a median percentage 
of expression owed to mitochondrial genes of 4%.

We identified the top 2,000 variable features using the vst method 
after excluding TCR and IG genes, and data were subsequently scaled 
using default parameters. In order to correct for potential batch 
effects accruing over the 1.5-year course of data acquisition from 
fresh samples, we used the fastMNN algorithm (50), as implemented 
in Seurat, across each 10×  reaction with default parameters. The 
resulting mnn reduction dimensions were subsequently utilized to 
identify transcriptional clusters via Seurat’s implemented shared 
nearest-neighbors approach and to generate UMAP, again using 
default parameters. To infer whether individual cells were CD4+, 
CD8+, or of a potential mixed phenotype, we considered whether CD4 
or CD8 expression was greater in the cell and also compared with 
automated annotations from the NovershternHematopoieticData 
reference (51) using SingleR (“consensus annotation”; ref.  52). For 
estimating the relative abundance of CD4+ and CD8+ cells in clusters, 
we used SignacX (53). However, due to the limitations of these cell-
specific annotation methods, for downstream analyses focused on 
either CD4+ or CD8+ cells, we assumed all cells in a primarily CD8+ 
cluster were CD8+ and all cells in a primarily CD4+ cluster were CD4+, 
with cells in a mixed phenotype cluster excluded from either.

To identify lineages, we leveraged the TCR sequencing information 
associated with our single-cell gene-expression data. Briefly, we inte-
grated the filtered contig annotations provided by CellRanger with 
the processed gene-expression objects by linking TCR cell barcodes 
to gene-expression cell barcodes. For each patient, we then defined 
potential clonal lineages using four distinct approaches (visualized in 
Supplementary Fig. S5A). The first two approaches were α only, clas-
sifying two CAR cells as lineages when all α observed alleles match 
exactly while disregarding the  β  chain, and β  only, classifying two 
CAR cells as lineages based on matching in only the β chain. Neither 
of these approaches fully represents the TCR by neglecting the con-
tribution of the other chain. Because cells can differentially express 

distinct alleles of both the α  and β  chains of the TCR, the strictest 
definition of a lineage would be cases where all alphas and all betas 
must match between two or more cells (scheme 4 in Supplementary 
Fig.  S5A). We detected the fewest number of lineages when requir-
ing exact matches of all alleles (Supplementary Table S4), and thus 
defined lineages using a “one-from-each” approach (with one α and 
one β), where cells that match their most highly expressed (as a strin-
gency filter) α and β chains are designated as lineages.

Pseudotime analysis was conducted using Monocle2 (version 
2.20.0), which utilizes DDRTree (Discriminative Dimensionality 
Reduction via learning a Tree) for dimensionality reduction (54). 
DDRTree is a reversed graph embedding technique to reduce the 
data’s dimensionality and make the single-cell data into a tree for-
mat, so that the trajectories can be visualized and the pseudome 
calculated. Downsampling was necessary for this analysis due to 
computational limitations. We randomly selected 368 cells (the 
number of all the cells at the month 3 time point) from each time 
point, and we additionally added all 840 cells with TCRs matching 
known pre- to postinfusion lineages regardless of cluster designation. 
Pseudotime states were generated based on internal clustering by the 
pseudotime analysis.

Statistical Analyses
Differential expression analyses were performed using the non-

parametric Wilcoxon rank-sum test with the Seurat (49) package 
(version 4.0.1) in the R statistical environment (version 4.1.0) using 
the FindMarkers function (min.pct  =  0.2 and logfc.threshold =  0.2). 
These comparisons included global (each cluster versus all others) 
and pairwise differential expression analyses across transcriptional 
clusters for functional annotation, GZMK expression differences 
between clusters 3 and 8, and comparisons between the transcrip-
tional profile of GMP CD8+ CAR T cells with TCR lineages linked to 
clusters 3 and 8 versus all other CD8+ GMP CAR T cells. We corrected 
the P values for multiple testing with the Bonferroni procedure, as 
suggested by Seurat documentation, and considered genes with an 
adjusted P < 0.05 as statistically significant.

For the bulk TCR sequencing experiment, the Fisher exact test 
was used for each postinfusion CD8+ cluster to evaluate differ-
ences in the enrichment of overlapping TCRs between the effector 
precursor signature and the opposing signature, and the results were 
adjusted for multiple testing with a false discovery rate (Fig. 5G). The 
Kolmogorov–Smirnov test was used to evaluate differences in clone 
sizes across comparator groups (Fig. 5E; Supplementary Fig. S5B).

To construct a classifier for predicting CAR T-cell effector of GMP 
cell products, the top 100 differentially expressed genes between 100 
randomly downsampled CD8+ T cells of effector precursors and non-
precursor CD8+ T cells of GMP products were selected for training. 
Downsampling was performed because of the extremely unbalanced 
nature of the comparator groups (n  =  319 of effector precursors 
and n  =  55,428 for nonprecursors) and to reduce computational 
complexity. However, to ensure that the downsampled result was 
robust, we iterated the same procedure 1,000 times with random 
downsampling. A support vector machine (55) with a radial kernel 
was used for the classification. We utilized 1,000 iterations to obtain 
a robust result, and LOOCV was used in each iteration, thereby gen-
erating 200,000 classifiers. Only 100 differentially expressed genes 
were used in each training set for each iteration to avoid overfitting 
of the model.

The comparison of TCR diversity between our cohort and a 
previously published study on adult NHL (8) was done based on 
TCRβ  chains. The TCR data obtained via 10X Genomics were 
accessed from the NCBI Gene Expression Omnibus database (acces-
sion: GSE125881) and compared with the TCRβ chains obtained via 
10X Genomics for this cohort using the Shannon–Wiener index. A 
Wilcoxon test was performed to assess the statistical significance of 
the difference.
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Effector GMP Product Precursor Signature Validation
Cryopreserved GMP product cells were thawed at 37°C and washed. 

Cells were then stained with the CD19-CAR detection reagent (Miltenyi; 
cat. #130-115-965) for 10 minutes at room temperature followed by 
staining with an antibiotin antibody conjugated to APC (Miltenyi; 
cat. #130-110-952), a cocktail of antibodies (CD3, CD8, CD27, 
CD62L, CD25, and TIGIT), and a viability dye (Tonbo Biosciences; 
cat. #13-0870-T100). After staining for 10 minutes at room tempera-
ture, the cells were washed twice and resuspended in FACS buffer for 
sorting on the FACSAria Fusion (BD Biosciences). CD8+ CAR T cells 
with either the predicted effector surface profile (TIGIT+, CD62Llo, 
and CD27−) or the opposite, noneffector precursor profile (TIGIT−, 
CD62L+, and CD27+) were sorted into complete RPMI media. Cells 
were lysed with TRIzol for bulk TCR repertoire sequencing.

Antibodies used were anti-human CD3-APC-H7 (BD Pharmingen; 
cat. #560176), anti-human CD8-BV785 (BioLegend; cat. #344740), 
anti-human CD27-PE-CF594 (BD Horizon; cat. #562297), anti-
human CD62L-BV421 (BioLegend; cat. #304828), anti-human 
CD25-VioBright FITC (Miltenyi Biotec; cat. #130-113-283), and anti-
human TIGIT-PE (BioLegend; cat. #372703).

Bulk TCR Sequencing and Analysis
Bulk repertoire sequencing was performed using the 5′RACE pro-

tocol adapted from Egorov and colleagues (56). In brief, total RNA 
was isolated from sorted cells with TRIzol reagent (Invitrogen; cat. 
#15596026) using the manufacturer’s protocol. cDNA synthesis was 
performed with the SmartScribe kit (TakaraBio; cat. #639537) with 
C-segment specific primers and template switching oligonucleotide 
with randomized UMI sequence. cDNA synthesis product was puri-
fied using an Ampure XP kit (Beckman Coulter; cat. #A63880) and 
amplified in two rounds of PCR with Q5 HotStart high-fidelity poly-
merase kit (NEB; cat. #M0493S). Adapters for Illumina sequencing 
were ligated with KAPA HyperPrep kit (Roche; cat. #07962363001). 
The libraries were sequenced on the Illumina NovaSeq platform 
(2 × 150 paired-end sequencing).

Sample demultiplexing and UMI-guided assembly were con-
ducted using MiGEC (v.1.2.9) CheckoutBatch (with -ute flags) and 
AssembleBatch (with –force-overseq set to 1) functions, respectively 
(57). Individual sample assemblies were further parsed and annotated 
using the MiXCR (v.3.0.13) analyze amplicon function (–species hs  
–starting-material rna –5-end no-v-primers –3-end c-primers –adapters 
adapters-present –receptor-type tcr; ref.  58). Resulting TCR outputs 
were then converted to VDJtools format using the VDJtools (v.1.2.1) 
software suite (59) for downstream analysis. To characterize the bulk 
TCR repertoires from the signature sort experiments in the context of 
the postinfusion single-cell TCR data, we identified exact nucleotide 
matches in the CDR3 regions between bulk  β  chain sequences and 
single-cell β chain sequences, using the most highly expressed β chain 
in cases where multiple betas were identified in an individual cell. 
After identifying exact β chain matches between the bulk GMP data 
and postinfusion single-cell data, we used those matches to infer the 
future transcriptional clusters of the β lineages for each sample, which 
we represented in terms of proportions of the bulk β sequences with 
exact matches (Supplementary Fig. S5B). We then calculated log2 fold 
changes between the two sort schemes (Fig. 5G).

Surface Phenotyping and Intracellular Cytokine Staining 
of GMP and Postinfusion Samples

Cryopreserved aliquots of the GMP cell product (preinfusion) or 
peripheral blood samples collected at peak expansion after CAR T-cell 
infusion (postinfusion) for matched donors (when available; patients 
16–23) were thawed at 37°C, suspended in RPMI 1640 supplemented 
with 10% heat-inactivated human AB serum (Gemini Bio-Products; 
cat. #100–512), 1% nonessential amino acids (Gibco; cat. #11140-050), 

1 mmol/L sodium pyruvate (Gibco; cat. #11360-070), and 100 U/mL 
penicillin–streptomycin and allowed to rest for 12 hours at 37°C and 
5% CO2. Pre- or postinfusion samples were plated at 3.0 × 105 cells/well 
in a 96-well U-bottom plate. Although postinfusion samples were cul-
tured alone, preinfusion samples were cocultured 2:1 (sample:tumor) 
with 1.5  ×  105 cells/well of CD19+ tumor, BV-173 (Accession 
#CVCL_0181; positive stimulation), or CD19 KO BV-173 (refs. 51, 52; 
unstimulated) at 37°C and 5% CO2. Mycoplasma testing for both cell 
lines was conducted using the MycoAlert Assay (Lonza) in March 2021, 
and authentication of both cell lines was conducted in March 2022 by 
the American Type Culture Collection (ATCC.org) using short tan-
dem repeat markers. Cell lines were passaged three times prior to use 
in these experiments. At the 12-hour time point, 1× PMA/ionomycin 
(eBioscience; cat. #00-4970-93) was added to positive control wells, and 
GolgiPlug (BD; cat. #555029) and GolgiStop (BD; cat. #554724) were 
added at 1:1,000 to all wells. Cells were incubated for an additional 12 
hours (24 hours total), washed twice with FACS buffer (1×  PBS, 2% 
FBS, 1 mmol/L EDTA), resuspended in 50 μL FACS buffer containing 
5 μL human Fc-block (BioLegend; cat. #422302), and blocked for 10 
minutes at 4°C. Cells were surface stained in an additional 50 μL FACS 
buffer containing 1 μL Ghost Dye Violet 510 Viability Dye (Tonbo Bio-
sciences; cat. #13-0870-T100) and a cocktail of fluorescent anti-human 
antibodies: CXCR3-BUV563 (BD; cat. #741406), CX3CR1-BUV661 
(BD; cat. #750690), CXCR6-BUV805 (BD; cat. #748448), CD27-Super-
Bright 436 (Thermo Fisher; cat. #62-0271-82), TIM3-BV480 (BD; 
cat. #746771), CD8-BV570 (BioLegend; cat. #301038), CD69-BV605  
(BioLegend; cat. #310938), CD62L-BV650 (BioLegend; cat. #3014832), 
PD1-BV711 (BioLegend; cat. #329928), CD3-BV750 (BioLegend; cat. 
#344846), CD4-BB515 (Thermo Fisher; cat. #566912), CD74-PerCP/
Cy5.5 (BioLegend; cat. #357608), TIGIT-PerCP/eFluor710 (Thermo 
Fisher; cat. #50-245-943), CD49d-PE/Dazzle 594 (BioLegend; cat. 
#304326), CXCR4-PE/Cy5 (BioLegend; cat. #306508), CD52-PE/Cy7 
(BioLegend; cat. #316012), LAG3-Alexa Fluor 647 (BioLegend; cat. 
#369304), and CCR5-Alexa Fluor 700 (BioLegend; cat. #359116) for 
30 minutes at 4°C. Cells were washed twice with FACS buffer and 
prepared for intracellular and intranuclear staining using the FoxP3/
Transcription Factor Staining Buffer protocol (Thermo Fisher; cat. 
#00-5523-00): cells were resuspended in 200  μL fixation/permeabili-
zation buffer, incubated 30 minutes at room temperature, and then 
washed twice in 200  μL 1×  permeabilization buffer. Cocultures were 
stained with 100  μL CAR Detection Reagent (Miltenyi Biotec; cat. 
#130-115-965) in 1× permeabilization buffer for 10 minutes at room 
temperature, washed in 200 μL 1× permeabilization buffer, and stained 
for intracellular cytokines for 30 minutes at 4°C with a 100 μL cocktail 
of 1×  permeabilization buffer and anti-human antibodies including 
GzmB-BV421 (BioLegend; cat. #396414), IFNγ-BV785 (BioLegend; cat. 
#502542), GzmK-FITC (Santa Cruz Biotechnology; cat. #sc-56125), 
TOX-PE (Thermo Fisher; cat. #50-245-516), and Biotin-APC (anti-CAR 
secondary antibody; Miltenyi Biotec; cat. #130-111-068). Cells were 
washed twice with FACS buffer, suspended in 120  μL FACS buffer, 
and analyzed by flow cytometry on a Cytek 5-laser Aurora spectral flow 
cytometer using SpectroFlo v2.2 software (Cytek) and analyzed using 
FlowJo v10.7.1 software (TreeStar).

Data Availability
Raw single-cell gene-expression, single-cell TCR, and bulk TCR 

sequences have been deposited in and are available from the database 
of Genotypes and Phenotypes (dbGaP) under dbGaP Study Accession 
phs002966.v1.p1. Processed single-cell data have been deposited in 
and are available from the Dryad Digital Repository (60). Relevant 
clinical data are included in this article or referenced elsewhere (see 
Supplementary Clinical Information). qPCR data for assessing CAR 
expansion for patients 0–15 are included in Supplementary Table S2. 
Differentially expressed genes for key comparisons are included in 
the supplementary tables.
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